УДК 547.1'1;54.386;539.26;546.151;546.492;546.87

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ СУРЬМЫ [(4-N,N-Me₂C₆H₄)₃MeSb]I И [(4-N,N-Me₂C₆H₄)₃MeSb]₂[Hg₂I₆]·2DMSO

© 2021 г. И. В. Егорова^{*a*,*}, В. В. Жидков^{*a*}, И. П. Гринишак^{*a*}, Н. А. Родионова^{*a*}, И. Ю. Багрянская^{*b*}, Н. В. Первухина^{*c*}

^а Благовещенский государственный педагогический университет, ул. Ленина 104, Благовещенск, 675000 Россия ^b Новосибирский институт органической химии имени Н. Н. Ворожцова Сибирского отделения Российской академии наук, Новосибирск, 630090 Россия

^с Институт неорганической химии имени А. В. Николаева Сибирского отделения Российской академии наук, Новосибирск, 630090 Россия

*e-mail: bgpu.chim.egorova@mail.ru

Поступило в Редакцию 26 апреля 2021 г. После доработки 25 мая 2021 г. Принято к печати 27 мая 2021 г.

Впервые установлено, что алкилирование трис(4-N,N-диметиламинофенил)стибина метилиодидом приводит к образованию иодида трис(4-N,N-диметиламинофенил)метилстибония. Данный комплекс разлагается в горячей воде до трис(4-N,N-диметиламинофенил)стибина. Взаимодействием [(4-N,N-Me₂C₆H₄)₃MeSb]I с HgI₂ в ДМСО получен комплекс [(4-N,N-Me₂C₆H₄)₃MeSb]₂[Hg₂I₆]·2DMSO, в котором значительное искажение тетраэдрической координации катиона обусловлено дополнительным взаимодействием действием атома кислорода молекулы ДМСО с атомом сурьмы.

Ключевые слова: трис(4-N,N-диметиламинофенил)стибин, метилиодид, иодид ртути(II), рентгеноструктурный анализ, спектроскопия ЯМР

DOI: 10.31857/S0044460X21070143

Галогениды тетраорганилстибония общей формулы R_4 SbHlg, среди которых наиболее изученными являются фенильные производные пятивалентной сурьмы, находят применение в различных областях аналитической химии и обладают большим синтетическим потенциалом, в частности галогениды тетраалкилстибония взаимодействуют с альдегидами, образуя продукты присоединения, гидролиз которых дает соответствующие спирты [1–7]. Вследствие этого представляет интерес изучение синтеза и строения соединений данного типа.

Реакция пентаарилсурьмы с галогеноводородной кислотой – основной способ получения галогенидов тетраарилстибония [3, 8]. Одним из методов синтеза галогенидов тетраорганилстибония [ArAlk₃Sb]Hlg, содержащих арильный и алкильные заместители при атоме сурьмы, является взаимодействие ArAlk₂Sb с галогеналканами [9]. Однако долгое время не удавалось присоединить галоидные алкилы к соединениям сурьмы(III) с двумя или тремя ароматическими заместителями [3, 8]. Поэтому для синтеза стибониевых соединений [Ar₃MeSb]X (Ar = Ph, Tol, Mes, (3,4-Me)₂C₆H₃, (2,4-Me)₂C₆H₃, X = BF₄) в качестве алкилирующего агента применяют борфториды триметилоксония [10–12].

