УДК 54-386:547.497.1

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ 2-НАФТАЛИНСУЛЬФОНАТОВ И 1,5-НАФТАЛИНДИСУЛЬФОНАТОВ 3*d*-МЕТАЛЛОВ С ТИОСЕМИКАРБАЗИДОМ

© 2021 г. Т. В. Кокшарова^{*a*}, Т. С. Скакун^{*a*}, И. В. Стоянова^{*b*}

^а Одесский национальный университет имени И. И. Мечникова, ул. Дворянская 2, Одесса, 65082 Украина ^b Физико-химический институт имени А. В. Богатского Национальной академии наук Украины, Odecca, 65080 Украина *e-mail: tanya.koksharova@gmail.com

> Поступило в Редакцию 17 марта 2021 г. После доработки 17 марта 2021 г.

Принято к печати 31 марта 2021 г.

Синтезированы комплексы 2-нафталинсульфонатов и 1,5-нафталиндисульфонатов меди(II), никеля(II), цинка(II) и кобальта(III) с тиосемикарбазидом. Полученные соединения охарактеризованы методами элементного анализа, ИК спектроскопии, спектроскопии диффузного отражения и термогравиметрии.

Ключевые слова: тиосемикарбазид, 2-нафталинсульфонат, 1,5-нафталиндисульфонат

DOI: 10.31857/S0044460X21060111

Соединения с арилсульфонатными анионами относительно менее изучены по сравнению с карбоксилатами и фосфонатами. Это связано с тем, что сульфонат-анионы не способны к образованию устойчивых координационных связей с ионами металлов [1, 2]. Вместе с тем координационные соединения с такими анионами могут оказаться полезными для синтеза пористых материалов [3, 4], слоистых структур, способных к высокоселективному и обратимому поглощению молекул-гостей [2, 5-8], в катализе, как анионообменные материалы, для сорбции и разделения газов, получения сенсоров и люминесцентных материалов [9-13]. Сведения о соединениях 3*d*-металлов, содержащих кроме арилсульфонатов другие органические лиганды, ограничиваются рядом комплексов меди(II), никеля(II), кобальта(II), цинка и железа(II) с аминами [14-17]. Данные о соединениях арилсульфонатов с тиоамидными лигандами в литературе не обнаружены.

В настоящей работе представлены данные о получении и некоторых свойствах координационных соединений 1–8 2-нафталинсульфонатов и 1,5нафталиндисульфонатов кобальта(III), никеля(II), меди(II), цинка(II) и кобальта(III) с тиосемикарбазидом (HL, схема 1). Комплексы 1–8 получали при добавлении к водному раствору тиосемикарбазида твердого 2-нафталинсульфоната либо 1,5-нафталиндисульфоната соответствующего 3*d*-металла при соотношении металл:лиганд = 1:2 или 1:3. Исходные 2-нафталинсульфонаты и 1,5-нафталиндисульфонаты получали обменной реакцией нитрата 3*d*-металла с натриевой солью 2-нафталинсульфокислоты (NaNs) либо динатриевой солью 1,5-нафталиндисульфокислоты (Na₂Nds) в водном растворе. Состав комплексов не изменяется при замене растворителя с воды на спирт.

Из данных элементного анализа (табл. 1) видно, что соотношение металл-тиосемикарбазид составляет 1:2 для меди(II), никеля(II) и цинка(II) и 1:3 для кобальта, при этом происходит окисление кобальта(II) до кобальта(III), и одна из молекул тиосемикарбазида депротонируется. Комплексы кобальта(III), содержащие одновременно и моле-

 $m = 0, R = C_{10}H_7SO_3, n = 2, M = Cu (1), Ni (2), Zn (3); R = C_{10}H_6(SO_3)_2, n = 1, M = Cu (5);$ $m = 1, R = C_{10}H_6(SO_3)_2, n = 1, M = Zn (7); m = 2, R = C_{10}H_6(SO_3)_2, n = 1, M = Ni (6).$

$$R = C_{10}H_7SO_3$$
, $x = 2$ (4); $R = C_{10}H_6(SO_3)_2$, $x = 1$ (8).

кулярную, и депротонированную форму тиосемикарбазида, ранее были получены на основе никотинатов и изоникотинатов [18], салицилатов [19], малонатов и глутаратов [20].

