УДК 547.461.3:547.491.4:547.825:547.818.1

О ВЗАИМОДЕЙСТВИИ ДИМЕРА МАЛОНОНИТРИЛА С ИЗОТИОЦИАНАТАМИ

© 2021 г. В. В. Доценко^{*a,b,**}, А. В. Беспалов^{*a*}, А. А. Русских^{*a*}, В. К. Киндоп^{*a*}, Н. А. Аксенов^{*b*}, И. В. Аксенова^{*b*}, С. В. Щербаков^{*b*}, С. Н. Овчаров^{*b*}

^а Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия ^b Северо-Кавказский федеральный университет, Ставрополь, 355009 Россия *e-mail: victor dotsenko @mail.ru

> Поступило в Редакцию 19 апреля 2021 г. После доработки 19 апреля 2021 г. Принято к печати 6 мая 2021 г.

В зависимости от условий реакция 2-амино-1,1,3-трицианопропена (димера малононитрила) с изотиоцианатами приводит к 1-замещенным 4,6-диамино-2-тиоксо-1,2-дигидропиридин-3,5-дикарбонитрилам либо к 4,6-диамино-2-(фенилимино)-2*H*-тиопиран-3,5-дикарбонитрилу. Проведено квантово-химическое моделирование ИК спектров и реакционных маршрутов для полученных соединений. Проведен предикторный анализ *in silico* потенциальных протеиновых мишеней, соответствия критериям биодоступности и параметров ADMET.

Ключевые слова: 2-амино-1,1,3-трицианопропен, изотиоцианаты, гетероциклизация, 2*H*-тиопираны, 2-тиоксопиридины, квантово-химические расчеты

DOI: 10.31857/S0044460X21060019

2-Амино-1,1,3-трицианопропен 1, легко получаемый димеризацией малононитрила [1], является полифункциональным реагентом, широко используемым в синтетической органической химии. Реакции гетероциклизации с использованием димера малононитрила 1 известны с середины ХХ века и достаточно хорошо изучены (обзорные работы см. [2–4]). Тем не менее, в литературе встречаются противоречивые сведения о регионаправленности реакций димера малононитрила 1 с изотиоцианатами. Так, в работе [5] описано взаимодействие димера 1 с фенилизотиоцианатом в присутствии основания в ДМФА, приводящее к замещенному пиридину 2. Строение последнего подтверждается также результатами превращений в условиях S-алкилирования, например, в тиенопиридины 3 [6-8] (схема 1). В то же время, аналогичная реакция 1 с PhNCS в кипящем пиридине приводит, согласно данным работы [9], к замещенному пиримидину 4. Вместе с тем следует указать, что спектральные данные, приведенные в работах [5, 9], не позволяют однозначно приписать продуктам этих реакций строение соединений **2** либо **4**.

Продолжая исследования в области химии димера малононитрила [10–12], мы решили детально изучить регионаправленность гетероциклизации 2-амино-1,1,3-трицианопропена 1 с изотиоцианатами и установить реальное строение образующихся соединений. Возможные продукты 2 перспективны как исходные реагенты для получения производных тиено[2,3-*b*]пиридина, многие из которых обладают фармакологическим действием [13–16]. С другой стороны, соединения 2–4 являются удобными и доступными субстратами для получения S,N-полигетероциклических ансамблей в условиях реакции Манниха (см., например, [17–21]).

При воспроизведении методики из работы [5] с выходом 74% был получен продукт, действительно имеющий (по данным ИК и ЯМР спектроскопии) строение 4,6-диамино-2-тиоксо-1-фенил-1,2-диги-

дропиридин-3,5-дикарбонитрила 2 (табл. 1, оп. № 1; схема 2). Дальнейшими исследованиями было установлено, что реакция PhNCS с димером 1, в принципе, не требует жестких условий, подобных тем, что приведены в работе [5]. Так, пиридин 2 был получен с выходами 84-92% при взаимодействии 1 с фенилизотиоцианатом при комнатной температуре в EtOH в присутствии Et₃N (табл. 1, оп. № 2). Аналогичное превращение с участием аллилизотиоцианата дает 1-аллил-4,6-диамино-2-тиоксо-1,2-дигидропиридин-3,5-дикарбонитрил 5 с выходами 58–73% (табл. 1, оп. № 6; схема 2). Использование более сильных оснований не показало явных преимуществ: так, реакция димера 1 с аллилизотиоцианатом в сверхосновной среде (КОН в ДМСО) также приводит к выделению соединения 5 с выходом 71% (табл. 1, оп. № 7), однако образующийся продукт требует дополнительной очистки. Соединение 2 представляет собой желтый порошок, не растворимый в воде и ЕtOH, умеренно растворимый в ацетоне или смеси AcOH–ДМФА при нагревании. Соединение 5 представляет собой бесцветные кристаллы, растворимые в ацетоне и горячем EtOH. Результаты всех экспериментов суммированы в табл. 1.

Воспроизведение описанного в работе [9] способа получения пиримидина 4 дало неоднозначные результаты. Так или иначе, нам не удалось получить ни соединение 4, ни вообще продукт с заявленными в работе [9] физико-химическими или спектральными характеристиками. Было установлено, что направление реакции существенно зависит от условий синтеза. Так, при выдерживании смеси реагентов в пиридине при комнат-

№ опыта	Реагенты	VCTORM	Продукт реакции
Ji Onbria	i curentibi	ЭСЛОВИЯ	(выход, %)
1	1, PhNCS	ДМФА, Et ₃ N (кат.), кипячение 2 ч [5]	2 (74%)
2	1, PhNCS	ЕtOH, Еt₃N (1–1.5 экв.), 25°С	2 (84–92%)
3	1, PhNCS	Пиридин, 24 ч $25^{\circ}C \rightarrow$ кипячение 2 ч	6 (8%)
4	1, PhNCS	Пиридин, кипячение 2 ч [9]	2 (48%)
5	1, H_2C =CHC H_2NCS	ЕtOH, Et ₃ N (кат.), 25°С	Реакция не идет
6	1, $H_2C=CHCH_2NCS$	ЕtOH, Еt ₃ N (1–1.5 экв.), 25°С	5 (58–73%)
7	1, $H_2C=CHCH_2NCS$	ДМСО, КОН (1 экв.), 25°С	5 (71%)
8	8, $H_2C=CHCH_2NCS$	EtOH, 25 °C	5 (27%)
9	8, PhNCS	EtOH, 25 °C	6 (82%)

Таблица 1. Условия, выходы и строение продуктов реакции димера малононитрила 1 с изотиоцианатами

R = Ph (2, 6), аллил (5).

ной температуре с последующим кипячением с низким выходом (8%) было выделено вещество бежевого цвета с т. пл. > 300°С, не растворимое в кипящем EtOH. Детальный анализ спектральных данных показал, что продукт не является пиримидином 4 – ему соответствует строение 4,6-диамино-2-(фенилимино)-2Н-тиопиран-3,5-дикарбонитрила 6 (схема 2, табл. 1, оп. № 3). В то же время, реакция димера малононитрила 1 с PhNCS, проводимая изначально в кипящем пиридине, дает желто-оранжевый продукт (т. разл. > 300°С после очистки, вместо заявленных зеленых кристаллов с т. пл. 225°С [9]), который, по данным ИК и ЯМР спектроскопии, представляет собой загрязненный 4,6-диамино-2-тиоксо-1-фенил-1,2-дигидропиридин-3,5-дикарбонитрил 2 (табл. 1, оп. № 4).