Впервые присоединение галоидных алкилов к триарилстибину было установлено в реакциях с участием $(2,6-(MeO)_2C_6H_3)_3Sb$. Для доказательства строения галогенидов тетраорганилстибония [Ar₃RSb]Hlg [Ar = 2,6-(MeO)_2C_6H_3; R = Me, Et,

n-Bu, CH₂CH=CH₂; Hlg = Cl, Br, I] авторы приводят данные элементного анализа и спектроскопии ЯМР [13]. Нами исследовано алкилирование трис(2,6-диметоксифенилстибина) этиловым эфиром иодуксусной кислоты и 1,4-дииодбутаном. Строение соединений [Ar₃RSb]^{*n*+I}^{*n*}, Ar = 2,6-(MeO)₂C₆H₃; n = 1, R = Me, (CH₂)₄I, CH₂C(O)OEt; n = 2, R = (CH₂)₄SbAr₃ и [Ar₃SbCH₂C(O)OEt]₂[Hg₂I₆], [Ar₃MeSb]₂[HgI₄]·DMSO подтверждено методами РСА и спектроскопии ЯМР [14].

Таким образом, к настоящему времени возможность алкилирования триарилстибина галоидными алкилами и этилиодацетатом показана лишь на примере $[2,6-(MeO)_2C_6H_3]_3Sb$ [13, 14]. В связи с этим, изучение взаимодействия галоидных алкилов с другими полностью замещенными ароматическими соединениями сурьмы(III) и установление строения полученных алкиларильных стибониевых соединений является актуальной задачей.

Цель данной работы заключается в исследовании алкилирования трис(4-N,N-диметиламинофенил)стибина метилиодидом, направленном синтезе комплексов с трис(4-N,N-диметиламинофенил)метилстибониевым катионом, изучении их строения и свойств.

Трифенилстибин не вступает в реакцию с галоидными алкилами [3]. Присутствие в фенильных заместителях, в целом, сильных электронодонорных N(Me)₂-групп, предполагает увеличение основности (соответственно нуклеофильности) молекулы трис(4-N,N-диметиламинофенил)стибина по сравнению с трифенилстибином, и, как следствие, возможности алкилирования по атому сурьмы. Другим нуклеофильным центром молекулы трис(4-N,N-диметиламинофенил)стибина, способным подвергаться электрофильной атаке

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 7 2021

метилом, является атом азота аминогруппы, основность которого, вследствие p- π -сопряжения его неподеленной электронной пары с π -электронами бензольного кольца, уменьшается. Известно, что нуклеофильность атомов в ряду N–P–As–Sb– Ві снижается и метилиодид как мягкий реагент в нуклеофильных реакциях, предпочитает мягкие нуклеофилы [8, 15]. Можно ожидать, что алкилирование молекулы трис(4-N,N-диметиламинофенил)стибина, имеющего два конкурирующих нуклеофила (атомы азота и сурьмы), метилиодидом будет протекать по атому сурьмы с образованием иодида трис(4-N,N-диметиламинофенил)метилстибония.

Алкилирование трис(4-N,N-диметиламинофенил)стибина метилиодидом проводили в хлороформе при комнатной температуре. Установлено, что независимо от мольного соотношения реагентов (от 1:1 до 1:10) и времени проведения эксперимента (24–120 ч) алкилирование протекает по атому сурьмы с образованием бесцветных кристаллов комплекса [(4-N,N-Me₂C₆H₄)₃MeSb]I 1 (схема 1).

Для установления пространственного строения соединения 1 медленной кристаллизацией из хлороформа были получены монокристаллы, пригодные для рентгеноструктурного анализа. Отметим, что производные тетраорганилстибония, содержащие заместитель 4-N,N-Me₂C₆H₄, структурно не охарактеризованы. По данным PCA, комплекс 1 состоит из ионов I⁻ и [(4-N,N-Me₂C₆H₄)₃MeSb]⁺. Атом сурьмы в катионе имеет искаженную тетраэдрическую координацию. Величины углов CSbC находятся в интервале 106.0(1)–114.6(1)° (рис. 1). Основные кристаллографические характеристики, данные эксперимента и параметры уточнения структуры приведены в табл. 1.

ЕГОРОВА и др.