Строение соединений 5–7 было определено методом рентгеноструктурного анализа [21–23]. Установлено, что кристаллы построены из комплексных катионов $[M(HL)_2]^{2+}$ и анионов $(Nds)^{2-}$ (для Ni и Zn присутствуют также молекулы кристаллизационной воды). Атомы Cu, Ni и Zn координированы двумя атомами серы и двумя ато-

мами азота двух бидентатно-хелатных (S, N) лигандов – молекул HL. Во всех случаях молекула тиосемикарбазида замыкает пятичленный металлоцикл MNNCS. Координационные полиэдры – квадрат для Cu и Ni и искаженный тетраэдр для Zn. Заключение о характере координации лигандов и координационных полиэдрах остальных соединений 1–4, 8 было сделаны на основе спектральных данных. Сравнение полос поглощения в ИК спектрах тиосемикарбазида и синтезированных комплексов (табл. 2) показывает, что во всех случаях полоса «тиоамид I» повышает частоту и несколь-

Таблица 1. Данные элементного анализа для комплексов 2-нафталинсульфонатов и 1,5-нафталиндисульфонатов 3*d*-металлов с тиосемикарбазидом 1–8

Kontractio	Upor	Найдено, %			Φop guno	Вычислено, %		
KOMIIJIERC	цвет	М	N	S	Формула	М	N	S
$[Cu(HL)_2](Ns)_2(1)$	Бежевый	9.4	12.5	19.7	C ₂₂ H ₂₄ CuN ₆ O ₆ S ₄	9.7	12.7	19.4
$[Ni(HL)_2](Ns)_2(2)$	Зеленый	8.9	12.4	19.1	C ₂₂ H ₂₄ N ₆ NiO ₆ S ₄	9.0	12.8	19.5
$[Zn(HL)_2](Ns)_2(3)$	Белый	9.5	12.5	19.1	C ₂₂ H ₂₄ N ₆ O ₆ S ₄ Zn	9.8	12.7	19.4
$[CoL(HL)_2](Ns)_2(4)$	Темно-розовый	7.5	16.9	21.1	C ₂₃ H ₂₈ CoN ₉ O ₆ S ₅	7.9	16.9	21.5
$[Cu(HL)_2](Nds)(5)$	Кофейный	12.0	15.5	23.8	$C_{12}H_{16}CuN_6O_6S_4$	12.0	15.8	24.1
$[Ni(HL)_2](Nds) \cdot 2H_2O(6)$	Зеленый	10.9	14.7	22.5	C ₁₂ H ₂₀ N ₆ NiO ₈ S ₄	10.5	14.9	22.7
$[Zn(HL)_2](Nds) \cdot H_2O(7)$	Белый	12.0	15.2	23.2	$C_{12}H_{18}N_6O_7S_4Zn$	11.8	15.2	23.2
[CoL(HL) ₂](Nds) (8)	Бурый	9.2	20.0	25.6	C ₁₃ H ₂₀ CoN ₉ O ₆ S ₅	9.6	20.4	25.9

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 6 2021

1e	Полосы тиосемикарбазида									
нени		тиоамидные полосы			осы	Полосы нафталинсульфонатов				
Соеди	v(NH)	Ι	II	III	IV	v(CH _{Ar})	нафталиновое кольцо	$v_{as}(SO_3^-)$	$\nu_s(SO_3^-)$	
HL	3370, 3260, 3170	1530	1315	1000	800					
1	3287, 3186	1580	1384	_	698	2930	1640, 1503, 1440, 746,	1235, 1190,	1033	
							686, 645, 624, 571	1151		
2	3335, 3250, 3190	1592	1385	_	687	2925	1664, 1647, 1457, 745,	1246, 1191,	1032	
							646, 624, 573	1144		
3	3317, 3283, 3193	1569	1374	_	682	2925	1636, 1450, 742, 642,	1188, 1138	1031	
							624, 568			
4	3303, 3165	1583	1347	—	679	2930	1640, 1504, 1406, 745,	1269, 1194,	1032	
							645, 624, 568	1137		
5	3385, 3291, 3218,	1576	1380,	—	703	2943	1635, 1497, 1448, 793,	1238, 1209,	1029	
	3179		1334				769, 663, 607, 570, 529	1197, 1170,		
								1155, 1133		
6	3278, 3171	1580,	1394	990	707	2925	1656, 1628, 1500, 1455,	1241, 1227,	1027	
		1560					797, 772, 662, 610,	1196, 1161		
							575, 556, 523			
7	3390, 3338, 3228,	1580	1393	—	692	2946	1668, 1628, 1499, 1414,	1246, 1234,	1032	
	3176						797, 767, 692, 630	1187, 1159,		
-								1136		
8	3281, 3193	1559	1385	—	698	2927	1640, 1501, 1438, 1403,	1235, 1206,	1033	
							796, 769, 698, 664	1180, 1159		