Реакция димера 1 с аллилизотиоцианатом в кипящем пиридине привела к образованию продукта оранжевого цвета (выход 37–47% в расчете на предполагаемый аддукт состава 1:1). В ИК спектрах полученного соединения имеются по-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 6 2021

лосы поглощения, соответствующие валентным колебаниям N–H (3323, 3207 см⁻¹), сопряженной цианогруппы (2197 см⁻¹). Однако полученное соединение не удалось охарактеризовать методами ЯМР ¹H и ¹³С ввиду низкой растворимости в органических растворителях, включая ДМСО.

Калиевая соль димера малононитрила 8 в реакциях с изотиоцианатами дает иные результаты, нежели димер малононитрила 1. Так, с аллилизотиоцианатом соль 8 дает тот же 1-аллил-4,6-диамино-2-тиоксо-1,2-дигидропиридин-3,5-дикарбонитрил 5, но с заметно более низким выходом (27%) (схема 2, табл. 1, оп. № 8). В то же время, при взаимодействии соли 8 с PhN=C=S в аналогичных условиях с выходом 82% был получен тиопиран 6 (табл. 1, оп. № 9). Следует отметить, что тиопиран 6 не удалось рециклизовать в 2-тиоксопиридин 2 даже при длительном кипячении в спиртовом растворе KOH.

Тиопиран 6 до настоящего времени не был описан в литературе, однако образование 2*H*-тиопи-

ранов близкого строения ранее наблюдалось в реакциях циклогексилиденмалононитрила с PhNCS [22], при аммонолизе солей тиопирилия [23], в условиях конденсации малононитрила с енаминами β-кетотиоанилидов [24], при взаимодействии малононитрила или его димера с сероуглеродом в присутствии щелочи [25] (схема 3).

Строение 2-тиоксопиридинов 2, 5 и 2-иминотиопирана 6 детально изучено методами ИК, ЯМР спектроскопии (¹H, ¹³C DEPTQ, ¹H–¹³C HSQC, ¹H–¹³C HMBC). Спектры соединений представлены в Дополнительных материалах.

В спектрах ЯМР ¹Н соединений **2**, **5**, **6** присутствуют сигналы заместителя R и уширенные пики двух аминогрупп. В спектрах ЯМР ¹³С DEPTQ всех соединений обнаруживаются сигналы углеродов двух С \equiv N и 5 характерных сигналов гетерокольца. Строение также подтверждаются результатами экспериментов по гетероядерной корреляции. Так, в спектрах ¹H–¹³С HMBC всех трех соединений наблюдаются кросс-пики между протонами одной из аминогрупп и двумя сигналами углеродов гетерокольца в области сильных полей (C³ и C⁵), что однозначно подтверждает наличие фрагмента N \equiv C–C³=C⁴(NH₂)–C⁵–C \equiv N (см. Дополнительные материалы). В то же время, спектры изомерных соединений **2** и **6** демонстрируют различия в области слабых полей: в первом случае наблюдаются сигналы пиридинового цикла при 155.6 и 155.9 м. д. (C^4 , C^6) и сигнал при 181.0 м. д., указывающий на наличие фрагмента тиокарбонильной функции C^2 =S, в случае тиопирана **6** наблюдаются сигналы при 156.7 (C^6), 159.3 (C^4) и 160.4 (C^2) м. д.

ИК спектры соединений **2**, **5**, **6** содержат полосы валентных колебаний связей N–H и сопряженных C \equiv N групп (2204–2212 см⁻¹). В то же время, в спектрах тионов **2**, **5** обнаруживаются полосы, соответствующие колебаниям связи C=S (интенсивные полосы поглощений при 1344–1348 см⁻¹ и полосы средней интенсивности в области 1180– 1190 см⁻¹).

Квантово-химические исследования. Дополнительное подтверждение строения соединений 2, 5, 6 было получено с привлечением квантово-химических расчетов спектральных частот. Так, расчеты молекулярной геометрии (рис. 1) и ИК спектров в программном пакете ORCA 4.2 [26, 27] с использованием гибридного функционала B3LYP [28, 29] с дисперсионной поправкой D3BJ [30, 31] в валентно-расщепленном базисном наборе 6-311+G(2d,p) показали хорошую сходимость с экспериментальными спектрами (табл. 2, 3). Срав-

Рис. 1. Оптимизированные структуры продуктов циклизации [расчет на уровне B3LYP-D3BJ/6-311+G(2d,p)].

нение рассчитанных частот с экспериментальными осуществляли с учетом поправочных коэффициентов [0.9679 для высокочастотных (>1000 см⁻¹) и 1.0100 для низкочастотных колебаний (<1000 см⁻¹)] [32]. Для генерации Input-файлов применяли программу Gabedit 2.5 [33]. Для визуализации молекулярной геометрии и рассчитанных ИК спектров использовали программу ChemCraft 1.8.

Таблица 2	2. Сравнение	основных полос	поглощения в	в экспериментальных	и расчетных	ИК спектрах	4,6-диами-
но-2-тиокс	о-1-фенил-1,2	2-дигидропириди	н-3,5-дикарбон	нитрила 2			

	Полосы поглошения в	Расчетные полосы поглощения, см ⁻¹					
Отнесение	экспериментальных спектрах, см ⁻¹	без поправочного коэффициента	с поправочным коэффициентом				
v _{as} (N–H)	3336.4, 3301.7	3705.4, 3693.3	3586.5, 3574.7				
v _s (N–H)	3211.1	3583.0, 3569.6	3468.0, 3455.0				
v(C≡N)	2206.3	2297.7, 2283.3	2223.9, 2210.0				
$\delta(NH_2)$	1635.4	1659.1, 1646.0	1605.9, 1593.2				
v(C=C) скелетные	1564.1, 1523.6, 1485.0	1585.1, 1532.5, 1527.1	1534.2, 1483.3, 1478.1				
v(C–N)	1454.1	1483.6	1436.0				
ν (C=S)	1348.1	1366.7	1322.8				
Скелетные	1222.7, 1180.3	1234.3, 1178.2	1194.7, 1140.4				
v(C=S)	1029.9	1052.2	1018.5				

ДОЦЕНКО и др.

0==========	Полосы поглощения в	Расчетные полосы поглощения, см ⁻¹				
Отнесение	экспериментальных спектрах, см ⁻¹	без поправочного коэффициента	с поправочным коэффициентом			
v _{as} (N–H)	3351.8, 3326.8	3700.4, 3694.6	3581.6, 3576.0			
$v_{s}(N-H)$	3234.2	3572.3, 3570.8	3457.7, 3456.1			
v(C≡N)	2212.1	2291.9 , 2281.6	2218.4, 2208.4			
v(C=N)	1643.1	1681.4	1627.4			
$\delta(NH_2)$	1604.6	1662.0, 1652.9	1608.6, 1599.9			
v(C=C)	1564.7,	1629.3,	1577.0,			
Скелетные	1521.6, 1488.9	1580.7, 1513.0	1529.9, 1464.5			
v(C–N)	1456.1	1448.4	1401.9			
Скелетные	1282.5, 1153.3	1327.1, 1234.4	1284.5, 1194.8			

Таблица 3	. Сравнение	основных	полос	поглощения	в эксі	ериментальных	КИ	расчетных	ИК	спектрах	4,6-диам	1И-
но-2-(фени.	лимино)-2 <i>Н</i> -	-тиопиран-З	3,5-дик	арбонитрила	6							

Полученные экспериментальные результаты, в частности, различную регионаправленность гетероциклизации фенилизотиоцианата с димером малононитрила, мы попытались интерпретировать с привлечением расчетных методов. Квантово-химическое исследование предполагаемых механизмов внутримолекулярной циклизации осуществляли в программном пакете ORCA 4.2 [26, 27]. Поиск переходного состояния, определение реакционных траекторий, расчет колебательных частот и свободной энергии Гиббса осуществляли в рамках теории DFT с помощью композитной расчетной схемы Гримме В97-3с [34, 35], основанной на комбинации GGA функционала В97 и базисного набора def2-mTZVP с дисперсионной поправкой D3BJ [36]. Найденная геометрия переходных состояний подтверждалась наличием мнимой колебательной частоты, соответствующей координате реакции. Все расчеты проводили с учетом неспецифической сольватации в рамках модели СРСМ [37].