Параметр	1	2
Формула	C ₂₅ H ₃₃ IN ₃ Sb	C ₅₄ H ₇₈ Hg ₂ I ₆ N ₆ O ₂ S ₂ Sb ₂
M	624.19	2313.42
Температура, К	296(2)	120(2)
Сингония	Триклинная	
Пространственная группа	$P\overline{1}$	$P\overline{1}$
a, Å	9.1698(3)	10.3319(6)
b, Å	10.9934(4)	12.4940(7)
c, Å	14.3748(5)	14.1746(8)
α, град	71.618(2)	84.2800(10)
β, град	79.193(2)	73.0820(10)
ү, град	84.026(2)	82.8230(10)
V, Å ³	1349.19(8)	1732.98(17)
Z	2	1
<i>d</i> _{выч} , г/см ³	1.536	2.217
$\mu(MoK_{a}),$ мм ⁻¹	2.182	7.959
<i>F</i> (000)	616	1072
Размеры кристалла, мм	$0.60\times0.20\times0.15$	$0.21\times0.18\times0.16$
Диапазон сбора данных по θ, град	2.51-30.06	2.071-33.715
Число измеренных рефлексов	49040	26246
Число независимых рефлексов	7901 (<i>R</i> _{int} 0.0299)	12568 (<i>R</i> _{int} 0.0413)
Пропускание, min/max	0.354/0.736	0.273/0.375
GOOF по F^2	1.097	0.954
R -Факторы по $I > 2\sigma(I)$	$R_1 0.0296, wR_2 0.0790$	$R_1 0.0402, wR_2 0.0570$
<i>R</i> -Факторы по всем отражениям	$R_1 0.0385, wR_2 0.0844$	$R_1 0.0734, wR_2 0.0659$
Остаточная электронная плотность, max/min, e/Å ³	1.069/-1.219	1.052/-1.200

Таблица 1. Кристаллографические характеристики соединений 1 и 2, данные эксперимента и параметры уточнения структур

Галогениды тетрафенилстибония устойчивы при хранении, нелетучи, хорошо растворимы в воде, поэтому могут быть очищены перекристаллизацией из водного раствора. В то же время галогениды тетраалкилстибония гигроскопичны, в горячих водных растворах разлагаются с выделением галоидного алкила и триалкилстибина [3]. Поскольку в комплексе 1 присутствуют арильные и метильный заместители при атоме сурьмы, представляет интерес изучение его стабильности и возможности разложения до триарилстибина.

Нагревание при 80°С водного раствора соединения 1 приводит к образованию нерастворимого продукта, строение которого установлено методом спектроскопии ЯМР, согласуется с данными элементного анализа, ИК спектроскопии и соответствует трис(4-N,N-диметиламинофенил)стибину. По данным ЯМР ¹Н, в спектре получен-

Рис. 1. Общий вид катиона и аниона соединения 1 (ССDС 2067967).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 7 2021

1102

Рис. 2. Общий вид аниона и катиона, координированного с молекулой ДМСО, соединения 2 (ССDС 2059337).

ного соединения имеются сигналы восемнадцати метильных протонов в области 2.80 м. д., шести ароматических протонов в области 6.67 м. д. и шести ароматических протонов в области 7.21 м. д. Спектры ЯМР ¹³С содержат сигналы в области 113.6, 135.8, 137.1, 153.9 м. д., соответствующие химическим сдвигам ядер углерода в бензольном кольце, и сигнал атомов углерода метильных фрагментов в области 39.1 м. д. Полученный результат свидетельствует о разложении стибониевой соли с образованием трис(4-N,N-диметиламинофенил) стибина (схема 1).