Таблица 2. Параметры ИК спектров (см⁻¹) тиосемикарбазида (HL) его комплексов с 2-нафталинсульфонатами и 1,5-нафталиндисульфонатами 3*d*-металлов 1–8

ко уменьшается по интенсивности. Подвергается высокочастотному сдвигу и полоса «тиоамид II». Интенсивность полосы «тиоамид III» уменьшается столь значительно, что не проявляется вовсе во всех спектрах, кроме комплекса 6. Частота полосы «тиоамид IV» понижается, причем величины сдвигов для одних и тех же комплексообразователей в спектрах 2-нафталинсульфонатов больше, чем в спектрах 1,5-нафталиндисульфонатов. Возможно, это объясняется большей прочностью связи в комплексах 2-нафталинсульфонатов по сравнению с комплексами 1,5-нафталиндисульфонатов. Согласно литературным данным [24], описанное поведение тиоамидных полос согласуется с бидентатной координацией тиосемикарбазида с участием атомов серы и азота.

В спектрах комплексов **4** и **8** при 2067 и 2060 см⁻¹ соответственно наблюдаются полосы поглощения, отсутствующие в спектрах остальных комплексов, наличие которых, как было пока-

зано нами ранее [18, 19], связано с образованием четырехчленного цикла с участием атомов азота и серы, причем тиосемикарбазид депротонирован.

Отнесение полос поглощения 2-нафталинсульфонат- и 1,5-нафталиндисульфонат-анионов было проведено с учетом литературных данных [9, 15, 25-27]. Для валентных колебаний связей С-Н в спектре имеется одна слабая полоса в области 2925-2946 см⁻¹. Гораздо более выражены в спектре и по количеству полос. и по интенсивности колебания нафталиновых колец, для которых наиболее сильная полоса проявляется в области 1628-1647 см⁻¹. Возможно, высокая интенсивность данной полосы связана с тем, что в нее кроме колебаний нафталиновых колец вносят вклад деформационные колебания аминогрупп тиосемикарбазида. Для группы SO₃ имеется ряд полос: полоса симметричных валентных колебаний около 1130 см⁻¹ и ряд полос антисимметричных валентных колебаний в области 1269–1133 см⁻¹.

Таблица 3. Параметры спектров диффузного отражения тиосемикарбазидных комплексов 2-нафталинсульфонатов и 1,5-нафталиндисульфонатов 3*d*-металлов 1–8

N⁰	λ, нм	Отнесение
1	504	
2	445	V ₃
	610	v ₂
	855	v_1
4	511	${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$
	667	$^{1}A_{1g} \rightarrow ^{1}A_{2}$
5	562	
6	622	v ₂
8	560	${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$

Сходство ИК спектров всех синтезированных комплексов позволяет утверждать, что во всех полученных соединениях тиосемикарбазид выступает как бидентатный лиганд с координацией через атомы серы и гидразинового азота с образованием пятичленного хелатного цикла.

Положение полос в спектрах диффузного отражения комплексов (табл. 3) соответствует плоскоквадратному строению комплексов меди(II) и никеля(II) (соединения 1, 2, 5, 6) и октаэдрическому строению комплексов кобальта(III) (соединения 4, 8).

Из термогравиграмм комплексов (табл. 4) видно, что все полученные комплексы разлагаются без плавления. Для комплексов **6**, **7**, в состав которых входит вода, не наблюдается отдельных эффектов