Для сравнения предпочтительности протекания двух вариантов реакции циклизации (в 2-тиоксопиридин 2 или в 2-иминотиопиран 6) было осуществлено квантово-химическое моделирование реакционных траекторий. Очевидным интермедиатом как для пиридина 2, так и для тиопирана 6 является анион 9, образующийся при нуклеофильной атаке карбаниона димера малононитрила на центральный атом углерода изотиоцианата (схема 4).

Поскольку реакцию осуществляли в условиях избытка основания – триэтиламина (в этаноле)

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 6 2021

Рис. 2. Молекулярные структуры исходного аниона 9 с двумя молекулами пиридина (а), переходных состояний реакций циклизации (б, в), а также продуктов циклизации по атому азота N^{13} (г) и по атому серы S^{12} (д) (оптимизация геометрии на уровне B97-3c).

либо пиридина, служащего растворителем, – в качестве исходной структуры рассматривался анион 9 с двумя молекулами основания, одна из которых была протонирована и, таким образом, образовывала ионную пару с анионом 9, а вторая была связана водородной связью с протоном H²² (рис. 2а). Для определения оптимальной геометрии исходного состояния предварительно был осуществлен поиск наиболее устойчивой конформации аниона 9.

Циклизация, приводящая к образованию 2-тиоксопиридина 2, протекает в результате нуклеофильной атаки атома азота N¹³ на атом углерода C^{6} , сопровождающейся переносом протона H^{45} от молекулы основания к атому азота N⁸ и депротонированием атома азота N¹³ второй молекулой основания (триэтиламина или пиридина) (рис. 26, г). Реакция, приводящая к образованию тиопирана 6. протекает в результате нуклеофильной атаки атома серы S^{12} на атом углерода C^6 , сопровождающейся переносом протона от молекулы основания к атому азота N⁸ (рис. 2в, д). Последующая стадия депротонирования атома азота N¹³ второй молекулой основания по расчетным данным имеет весьма низкую энергию активации и, следовательно, не является скоростьлимитирующей.

Молекулярные структуры исходного аниона 9, переходных состояний и конечных продуктов циклизации представлены на рис. 2 (реакция в пиридине). В результате проведенных расчетов было установлено, что циклизация с образованием тиопирана 6 является кинетически контролируемой реакцией. Энергия активации составляет 70.2 кДж/моль, в то время как тепловой эффект данного процесса невелик и составляет -9.1 кДж/моль. Энергия активации циклизации, приводящей к образованию 2-тиоксопиридина 2, составляет 91.5 кДж/моль, а тепловой эффект существенно выше, чем в предыдущем случае (-36.6 кДж/моль). Таким образом, в условиях термодинамического контроля основным продуктом реакции должен быть 2-тиоксопиридин 2.

Моделирование аналогичных процессов в среде этанола (молекулярные структуры представлены на рис. 3) с триэтиламином в качестве основания показало, что энергия активации циклизации по атому азота повышается до 138.2 кДж/моль, вместе с этим тепловой эффект реакции так же увеличивается (-48.2 кДж/моль). Причиной повышения расчетного значения энергии активации этого процесса по сравнению с аналогичным процессом в пиридине, по всей видимости, является как взаимное отталкивание двух объемных молекул триэтиламина, сближающихся в ходе реакции, так и связанное с этим искажение молекулярной структуры реагирующего субстрата. Так, бензольное кольцо у атома азота N¹³ в переходном состоянии располагается практически под прямым углом к образующемуся пирилиновому шиклу. Шиклизация по атому серы, несмотря на некоторое снижение активационного барьера до 65.2 кДж/моль, обладает отрицательным тепловым эффектом (+4.5 кДж/моль) и, таким образом, ее протекание в данных условиях маловероятно. Энергетические профили исследуемых циклизаций представлены на рис. 4.

Таким образом, моделирование механизмов циклизации позволяет сделать заключение, что образование 2-иминотиопиранов протекает в условиях кинетического контроля, тогда как 2-тиоксопиридинов - в условиях термодинамического контроля. Наблюдаемое образование 2-иминотиопирана в среде пиридина (25°С → кипячение) можно объяснить протеканием первоначальным (до нагревания, при 25°С) реакции в условиях кинетического контроля и подтвержденной экспериментально сложностью рециклизации уже образовавшегося 2-иминотиопирана 6 в 2-тиоксопиридин 2. Различная регионаправленность реакции PhNCS с димером малононитрила (Et_3N , EtOH, 25°С) и с калиевой солью димера (EtOH, 25°С) может быть объяснена специфической ролью основания-катализатора. Для успешного образования 2-тиоксопиридина 2 необходимо участие двух молекул основания - при образовании малоустойчивого многозарядного переходного состояния 10 (схема 5) требуется одновременное депротонирование эндоциклического атома азота свободным основанием, и протонирование экзоциклического отрицательно заряженного атома азота катионом пиридиния (триэтиламмония).

Однако такое основание и его протонированная форма отсутствуют в реакционной среде при использовании соли димера малононитрила 8. Присутствующие в реакционной массе вода или этанол не являются столь же эффективными до-

Рис. 3. Молекулярные структуры исходного аниона 9 с двумя молекулами триэтиламина (а), переходных состояний реакций циклизации (б, в), а также продуктов циклизации по атому азота N^{13} (г) и по атому серы S^{12} (д) (оптимизация геометрии на уровне B97-3с).

ДОЦЕНКО и др.

Соединение	Рис	ск ток	сичнос	сти ^а	Физико-химические параметры						
	A	В	C	D	cLogP	logS	MW	TPSA	drug likeness	drug score	
2	-	-	-	-	-0.13	-5.14	267	134.9	-2.83	0.37	
5	-	-	-	-	-0.95	-3.81	231	134.9	-4.92	0.44	
6	_	_	_	_	-0.23	-2.79	267	137.2	-3.35	0.48	

Таблица 4. Риски токсичности и физико-химические параметры соединений 2, 5, 6, спрогнозированные с помощью OSIRIS Property Explorer

^а Знаком «–» обозначено прогнозируемое отсутствие токсичности. А – Мутагенность, В – канцерогенность, С – раздражающее действие, D – репродуктивные эффекты.

норами/акцепторами протонов, как используемые основания и сопряженные им кислоты, поэтому в данном случае реакция протекает исключительно по пути образования кинетического продукта **6**.

По нашему мнению, отличающиеся результаты в случае аллилизотиоцианата могут быть связаны с более легко протекающей рециклизацией 2-иминотиопиранового продукта. Однако этот вопрос

Рис. 4. Энергетические профили реакций циклизации по атому азота $N^{13}(I)$ и атому серы $S^{12}(2)$ в среде этанола с триэтиламином (а) и в пиридине (б).