Галогениды органилсурьмы(III, V), взаимодействуя с галогенидами тяжелых металлов (Hg, Cd, Bi), образуют комплексные соединения, в которых выступают лигандом или стибониевым катионом [14, 16, 17]. Изучено взаимодействие комплекса 1 с иодидом ртути(II) (1:1 мольн.) в ДМСО (схема 1). Продукт реакции [(4-N,N-Me₂C₆H₄)₃MeSb]₂[Hg₂I₆]·2DMSO 2 представляет собой кристаллы, хорошо растворимые в ацетоне, хлороформе, ДМСО. Полосы поглощения в ИК спектрах соединений 1, 2 относили в соответствии с данными работ [18, 19]. В ИК спектрах соединений 1, 2 имеются полосы поглощения в области валентных и деформационных колебаний С–Н связей метильной группы, связанной с атомом азота, при 2798, 1433 см⁻¹. Полосу при 1594 см⁻¹ можно отнести к валентным колебаниям ароматических связей С–С. В ИК спектре комплекса **2** наблюдается полоса валентных колебаний v(SO) при 1016 см⁻¹, смещение которой в длиноволновую область спектра по сравнению со свободной молекулой ДМСО, свидетельствует о координации ДМСО через атом кислорода [20]. Данные ИК спектроскопии согласуются с результатами РСА.

В кристалле соединения **2** присутствует дополнительная координация Sb····O^{1S} (2.831 Å) между атомами сурьмы стибониевого катиона и кислорода сольватной молекулы ДМСО (сумма ван-дер-ваальсовых радиусов 3.58 Å [21]), обусловливающая конфигурацию стибониевого катиона как промежуточную между тетраэдрической и тригонально-бипирамидальной (рис. 2, 3). В псевдоаксиальной плоскости располагаются атомы O^{1S} молекулы ДМСО и C² одного из арильных заместителей (угол C²Sb¹O^{1S} равен 171.97°). Псевдоэкваториальные положения занимают атомы C¹, C¹¹, C²⁰ метильного и двух арильных заместителей; величины углов C_{eq}SbC_{eq} составляют 107.21(15)– 119.50(17)°, C_{ax}SbC_{eq} 101.92(16)–103.09(16)° (рис. 2, 3).

Рис. 3. Фрагмент кристаллической упаковки соединения **2** (ССDС 2059337). *Пунктирной* линией обозначены межмолекулярные контакты между катионом и сольватной молекулой ДМСО.

Длина связи Sb–C_{Me} составляет 2.097(3) (1), 2.104(4) Å (2), расстояния Sb–C_{Ar} находятся в интервале 2.078(2)–2.087(3) (1), 2.087(4)–2.091(4) Å (2) (сумма ковалентных радиусов атомов Sb и C_{sp}3, C_{sp}2 2.15, 2.12 Å) [22]. В тригонально-бипирамидальной молекуле иодида тетрафенилстибония связи Sb–C_{Ph} длиннее и составляют: Sb–C_{ax} 2.141(3) Å, Sb–C_{eq} 2.103(3)–2.117(3) Å, а расстояние Sb–I 3.341(1) Å [23]. Сокращение расстояний Sb–C_{Ar} в соединении 1 связано с присутствием в фенильном заместителе аминогруппы, атом азота которой может участвовать в $p-\pi$ -d-сопряжении.

В комплексах 1, 2 атомы азота аминогрупп имеют sp^2 -гибридизацию [углы CNC составляют 116.7(4)–121.7(3)° (1), 116.9(4)–120.9(4)° (2)]. Заместители при всех атомах азота образуют плоскости; максимальный выход атома азота из соответствующих среднеквадратичных плоскостей не превышает 0.02 Å. Сопряжение свободной электронной пары атома азота с ароматическим кольцом приводит к уменьшению длин связей N–C_{Ar}, находящихся в интервале 1.359(4)–1.374(6) (1), 1.373(5)–1.381(5) Å (**2**) по сравнению с расстоянием N–С_{Me} 1.420(6)–1.454(4) (**1**), 1.445(6)–1.458(6) Å (**2**) (сумма ковалентных радиусов 1.47 Å).