No	Эндоэффен	сты	Экзоэффект	Ы	Ofman vous voor
JN⊡	$t, ^{\circ}\mathrm{C}$ $\Delta m, \%$		t, °C	$\Delta m, \%$	Общая убыль массы, 78
1			195-240(220)	15.5	77.5
			350-430(380)	25.8	
			510-650(620)	20.7	
			710-750(720)	+1.6	
2	140-160(150)	2.5	320-350(330)	13.3	81.3
			480-590(550)	35.6	
			730-770(750)	+1.5	
3	200-220(210)	3.5	220-270(250)	15.0	83.8
	270-300(290)	6.0	560-770(620)	27.9	
	380-450(400)	13.0			
4	90-110(100)	5.0	210-230(220)	10.1	85.0
	150-170(160)	2.0	440-620(550)	15.1	
	270-300(280)	7.5	640-860(800)	+2.5	
	300-350(340)	16.1			
5			300-320(310)	12.7	81.3
			420-600(440)	52.5	
			600-870(850)	+2.4	
6	150-200(180)	5.3	350-370(360)	12.6	83.3
	210-320(220)	6.6	520-630(550)	33.1	
			630–900(810)	+1.3	
7	220-240(230)	3.0	320-340(330)	6.9	81.3
	400-420(410)	16.3	630-850(720)	6.4	
	570-630(620)	14.8	850-980(920)	12.3	
8			150-170(160)	7.4	81.3
			250-270(260)	7.4	
			380-450(430)	24.6	
			520-600(560)	15.3	
			600-950(700)	+1.5	

Таблица 4. Результаты дериватографических исследований термической устойчивости комплексов 1-8^а

^а В скобках приведена температура максимума эффекта.

ее отщепления. Это, скорее всего, связано с наличием большого числа прочных водородных связей. Для обоих комплексов меди(II) и для комплекса кобальта(III) с 1,5-нафталиндисульфонат-анионом на термогравиграммах отсутствуют эндоэффекты. Возможно, это связано с каталитическим действием этих металлов на процессы горения. Для всех остальных синтезированных соединений первыми при термолизе являются эндоэффекты. Очевидно, эндоэффекты при более низких температурах соответствуют разложению, а экзоэффекты при более высоких температурах – выгоранию продуктов разложения. Для всех комплексов меди(II), никеля(II) и кобальта(III) эффекты при очень высоких температурах сопровождаются не потерей, а небольшим приростом массы. Подобные эффекты наблюдались нами для тиосемикарбазидных комплексов с малонатами, глутаратами, п-гидроксибензоатами и *n*-аминобензоатами [20, 28].

Для всех комплексообразователей термическая устойчивость комплексов с 1,5-нафталиндисульфонат-анионом выше по сравнению с соответствующими комплексами с 2-нафталинсульфонатами. В зависимости от природы металла-комплексообразователя для обоих исследованных анионов термическая устойчивость уменьшается в ряду: $Cu^{2+} > Zn^{2+} > Ni^{2+} > Co^{3+}$.

Таким образом, синтезированы новые координационные соединения 2-нафталинсульфонатов и 1,5-нафталиндисульфонатов меди(II), никеля(II), цинка(II) и кобальта(III) с тиосемикарбазидом. Методом ИК спектроскопии изучено их строение. Исследована термическая устойчивость полученных комплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали хлориды меди(II), никеля(II), цинка(II) (99%, Sigma Aldrich) и кобальта(II) (≥99.0%, Supelco), 2-нафталинсульфонат (≥99.0%, Supelco) и 1,5-нафталиндисульфонат натрия (97%, Sigma Aldrich) и тиосемикарбазид (99%, Sigma Aldrich).

ИК спектры снимали на приборе PerkinElmer SPECTRUM BX II FT-IR SYSTEM, образцы готовили в виде таблеток с КВг. Спектры диффузного отражения регистрировали на спектрофотометре Lambda-9 (PerkinElmer), стандарт – MgO (100βMgO). Термогравиграммы снимали на дериватографе системы Паулик–Паулик–Эрдей на воздухе, скорость нагрева – 10 град/мин. Содержание металлов определяли методом атомноабсорбционной спектрометрии на приборе Shimadzu 7000AA, содержание азота – по методу Дюма.