требует более тщательного дальнейшего изучения, что составит предмет дальнейших исследований.

Исследования биологической активности in silico. 6-Амино-2-тиоксопиридин-3,5-дикарбонитрилы и их производные обладают широкой гаммой биологической активности (см. обзоры [38-42], а также недавние работы [43-48]), что делает эти соединения перспективными объектами для исследований. В литературе также имеются данные о биологическом действии 2-аминотиопиран-3,5-дикарбонитрилов [49-51]. Нами был проведен предикторный анализ и расчет in silico возможных мишеней, параметров ADMET и соответствия критериям биодоступности для соединений 2, 5 и 6. Анализ структур соединения 2, 5 и 6 на соответствие правилу пяти Липински [молекулярная масса (MW) \leq 500, $cLogP \leq$ 5.0, TPSA ≤ 140 Å², число H-акцепторов ≤ 10 , H-доноров ≤ 5] [52–54] произведен с использованием программного пакета OSIRIS Property Explorer [55]. Были рассчитаны следующие параметры: cLogP [логарифм коэффициента распределения между *н*-октанолом и водой $\log(c_{\text{octanol}}/c_{\text{water}})]$, растворимость (logS), площадь топологической полярной поверхности (Topological Polar Surface Area, TPSA), ряд токсикологических характеристик – рисков побочных эффектов (мутагенные,

	№ Проникновение через ГЭБ ^а		Инги	биров	ание п Р450 ^а	цитохр	ОМОВ	Острая токсичность (крысы), LD50, log ₁₀ (ммоль/кг) мг/кг				
№		Гастроинтестинальная абсорбция ^а	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4	IP ⁶	IV ⁶	Oral ⁶	SC^6	
2	_	+	+	_	+	_	+	-0.054	-0.403	0.316	0.006	
								235.4	105.4	551.9	270.0	
5	-	+	+	_	—	-	-	0.208	-0.178	0.601	0.083	
								373.0	153.4	922.5	279.7	
5	_	+	+	-	-	-	-	0.170	-0.250	0.375	0.413	
								395.5	150.2	634.5	691.7	

Таблица 5. Расчетные параметры ADMET для соединений 2, 5, 6

^а Знаком «+» или «-» показано наличие или отсутствие эффекта.

⁶ IP – внутрибрюшинный способ введения, IV – внутривенный путь введения, Oral – пероральный путь введения, SC – подкожный путь введения.

онкогенные, репродуктивные эффекты), параметр сходства с известными лекарственными препаратами (drug-likeness), а также общая оценка фармакологического потенциала соединения (drug score). Полученные расчетные данные представлены в табл. 4.

Как следует из приведенных в табл. 4 данных, значение cLogP для всех структур находится в диапазоне -0.95÷-0.13, что указывает на вероятную хорошую абсорбцию и проницаемость [52-54]. В то же время, значение logS < -4.0 для соединения 2 указывает на невысокую растворимость (менее 1×10⁻⁴ моль/л). Для всех соединений параметр TPSA имеет пограничные значения, хотя формально во всех случаях соответствует критериям пероральной биодоступности. Все соединения демонстрируют полное отсутствие прогнозируемых рисков токсичности. Показатели сходства с лекарством (drug-likeness) невысоки, однако суммарная оценка фармакологического потенциала соединения (drug score) за счет формального критериям биодоступности соответствия И прогнозируемой низкой токсичности достаточна высока, и находится в пределах 0.37-0.48.

Для прогнозирования биологической активности также использовали открытые программные продукты PASS Online [56, 57] и AntiBac-Pred [58]. По полученным данным, для соединения 2 с вероятностью 0.765 прогнозируется

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 6 2021

ингибирующее действие в отношении киназ, для соединения 5 с вероятностью 0.800 – антиишемическое действие, для тиопирана 6 с вероятностью 0.800 – антагонизм в отношении предшественника бета-амилоида. Лучшее антибактериальное действие прогнозируется для соединения 6 в отношении патогенных бактерий *Campylobacter jejuni* (достоверность 0.3158; достоверность > 0, если вероятность активности больше вероятности неактивности $P_a > P_i$).

Для прогнозирования параметров ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) использовали программные пакеты SwissADME [59, 60] и GUSAR [61, 62]. Согласно критериям US EPA, по острой пероральной токсичности все соединения можно отнести к III классу (малотоксичные соединения, 500 мг/кг < LD_{50} < 5000 мг/кг). Для всех соединений прогнозируется гастроэнтеральная абсорбция и отсутствие возможности проникновения через гематоэнцефалический барьер (ГЭБ), а также преимущественное отсутствие ингибирующего действия в отношении цитохромов P450 (табл. 5).

Возможные протеиновые мишени для полученных соединений были спрогнозированы с использованием нового протокола протеин-лигандного докинга GalaxySagittarius [63] на базе веб-сервера GalaxyWeb [64, 65]. Оптимизированные по геометрии и минимуму энергии 3D-структуры соедине-

Соединение Идентификатор протеина PDB ID		Идентификатор протеина UniProt ID	Пре-докинговая оценка проте- ин-лигандного взаимодействия (Predock score)	Свободная энергия связывания, ккал/ моль (Docking score)	Общая оценка протеин- лигандного взаимодействия
	1c5z	P00749	0.151	_13 995	0.256
	Seww	P55201	0.131	-15.877	0.230
H ₂ N NH ₂	5118	O9H8M2	0.113	-15.074	0.237
	6aai	060674	0.108	-15 379	0.220
NC YY	5un3	099683	0.100	-16 102	0.223
ŝ 🧹	Jawo	P07900 P07900	0.093	-17 078	0.221
2	6n0n	P15056 P15056	0.093	-16 679	0.218
	6i8 7	005397	0.093	-17.038	0.210
	2hz0	P00519	0.090	-16 485	0.213
	4xs2	O9NWZ3	0.093	-15 803	0.213
S	1c5z	P00749	0.225	-12.952	0.322
	5118	09H8M2	0.143	-13 354	0.244
NC	5eww	P55201	0.129	-13 502	0.230
	4urv	P01112.007889	0.114	-14.520	0.223
$\Pi_2 N$ $\prod_{N \Pi_2} N \Pi_2$	3tiv	P24941	0.116	-13.489	0.217
CN	5v19	099683	0.107	-13.663	0.210
5	513a	O60674	0.113	-12.772	0.209
	3ii5	P15056,P15056	0.108	-13.024	0.206
	4xs2	Q9NWZ3	0.110	-12.609	0.205
	2hz0	P00519	0.104	-13.084	0.202
CN	1c5z	P00749	0.152	-14.802	0.263
NN NH2	5ji8	Q9H8M2	0.117	-15.045	0.230
	5eww	P55201	0.120	-14.435	0.228
S CN	5up3	Q99683	0.105	-15.935	0.224
NH.	4hge	O60674	0.107	-14.178	0.214
6	5hid	P15056,P15056	0.091	-16.337	0.213
U	6i8z	Q05397	0.087	-16.488	0.210
	4xs2	Q9NWZ3	0.095	-15.140	0.208
	5ax9	Q9UKE5	0.074	-17.164	0.203
	4idv	O99558	0.087	-15.332	0.202

Таблица 6. Результаты прогнозирования протеин-лигандного взаимодействия для соединений 2, 5, 6