Центросимметричные биядерные анионы $[Hg_2I_6]^{2-}$ представлены в виде сочлененных по ребру тетраэдров; углы IHgI составляют 94.128(10)-123.833(12)°. Цикл Hg₂I₂ плоский, торсионный угол I³Hg¹I³aHg¹a равен 0.00(1)°. Концевые атомы иода связаны с атомами ртути более прочно [расстояния 2.7063(4), 2.7118(4) Å] по сравнению с двухкоординированными мостиковыми атомами иода [Hg-I-µ₂ 2.8691(4), 3.0011(4) Å]. Данные величины сравнимы с параметрами аниона [Hg₂I₆]²⁻ комплексов, содержащих катионы $\{[(2,6-MeO)_2C_6H_3]_3SbCH_2C(O)OEt\}^+,\$ $[Ph_4Sb]^+$, $[p-Tol_4Sb]^+$, где данные расстояния варьируются в интервалах 2.6874(4)-2.7222(3) Å для терминальных и 2.8250(4)-3.0748(5) Å для мостиковых атомов иода [14]. Плоскости Hg¹I³Hg¹aI³a и I¹I²I¹aI²a практически перпендикулярны, угол между ними составляет 86.31°.

Атомы иода участвуют в формировании структуры кристалла **1** посредством образования слабых контактов I····H– C_{Ar} (2.985 Å), I····H– C_{Me} –Sb (2.991 Å). Потенциальные координирующие центры – атомы азота аминогрупп – участвуют в слабых межмолекулярных взаимодействиях с молекулой ДМСО (N····H– C_{Me} 2.628 Å) **2**. Сумма ван-дер-ваальсовых радиусов атомов иода (азота) и водорода 3.08 (2.65) Å [21].

Таким образом, предложен синметод теза триарилалкилстибониевых комплек- $[(4-N,N-Me_2C_6H_4)_3MeSb]I,$ [(4-N,Nсов $Me_2C_6H_4$)₃MeSb]₂[Hg₂I₆]·2DMSO, основе В которого лежит реакция алкилирования трис-(4-N,N-диметиламинофенил)стибина по атому сурьмы. Кристаллическая структура комплексов подтверждена методом РСА. В сольвате $[(4-N,N(Me)_{2}C_{6}H_{4})_{3}MeSb]_{2}[Hg_{2}I_{6}] \cdot 2DMSO$ имеет место увеличение координационного числа атома сурьмы до 5, обуславливающего конфигурацию катиона как промежуточную между тетраэдрической и тригонально-бипирамидальной.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР записаны на спектрометре Bruker Avance AV-300 с частотой протонного резонанса 300 МГц. Для ядра ¹³С использовалась методика кросс-поляризации с подавлением диполь-дипольных взаимодействий и вращением под магическим углом. Длительность 90° импульса для протонов составляла 4 мкс, время переноса поляризации – 500–3000 мс, скорость вращения – 5, 7, 16 кГц, диаметр образца – 4 мм, время между импульсами – 20 с, количество накоплений 512. Регистрацию сигналов водорода производили при помощи одноимпульсной последовательности, межимпульсная задержка составляла 3 с. Ошибка определения химического сдвига не превышала 1 м. д. Спектры записывали при 300 К. ИК спектры соединений записаны на Фурье-спектрометре ФСМ 2202 в таблетках с КВг. Элементный анализ выполнен на CHN-анализаторе Carlo Erba (модель 1106).

РСА выполнен на дифрактометре Bruker APEX II ССD (Мо K_{α} -излучение, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямым методом и уточнены МНК в анизотропном полноматричном приближении по F^2 . Положения

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 7 2021

атомов водорода (кроме водорода метильной группы при атоме C^1 в комплексе 2) рассчитаны геометрически и уточнены в модели *наездника* (параметры атомов водорода рассчитывали в каждом цикле уточнения по координатам соответствующих атомов углерода). Атомы водорода метильной группы при атоме C^1 2 выявлены из разностного Фурье-синтеза электронной плотности. Максимальная величина пика остаточной электронной плотности в окрестности атома C^1 комплекса 2 не превышает 0.5*е*. Параметры РСА соединений 1, 2 депонированы в Кембриджском центре кристаллографических данных (СССС 2067967, 2059337). Все расчеты проведены по комплексу программ SHELX-97, SHELXL [24–26].