Синтез комплексов 1-8. 1.82 г тиосемикарбазида (0.02 моль) растворяли при нагревании в 100 мл воды. Раствор охлаждали до 35°С и порциями при перемешивании прибавляли 0.0067 моль твердого 2-нафталинсульфоната либо 1,5-нафталиндисульфоната металла. Смесь перемешивали до достижения полной однородности. Осадок отфильтровывали через фильтр Шотта, промывали небольшим количеством воды и сушили в сушильном шкафу при 60°С до постоянной массы.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Кокшарова Татьяна Владимировна, ORCID: http://orcid.org/0000-0003-4295-2352

Скакун Татьяна Сергеевна, ORCID: http://orcid. org/0000-0003-2447-5329

Стоянова Ирина Викторовна, ORCID: http:// orcid.org/0000-0002-3958-3974

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Wu H., Dong X.-W., Liu H.-Y., Ma J.-F., Liu Ying-Ying, Liu Yun-Yu, Yang J. // Inorg. Chim. Acta. 2011. Vol. 373. N 1. P. 19. doi 10.1016/j.ica.2011.03.041
- Кокунов Ю.В., Ковалев В.В., Горбунова Ю.Г., Козюхин С.А. // ЖНХ. 2015. Т. 60. № 2. С. 187; Кокипоv Yu.V., Kovalev V.V., Gorbunova Yu.G., Kozyukhin S.A. // Russ. J. Inorg. Chem. 2015. Vol. 60. N 2. P. 151. doi 10.1134/S0036023615020060
- Tran D.T., Chernova N.A., Chu D., Oliver A.G., Oliver S.R.J. // Cryst. Growth & Design. 2010. Vol. 10. N 2. P. 874. doi 10.1021/cg901222k
- Williams C.A., Blake A.J., Wilson C., Hubberstey P., Schröder M. // Cryst. Growth & Design. 2008. Vol. 8. N 3. P. 911. doi 10.1021/cg700731d
- Gunderman B.J., Kabell I.D., Squattrito Ph.J., Dubey S.N. // Inorg. Chim. Acta. 1997. Vol. 258. N 2. P. 237. doi 10.1016/S0020-1693(96)05534-X

- Shubnell A.J., Kosnic E.J., Squattrito Ph.J. // Inorg. Chim. Acta. 1994. Vol. 216. N 1–2. P. 101. doi 10.1016/0020-1693(93)03700-K
- Kosnic E.J., McClymont E.L., Hodder R.A., Squattrito Ph.J. // Inorg. Chim. Acta. 1992. Vol. 201. N 2. P. 143. doi 10.1016/s0020-1693(00)85325-6
- Ohki Y., Suzuki Y., Nakamura M., Shimoi M., Ouchi A. // Bull. Chem. Soc. Japan. 1985. Vol 58. N 10. P. 2968. doi 10.1246/bcsj.58.2968
- Wang Sh., Zhang R., Wang J., Shen L., Zeng Y., Zhang D. // Chem. Res. Chin. Univ. 2014. Vol. 30. N 1. P. 9. doi 10.1007/s40242-014-3414-6
- Côté A.P., Shimizu G.K.H. // Coord. Chem. Rev. 2003. Vol. 245. N 1–2. P. 49. doi 10.1016/S0010-8545(03)00033-X
- Xie Zh.-L., Xie Y.-R., Xu G.-H., Du Z.-Y., Zhou Zh.-G., Lai W.-L. // Inorg. Chim. Acta. 2012. Vol. 384. P. 117. doi 10.1016/j.ica.2011.11.042
- Fang X.-Q., Deng Zh.-P., Huo L.-H., Wan W., Zhu Zh.-B., Zhao H., Gao Sh. // Inorg. Chem. 2011. Vol. 50. N 24. P. 12562. doi 10.1021/ic201589p
- Zhao J.-P., Hu B.-W., Liu F.-Ch., Hu X., Zeng Y.-F., Bu X.-H. // Cryst. Eng. Comm. 2007. Vol. 10. N 9. P. 902. doi 10.1039/b707622c
- Cai J. // Coord. Chem. Revs. 2004. Vol. 248. N 11–12.
 P. 1061. doi 10.1016/j.ccr.2004.06.014
- Cai J., Chen C.-H., Liao Ch.-Zh., Yao J.-H., Hu X.-P., Chen X.-M. // J. Chem. Soc. Dalton Trans. 2001. N 7. P. 1137. doi 10.1039/b009851p
- Van Koningsbruggen P.J., Garcia Y., Codjovi E., Lapouyade R., Kahn O., Fournès L., Rabardel L. // J. Mater. Chem. 1997. Vol. 7. N 10. P. 2069. doi 10.1039/ A702690K
- Sundberg M.R., Sillanpää R., Liaaen-Jensen S., Weedon A.C., Jørgensen E., Coppens Ph., Buchardt O. // Acta Chem. Scand. 1993. Vol. 47. P. 1173. doi 10.3891/ acta.chem.scand.47-1173
- Кокшарова Т.В. // ЖОХ. 2011. Т. 81. № 2. С. 287; Koksharova T.V. // Russ. J. Gen. Chem. 2011. Vol. 81. N 2. P. 385. doi 10.1134/S1070363211020174
- Кокшарова Т.В., Курандо С.В., Стоянова И.В. // ЖОХ. 2012. Т. 82. № 9. С. 1422; Koksharova T.V.,