ний 2, 5 и 6 были генерированы с использованием программного пакета ORCA 4.2 [26, 27]. Докинг с использованием протокола GalaxySagittarius проводился в режимах Binding compatability prediction и Re-ranking using docking. В табл. 6 представлены результаты докинга по каждому из соединений 2, 5 и 6 для 10 комплексов мишень-лиганд с минимальной свободной энергии связывания ΔG_{bind} и наилучшей оценкой протеин-лигандного взаимодействия. Прогнозируемые протеиновые мишени указаны с помощью ID-идентификаторов в Protein Data Bank (PDB) и в базе данных UniProt. Как можно заметить из табл. 6, полученные соединения обнаруживают сродство к широкой группе протеинов. В частности, наиболее выражено сродство к урокиназному активатору плазминогена (uPA, PDB ID 1c5z, UniProt ID P00749) (рис. 5), белку BRPF1 (PDB ID 5eww, UniProt ID P55201), бромдомен-содержащему протеину 9 BRD9 (PDB ID 5ji8, UniProt ID Q9H8M2), регулирующей сигнал к апоптозу киназе-1 ASK1/MAP3K (PDB ID 5up3, UniProt ID Q99683) и ряду других мишеней. Учитывая важную роль uPA [66] и BRD9 [67] в онкогенных процессах, а протеинкиназы ASK1/ MAP3K – в иммунном отклике [68], полученные соединения возможно рассматривать как ингибиторы, потенциально пригодные для лечения различных форм онкозаболеваний, нейродегенеративных процессов, ревматоидного артрита и др.

В целом, по результатам исследования мож-

Рис. 5. Прогнозируемая структура протеин-лигандного комплекса соединения **2** и урокиназного активатора плазминогена (uPA, PDB ID 1c5z) (получено с использованием протокола GalaxySagittarius).

но заключить следующее. Взаимодействие димера малононитрила с изотиоцианатами может протекать по двум различным направлениям: с образованием 4,6-диамино-2-тиоксо-1,2-дигидропиридин-3,5-дикарбонитрилов или 4,6-диамино-2-(фенилимино)-2*Н*-тиопиран-3,5-дикарбонитрила. При этом нужно отметить, что описанное в работе [9] образование производных пиримидина не находит подтверждения. С использованием квантово-химических расчетов установлено, что образование 2-иминотиопиранов и 2-тиоксопиридинов протекает в условиях кинетического и термодинамического контроля соответственно. В случае фенилизотиоцианата взаимодействие является региоуправляемым, и позволяет, при изменении условий, получать исключительно производное 2-(фенилимино)тиопирана или 2-тиоксо-1-фенилпиридина. Предикторный анализ биологической активности указывает на пригодность и перспективность полученных соединений как потенциальных фармпрепаратов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на спектрофотометре ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 6 2021 Вгикег Vertex 70 с приставкой НПВО методом нарушенного полного внутреннего отражения на кристалле алмаза, погрешность $\pm 4 \text{ см}^{-1}$. Спектры ЯМР регистрировали на приборе Bruker Avance III HD 400MHz (400.17 МГц на ядрах ¹H, 100.63 МГц – ¹³С) в растворе ДМСО- d_6 , в качестве стандарта использовали остаточные сигналы растворителя. Индивидуальность полученных образцов контролировали методом ТСХ на пластинах Сорбфил-А («ООО Имид», Краснодар), элюент – ацетон–гексан (1:1), проявитель – пары иода, УФ детектор.

Димер малононитрила 1 получали по методу Миттельбаха [1]. Калиевую соль димера малононитрила 8 получали по той же методике (выход 75–90%), но без финального подкисления, и вводили в реакцию без дополнительной очистки. Пиридин сушили над КОН.

4,6-Диамино-2-тиоксо-1-фенил-1,2-дигидропиридин-3,5-дикарбонитрил (2). а. Получение из димера малононитрила 1 в присутствии Et_2N . К суспензии димера малононитрила 1 (1.0 г. 7.57 ммоль) в 15 мл 96%-ного этанола при перемешивании добавляли 1.05–1.6 мл (7.57–11.35 ммоль) Et₂N. Смесь перемешивали 3–5 мин до полной или частичной гомогенизации, и добавляли PhNCS (0.91 мл, 7.57 ммоль). Примерно через 5-10 мин наблюдалось начало образования желтого осадка, и в течение 3-4 ч смесь полностью загустевала. Реакционную массу оставляли на 24 ч, затем осадок отфильтровывали. Для очистки продукт кипятили 2 мин в EtOH, отфильтровывали и промывали теплым EtOH. Выход 1.70-1.86 г (84-92%), желтый порошок, т. пл. > 300°С {т. пл. 250-252°С (AcOH) [5]}. ИК спектр, v, см⁻¹: 3456 сл, 3414 сл, 3367 ср. 3336 ср. 3302 с. 3211 с. ш (N-H), 2206 с (C≡N), 1348 с, 1180 ср (C=S). Спектр ЯМР ¹Н, δ, м. д.: 7.19–7.21 м (2H, H², H⁶, Ph), 7.31 уш. с (4H, NH₂), 7.43–7.53 м (3H, H³–H⁵, Ph). Спектр ЯМР ¹³С DEPTQ, δ_C, м. д.: 67.3 (С⁵), 88.1 (С³), 114.5 (С≡N), 116.9 (C=N), 129.1* (C²H C⁶H Ph), 129.5* (C⁴H Ph), 130.1* (С³Н С⁵Н Рh), 137.7 (С¹ Рh), 155.6 (С⁴ или C⁶), 155.9 (C⁶ или C⁴), 181.0 (C=S). Здесь и далее звездочкой обозначены сигналы в противофазе. Найдено, %: С 58.44; Н 3.46; N 26.13. С₁₃Н₉N₅S. Вычислено, %: 58.41; Н 3.39; N 26.20. M 267.31.

б. Получение из димера малононитрила в кипящем пиридине. Соединение 2 получали по методике, описанной в работе [9] как способ синтеза

6-амино-2-тиоксо-1-фенил-1,2,3,4-тетрагидрописледующим римидин-4-илиден)малононитрила образом. Смесь PhNCS (1.2 мл, 0.01 моль) и димера малононитрила 1 (1.32 г, 0.01 моль) в 30 мл безводного пиридина кипятили 2 ч, затем охлаждали. Полученный темный раствор выливали на лед и подкисляли HCl до pH 2. Смесь выдерживали 24 ч в холодильнике при 4°С, осадок желтого цвета отфильтровали, промывали водой и ЕtOH. Для очистки полученный продукт кипятили 3-5 мин в EtOH, нерастворимый порошок желто-оранжевого цвета отфильтровывали, получали 2-тиоксопиридин 2. Выход 48%, т. пл. > 300°С. Спектральные характеристики продукта идентичны представленным выше.

1-Аллил-4,6-диамино-2-тиоксо-1,2-дигидропиридин-3,5-дикарбонитрил (5). а. Получение из димера малононитрила 1. К суспензии димера малононитрила 1 (1.0 г, 7.57 ммоль) в 15 мл 96%ного этанола при перемешивании добавляли 1.05-1.6 мл (7.57-11.35 ммоль) Еt₃N. Смесь перемешивали до гомогенизации и добавляли аллилизотиоцианат (0.75 мл, 7.66 ммоль). Полученную смесь перемешивали 2 ч, затем оставляли на 24 ч, при этом реакционная масса полностью закристаллизовывалась. Осадок отфильтровывали и промывали EtOH. Выход 1.00-1.10 г (58-73%), бесцветные игольчатые кристаллы, т. разл. 240°С. ИК спектр, v, см⁻¹: 3454 сл, 3365 сл, 3306 с, 3213 с, уш (N–H), 2204 с (C≡N), 1344 с, 1190 ср (C=S). Спектр ЯМР ¹Н, б, м. д.: 4.95 д. д (1Н, *транс* =СН₂, ³*J* 17.4, ²*J* 1.2 Гц), 5.09 д. д (1Н, *цис* =СН₂, ³*J* 10.5, ²*J* 1.2 Гц), 5.28 уш. с (2H, NCH₂), 5.71–5.81 м (CH₂CH=CH₂), 7.20 уш. с (2H, C⁴NH₂), 7.97 уш. с (2H, C⁶NH₂). Спектр ЯМР ¹³С DEPTQ, δ_{C} , м. д.: 48.7 (NCH₂), 67.4 (C⁵), 87.7 (C³), 114.5 (C=N), 115.7 (=CH₂), 117.1 (C≡N), 130.6* (CH₂CH=CH₂), 154.9 (С⁴ или С⁶), 155.2 (С⁶ или С⁴), 180.0 (С=S). Найдено, %: С 51.94; Н 3.97; N 30.23. С₁₀Н₉N₅S. Вычислено, %: 51.93; H 3.92; N 30.28. M 231.28.

б. Получение из калиевой соли димера малононитрила 8. Калиевую соль димера малононитрила 8 (0.87 г, 5.09 ммоль) суспендировали в 10 мл EtOH, при перемешивании добавляли 0.5 мл (5.09 ммоль) аллилизотиоцианата и затем 2 мл воды. Наблюдается легкий экзотермический эффект, смесь гомогенизируется с образованием раствора чайного цвета. На следующий день начиналось медленное отделение кристаллического осадка. Через 3 сут бледно-розовые кристаллы отфильтровывали, промывали EtOH и петролейным эфиром. Продукт спектрально идентичен соединению 5, полученному по описанной выше методике. Выход составил 329 мг (28%). Из маточного раствора не удалось осаждением водой или подкислением получить дополнительные количества продукта.

4,6-Диамино-2-(фенилимино)-2Н-тиопиран-3,5-дикарбонитрил (6). а. Получение из димера малононитрила в пиридине. Смесь PhNCS (1.2 мл, 0.01 моль) и димера малононитрила 1 (1.32 г, 0.01 моль) в 30 мл безводного пиридина выдерживали 24 ч при 25°С, затем кипятили 2 ч и охлаждали. Полученный темный раствор выливали на лед и подкисляли HCl до pH 2. Смесь выдерживали 24 ч в холодильнике при 4°С, отфильтровывали и промывали EtOH. Для очистки полученный продукт кипятили 3-5 мин в EtOH, нерастворимый порошок бежевого цвета отфильтровывали, получали 0.20 г (8%) соединения 6, т. пл. > 300°С {т. пл. 225°С (ЕtOH) [9]}. ИК спектр, v, см⁻¹: 3427 сл, 3410 сл, 3371 ср, 3352 ср, 3329 ср, 3234 с, ш (N-H), 2212 с (C≡N), 1643 ср (C=N). Спектр ЯМР ¹Н, б, м. д.: 7.11 уш. с (2Н, С⁴NH₂), 7.18 уш. с (2Н, С6NH2), 7.24-7.27 м (2Н, Н2, Н6, Рh), 7.48-7.54 м (3H, H³H⁵, Ph). Спектр ЯМР ¹³С DEPTO, δ_{C} , м. д.: 62.4 (С⁵), 69.4 (С³), 115.2 (С≡N), 116.6 (С≡N), 129.3* (C²H, C⁶H, Ph), 129.5* (C⁴H, Ph), 130.0* (C³H, C⁵H, Ph), 134.1 (C¹, Ph), 156.7 (C⁶), 159.3 (C⁴), 160.4 (C²). Найдено, %: С 58.40; Н 3.50; N 26.15. С13H9N5S. Вычислено, %: 58.41; Н 3.39; N 26.20. M 267.31.

б. Получение из калиевой соли димера малононитрила 8. К суспензии калиевой соли димера малононитрила 8 (9.0 г, 0.0526 моль) в 135 мл 96%-ного этанола при перемешивании добавляли 6.3 мл (0.0526 моль) PhNCS. При этом калиевая соль 8 быстро растворялась, и образовывался раствор желтого цвета. Через ~ 2 ч наблюдалось начало образования осадка. Смесь перемешивали без нагревания еще 24 ч. Белый порошок 2-иминотиопирана 6 отфильтровывали, промывали ЕtOH. Выход 11.57 г (82%). Продукт спектрально идентичен соединению 6, полученному по описанной выше методике.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Доценко Виктор Викторович, ORCID: http:// orcid.org/0000-0001-7163-0497

Беспалов Александр Валерьевич, ORCID: http:// orcid.org/0000-0002-9829-9674

Русских Алена Андреевна, ORCID: https://orcid. org/0000-0001-9354-9470

Киндоп Вячеслав Константинович, ORCID: https://orcid.org/0000-0002-9005-9668

Аксенов Николай Александрович, ORCID: http://orcid.org/0000-0002-7125-9066

Аксенова Инна Валерьевна, ORCID: http:// orcid.org/0000-0002-8083-1407

Щербаков Станислав Владимирович, ORCID: http://orcid.org/0000-0003-3828-6641

Овчаров Сергей Николаевич, ORCID: http:// orcid.org/0000-0002-4638-6098

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Кубанского научного фонда в рамках научного проекта МФИ-20.1-26/20 (заявка № МФИ-20.1/45), а также при поддержке Министерства образования и науки Российской Федерации (тема 0795-2020-0031) с использованием приборного парка Научно-образовательного центра «Диагностика структуры и свойств наноматериалов» Кубанского государственного университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0044460X21060019 для авторизованных пользователей.

СПИСОК ЛИТЕРАТУРЫ

- Mittelbach M. // Monatsh. Chem. 1985. Vol. 116. N 5. P. 689. doi 10.1007/BF00798796
- Доценко В.В., Кривоколыско С.Г., Семенова А.М. // ХГС. 2018. Т. 54. № 11. С. 989; Dotsenko V.V., Krivokolysko S.G., Semenova А.М. // Chem. Heterocycl. Compd. 2018. Vol. 54. N 11. P. 989. doi 10.1007/ s10593-018-2383-y
- Shaabani A., Hooshmand S.E. // Mol. Divers. 2018. Vol. 22. N 1. P. 207. doi 10.1007/s11030-017-9807-y