Kurando S.V., Stoyanova I.V. // Russ. J. Gen. Chem. 2012. Vol. 82. N 9. P. 1481. doi 10.1134/ S1070363212090046

- Кокшарова Т.В. // ЖОХ. 2014. Т. 84. № 8. С. 1352; Koksharova T.V. // Russ. J. Gen. Chem. 2014. Vol. 84. N 8. P. 1573. doi 10.1134/S1070363214080234
- Сергиенко В.С., Кокшарова Т.В., Суражская М.Д., Скакун Т.С., Михайлов Ю.Н. // ЖНХ. 2018. Т. 63.
 № 1. С. 26; Sergienko V.S., Koksharova T.V., Surazhskaya M.D., Skakun T.S., Mikhailov Yu.N. // Russ. J. Inorg. Chem. 2018. Vol. 63. N 1. P. 22. doi 10.1134/ S0036023618010138
- Сергиенко В.С., Кокшарова Т.В., Суражская М.Д., Скакун Т.С. // ЖНХ. 2018. Т. 63. № 9. С. 1146; Sergienko V.S., Koksharova T.V., Surazhskaya M.D., Skakun T.S. // Russ. J. Inorg. Chem. 2018. Vol. 63. N 9. P. 1171. doi 10.1134/S0036023618090176.
- Кокшарова Т.В., Сергиенко В.С., Полякова И.Н., Скакун Т.С., Суражская М.Д. // ЖНХ. 2018.
 Т. 63. № 7. С. 845; Koksharova T.V., Sergienko V.S., Polyakova I.N., Skakun T.S., Surazhskaya M.D. // Russ.
 J. Inorg. Chem. 2018. Vol. 63. N 7. P. 887. doi 10.1134/ S0036023618070100
- Singh B., Singh R., Chaudhary R. V., Thakur K. P. // Ind. J. Chem. 1973. Vol. 11. N 2. P. 174.
- Perles J., Snejko N, Iglesias M., Monge M.Á. // J. Mater. Chem. 2009. Vol. 19. N 36. P. 6504. doi 10.1039/ b902954k
- Sun D., Zhang N., Wei Zh.-H., Yang Ch.-F., Huang R.-B., Zheng L.-S.// J. Mol. Struct. 2010. Vol. 981. N 1–3. P. 80. doi 10.1016/j.molstruc.2010.07.031
- Sun D., Liu F.-J., Hao H.-J., Li Y.-H., Zhang N., Huang R.-B., Zheng L.-S. // Cryst. Eng. Commun. 2011. Vol. 13. N 19. P. 5661. doi org/10.1039/c1ce05622k
- Кокшарова Т.В. // ЖОХ. 2015. Т. 85. № 1. С. 119; Koksharova T.V. // Russ. J. Gen. Chem. 2015. Vol. 85. N 1. P. 111. doi 10.1134/S1070363215010193

Coordination Compounds of 3*d*-Metals Naphthalene-2-sulfonates and Naphthalene-1,5-Disulfonates with Thiosemicarbazide

T. V. Koksharova^{*a*,*}, T. S. Skakun^{*a*}, and I. V. Stoyanova^{*b*}

^a Mechnikov Odessa National University, Odessa, 65082 Ukraine ^b Bogatskii Physicochemical Institute, National Academy of Sciences of Ukraine, Odessa, 65080 Ukraine

Received March 17, 2021; revised March 17, 2021; accepted March 31, 2021

Complexes of copper(II), nickel(II), zinc(II), and cobalt(III) naphthalene-2-sulfonates and naphthalene-1,5-disulfonates with thiosemicarbazide were synthesized. These compounds were characterized by elemental analysis, IR spectroscopy, diffuse reflection spectroscopy, and thermogravimetry.

Keywords: thiosemicarbazide, naphthalene-2-sulfonate, naphthalene-1,5-disulfonate