- Алексеева А.Ю., Бардасов И.Н. // ХГС. 2018. Т. 54. № 7. С. 689; Alekseeva A.Yu., Bardasov I.N. // Chem. Heterocycl. Compd. 2018. Vol. 54. N 7. P. 689. doi 10.1007/s10593-018-2332-9
- Eldin A.M.S. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2003. Vol. 178. N 10. P. 2215. doi 10.1080/713744561
- El-Taweel F.M., Elagamey A.A., El-Kenawy A.A., Waly M.A. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2001. Vol. 176. N 1. P. 215. doi 10.1080/10426500108055120
- Mohareb R.M., Sherif S.M., Samy A.M. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1995. Vol. 101. N 1–4. P. 57. doi 10.1080/10426509508042499
- Mohareb R.M. // Monatsh. Chem. 1992. Vol. 123. N 4. P. 341. doi 10.1007/BF00810946
- Abdel-Latif E., Mustafa H.M., Etman H.A., Fadda A.A. // Russ. J. Org. Chem. 2007. Vol. 43. N 3. P. 443. doi 10.1134/S1070428007030219
- Доценко В.В., Исмиев А.И., Хрусталева А.Н., Фролов К.А., Кривоколыско С.Г., Чигорина Е.А., Снижко А.П., Громенко В.М., Бушмаринов И.С., Аскеров Р.К., Пехтерева Т.М., Суйков С.Ю., Папаянина Е.С., Мазепа А.В., Магеррамов А.М. // ХГС. 2016. Т. 52. № 7. С. 473; Dotsenko V.V., Ismiev А.I., Khrustaleva A.N., Frolov K.A., Krivokolysko S.G., Chigorina E.A., Snizhko A.P., Gromenko V.M., Bushmarinov I.S., Askerov R.K., Pekhtereva T.M., Suykov S.Yu., Papayanina E.S., Mazepa A.V., Magerramov A.M. // Chem. Heterocycl. Compd. 2016. Vol. 52. N 7. P. 473. doi 10.1007/s10593-016-1918-3
- Семенова А.М., Оганесян Р.В., Доценко В.В., Чигорина Е.А., Аксенов Н.А., Аксенова И.В., Нетреба Е.Е. // ЖОХ. 2019. Т. 89. № 1. С. 23; Semenova A.M., Oganesyan R.V., Dotsenko V.V., Chigorina E.A., Aksenov N.A., Aksenova I.V., Netreba E.E. // Russ. J. Gen. Chem. 2019. Vol. 89. N 1. P. 19. doi 10.1134/S1070363219010043.
- Доценко В.В., Кривоколыско С.Г., Семенова А.М. // ХГС. 2018. Т. 54. № 11. С. 989; Dotsenko V.V., Krivokolysko S.G., Semenova А.М. // Chem. Heterocycl. Compd. 2018. Vol. 54. N. 11. Р. 989. doi 10.1007/ s10593-018-2383-y
- Bakhite E.A.-G. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2003. Vol. 178. P. 929. doi 10.1080/10426500390208820
- 14. Пароникян Е. Г., Арутюнян А. С., Дашян Ш. Ш. // Хим. ж. Арм. 2017. Т. 70. № 1–2. С. 179.
- Доценко В.В., Бурый Д.С., Лукина Д.Ю., Кривоколыско С.Г. // Изв. АН. Сер. хим. 2020. № 10. С. 1829; Dotsenko V.V., Buryi D.S., Lukina D.Yu., Krivokolysko S.G. // Russ. Chem. Bull. 2020. Vol. 69. N 10. P. 1829. doi 10.1007/s11172-020-2969-2

- Sajadikhah S. S., Marandi G. // XFC. 2019. T. 55. № 12.
 C. 1171; Sajadikhah S. S., Marandi G. // Chem. Heterocycl. Compd. 2019. Vol. 55. N 12. P. 1171. doi 10.1007/s10593-019-02596-1
- Ахметова В.Р., Надыргулова Г.Р., Ниатиина З.Т., Джемилев У.М. // ХГС. 2009. № 10. С. 1443; Akhmetova V.R., Nadyrgulova G.R., Niatshina Z.T., Dzhemilev U.M. // Chem. Heterocycl. Compd. 2009. Vol. 45. N 10. P. 1155. doi 10.1007/s10593-010-0403-7
- Ахметова В.Р., Рахимова Е.Б. // ЖОрХ. 2014. Т. 50. № 12. С. 1727; Akhmetova V.R., Rakhimova E.B. // Russ. J. Org. Chem. 2014. Vol. 50. N 12. P. 1711. doi 10.1134/S107042801412001X
- Доценко В.В., Фролов К.А., Кривоколыско С.Г. // ХГС. 2015. Т. 51. № 2. С. 109; Dotsenko V.V., Frolov K.A., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2015. Vol. 51. N 2. P. 109. doi 10.1007/s10593-015-1668-7
- Доценко В.В., Фролов К.А., Чигорина Е.А., Хрусталева А.Н., Бибик Е.Ю., Кривоколыско С.Г. // Изв. АН. Сер. хим. 2019. № 4. С. 691; Dotsenko V.V., Frolov К.А., Chigorina E.A., Khrustaleva A.N., Bibik E.Yu., Krivokolysko S.G. // Russ. Chem. Bull. 2019. Vol. 68. N 4. P. 691. doi 10.1007/s11172-019-2476-5
- Доценко В.В., Кривоколыско С.Г., Чигорина Е.А. // ЖОХ. 2020. Т. 90. № 4. С. 522; Dotsenko V.V., Krivokolysko S.G., Chigorina E.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 4. P. 590. doi 10.1134/ S1070363220040052
- 22. El Sayed A.M., Abdel Ghany H. // J. Heterocycl. Chem. 2000. Vol. 37. N 5. P. 1233. doi 10.1002/ jhet.5570370534
- Gewald K., Buchwalder M., Peukert M. // J. Prakt. Chem. 1973. Bd 315. N 4. S. 679. doi 10.1002/ prac.19733150413
- 24. *Bogdanowicz-Szwed K.* // Monatsh. Chem. 1982. Vol. 113. N 5. P. 583. doi 10.1007/BF00800265
- Takeshima T., Yokoyama M., Fukada N., Akano M. // J. Org. Chem. 1970. Vol. 35. N 7. P. 2438. doi 10.1021/ jo00832a085
- Neese F. // WIREs Comput. Mol. Sci. 2011. Vol. 2. P. 73. doi 10.1002/wcms.81
- Neese F. // WIREs Comput. Mol. Sci. 2017. Vol. 8. e1327. P. 1. doi 10.1002/wcms.1327
- Becke A.D. // Phys. Rev. (A). 1988. Vol. 38. P. 3098. doi 10.1103/PhysRevA.38.3098
- Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988.
 Vol. 37. P. 785. doi 10.1103/PhysRevB.37.785
- Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. Vol. 132. P. 154104. doi 10.1063/1.3382344
- Goerigk L., Grimme S. // Phys. Chem. Chem. Phys. 2011. Vol. 13. P. 6670. doi 10.1039/C0CP02984J

- Andersson M.P., Uvdal P. // J. Phys. Chem. (A). 2005. Vol. 109. P. 2937. doi 10.1021/jp045733a
- Allouche A.-R. // J. Comput. Chem. 2011. Vol. 32. P. 174. doi 10.1002/jcc.21600.
- 34. Brandenburg J.G., Bannwarth C., Hansen A., Grimme S. // J. Chem. Phys. 2018. Vol. 148. P. 064104. doi 10.1063/1.5012601
- Caldeweyher E., Brandenburg J.G. // J. Phys. Condens. Matter. 2018. Vol. 30. P. 213001. doi 10.1088/1361-648X/aabcfb
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. P. 1456. doi 10.1002/jcc.21759
- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. Vol. 105. P. 2999. doi 10.1021/cr9904009
- Litvinov V.P., Rodinovskaya L.A., Sharanin Yu.A., Shestopalov A.M., Senning A. // J. Sulfur Chem. 1992. Vol. 13. N 1. P. 1. doi 10.1080/01961779208048951
- Litvinov V.P. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1993. Vol. 74. N 1. P. 139. doi 10.1080/10426509308038105
- 40. Литвинов В.П. // Изв. АН. Сер. хим. 1998. № 11. C. 2123; Litvinov V.P. // Russ. Chem. Bull. 1998. Vol. 47. N 11. P. 2053. doi 10.1007/BF02494257
- Литвинов В.П., Кривоколыско С.Г., Дяченко В.Д. // XГС. 1999. № 5. С. 579; Litvinov V.P., Krivokolysko S.G., Dyachenko V.D. // Chem. Heterocycl. Compd. 1999. Vol. 35. N 5. P. 509. doi 10.1007/BF02324634
- Литвинов В.П. // Усп. хим. 2006. Т. 75. № 7. С. 645; Litvinov V.P. // Russ. Chem. Rev. 2006. Vol. 75. N 7. P. 577. doi 10.1070/RC2006v075n07ABEH003619
- Attia A.M., Khodair A.I., Gendy E.A., El-Magd M.A., Elshaier Y.A.M.M. // Lett. Drug Design Discov. 2020. Vol. 17. N 2. P. 124. doi 10.2174/15701808166661902 20123547
- Catarzi D., Varano F., Varani K., Vincenzi F., Pasquini S., Dal Ben D., Volpini R., Colotta V. // Pharmaceuticals. 2019. Vol. 12. N 4. P. 159. doi 10.3390/ph12040159
- Schweda S.I., Alder A., Gilberger T., Kunick C. // Molecules. 2020. Vol. 25. N 14. P. 3187. doi 10.3390/ molecules25143187
- 46. Grigor'ev A.A., Shtyrlin N.V., Gabbasova R.R., Zeldi M.I., Grishaev D. Yu., Gnezdilov O.I., Balakin K.V., Nasakin O.E., Shtyrlin Y.G. // Synth. Commun. 2018. Vol. 48. N 17. P. 2288. doi 10.1080/00397911.2018.1501487
- Betti M., Catarzi D., Varano F., Falsini M., Varani K., Vincenzi F., Dal Ben D., Lambertucci C., Colotta V. // Eur. J. Med. Chem. 2018. Vol. 150. P. 127. doi 10.1016/j.ejmech.2018.02.081
- Fugel W., Oberholzer A.E., Gschloessl B., Dzikowski R., Pressburger N., Preu L., Pearl L.H., Baratte B., Ratin M., Okun I., Doerig C., Kruggel S., Lemcke T., Meijer L.,

Kunick C. // J. Med. Chem. 2013. Vol. 56. N 1. P. 264. doi 10.1021/jm301575n

- Sanchez M.I., de Vries L.E., Lehmann C., Lee J.T., Ang K.K., Wilson C., Chen S., Arkin M.R., Bogyo M., Deu E. // PloS one. 2019. Vol. 14. N 12. Paper N e0226270. doi 10.1371/journal.pone.0226270
- 50. Zhou P., Warren J.D. Pat. WO2014031759 (2014).
- 51. Whitten J.P., Pei Y., Stauderman K.A., Roos J. Pat. US2010087415 (2010).
- Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug. Delivery Rev. 1997. Vol. 23. N 1–3. P. 4. doi 10.1016/S0169-409X(96)00423-1
- Lipinski C.A. // Drug Discov. Today: Technologies. 2004.
 Vol. 1. N 4. P. 337. doi 10.1016/j.ddtec.2004.11.007
- Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug. Delivery Rev. 2012. Vol. 64. Suppl. P. 4. doi 10.1016/j.addr.2012.09.019.
- 55. Sander T. OSIRIS Property Explorer. Idorsia Pharmaceuticals Ltd, Switzerland. http://www.organicchemistry.org/prog/peo/
- 56. PASS Online. Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://www.pharmaexpert. ru/passonline/predict.php
- Филимонов Д.А., Лагунин А.А., Глориозова Т.А., Рудик А.В., Дружиловский Д.С., Погодин П.В., Поройков В.В. // ХГС. 2014. № 3. С. 483; Filimonov D.A., Lagunin А.А., Gloriozova Т.А., Rudik A.V., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V. // Chem. Heterocycl. Compd. 2014. Vol. 50. N 3. P. 444. doi 10.1007/s10593-014-1496-1
- Way2Drug. antiBac-Pred. Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://way2drug. com/antibac/
- Daina A., Michielin O., Zoete V. // Sci. Rep. 2017. Vol. 7. Article N 42717. doi 10.1038/srep42717

- Gfeller D., Grosdidier A., Wirth M., Daina A., Michielin O., Zoete V. // Nucl. Acids Res. 2014. Vol. 42. N W1. P. W32. doi 10.1093/nar/gku293
- Lagunin A., Zakharov A., Filimonov D., Poroikov V. // Mol. Informatics. 2011. Vol. 30. N 2–3. P. 241. doi 10.1002/minf.201000151
- 62. GUSAR Online. Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://www.way2drug.com/ gusar/references.html
- Yang J., Kwon S., Bae S.H., Park K.M., Yoon C., Lee J.H., Seok C. // J. Chem. Inf. Model. 2020. Vol. 60. N 6. P. 3246. doi 10.1021/acs.jcim.0c00104
- 64. GalaxyWEB. A web server for protein structure prediction, refinement, and related methods. Computational Biology Lab, Department of Chemistry, Seoul National University, S.Korea. http://galaxy. seoklab.org/index.html
- Ko J., Park H., Heo L., Seok C. // Nucleic Acids Res. 2012. Vol. 40. N W1. P. W294. doi 10.1093/nat/gks493
- Katz B.A., Mackman R., Luong C., Radika K., Martelli A., Sprengeler P.A., Wang J., Chan H., Wong L. // Chem. Biol. 2000. Vol. 7. N 4. P. 299. doi 10.1016/s1074-5521(00)00104-6
- Clark P.G., Vieira L.C., Tallant C., Fedorov O., Singleton D.C., Rogers C.M., Monteiro O.P., Bennett J.M., Baronio R., Müller S., Daniels D.L., Méndez J., Knapp S., Brennan P.E., Dixon D.J. // Angew. Chem. Int. Ed. 2015. Vol. 54. N 21. P. 6217. doi 10.1002/anie.201501394
- Hayakawa T., Matsuzawa A., Noguchi T., Takeda K., Ichijo H. // Microbes and Infection. 2006. Vol. 8. N 4. P. 1098. doi 10.1016/j.micinf.2005.12.001

Reactions of Malononitrile Dimer with Isothiocyanates

V. V. Dotsenko^{*a,b,**}, A. V. Bespalov^{*a*}, A. A. Russkikh^{*a*}, V. K. Kindop^{*a*}, N. A. Aksenov^{*b*}, I. V. Aksenova^{*b*}, S. V. Shcherbakov^{*b*}, and S. N. Ovcharov^{*b*}

^a Kuban State University, Krasnodar, 350040 Russia ^b North Caucasus Federal University, Stavropol, 355009 Russia *e-mail: victor dotsenko @mail.ru

Received April 19, 2021; revised April 19, 2021; accepted May 6, 2021

Depending on the conditions, the reaction of 2-amino-1,1,3-tricyanopropene (malononitrile dimer) with isothiocyanates leads to 1-substituted 4,6-diamino-2-thioxo-1,2-dihydropyridine-3,5-dicarbonitriles either 4,6-diamino-2-(phenylimino)-2*H*-thiopyran-3,5-dicarbonitrile. Quantum-chemical modeling of IR spectra and reaction routes for the obtained compounds was carried out. *In silico* predictive analysis of potential protein targets, compliance with bioavailability criteria and ADMET parameters was carried out.

Keywords: 2-amino-1,1,3-tricyanopropene, isothiocyanates, heterocyclization, 2*H*-thiopyrans, 2-thioxopyridines, quantum chemical calculations