трис(4-N,N-диметиламинофенил)-Иодид метилстибония (1). К 4.82 г (10.00 ммоль) трис-(4-N,N-диметиламинофенил)стибина [3] в 50 мл хлороформа при перемешивании по каплям прибавляли раствор 9.00 г (53.41 ммоль) метилиодида в 30 мл хлороформа. Смесь выдерживали в темноте при комнатной температуре в закрытой ампуле 48 ч. Растворитель испаряли. Кристаллы промывали диэтиловым эфиром (3×15 мл). Выход 6.18 г (99%), т. пл. 220°С (разл.). ИК спектр, v, см⁻¹ 3029 (С_{Аг}-H), 2951 [v_{as}(CH₃)], 2924 [v_{as}(CH₃)], 2853 [v_s(CH₃)], 2798 (NC-H), 1594 $(C_{Ar}-C_{Ar})$, 1460 [δ (CH₃)], 1433 [δ (NC-H)], 1396 [δ(CH₃)], 1202 (CNC), 1165 (CNC), 947 [δ(CH₃)], 939 [δ(CH₃)], 549 (Sb–C). Найдено, %: С 49.21; Н 5.76; N 5.98. С₂₅Н₃₃IN₃Sb. Вычислено, %: С 48.10; H 5.33; N 6.73.

Разложение иодида трис(4-N,N-диметиламинофенил)метилстибония. 3.00 г соединения 1 в 30 мл воды нагревали при 80°С в течение 0.5 ч. Осадок фильтровали, последовательно промывали водой (25 мл), диэтиловым эфиром (2×15 мл), сушили и перекристаллизовывали (хлороформ– спирт). Выход трис(4-N,N-диметиламинофенил)стибина составляет 1.39 г (60%), т. пл. 229°С (т. пл. 229°С [3]). ИК спектр, v, см⁻¹: 3056 (С_{Аг}-H), 2797 (NC-H), 1588 (С_{Аг}-С_{Аг}), 1199 [v_s(CNC)], 1167 (CNC), 944 [δ (CH₃)], 519 (Sb-C). Спектр ЯМР ¹H, δ , м. д.: 7.21 д (6H, 2,6-H, *J* 9.0 Гц), 6.67 д (6H, 3,5-H, *J* 9.0 Гц), 2.80 с (18H, Ме). Найдено, %: С 58.82; H 6.69; N 9.03. С₂₄H₃₀N₃Sb. Вычислено, %: C 58.93; H 6.82; N 9.16. Бис[трис(4-N,N-диметиламинофенил)метилсурьмы]бис(μ_2 -иодо)тетраиододимеркурат(II), сольват с диметилсульфоксидом (2). К 0.50 г (0.80 ммоль) соединения 1, растворенного в 20 мл ДМСО, прибавляли раствор 0.36 г (0.80 ммоль) иодида ртути(II) в 20 мл ДМСО. Смесь выдерживали при комнатной температуре 12 ч. Растворитель удаляли. Выход 0.81 г (87%), т. пл. 163°С. ИК спектр, v, см⁻¹: 3032 (С_{Аг}-H), 2952 [ν_{as} (CH₃)], 2924 [ν_{as} (CH₃)], 2853 [ν_{s} (CH₃)], 2798 (NC-H), 1594 (С_{Аг}-С_{Аг}), 1458 [δ (CH₃)], 1433 [δ (NC-H)], 1399 [δ (CH₃)], 1197 (CNC), 1161 (CNC), 1016 (SO), 954 [δ (CH₃)], 944 [δ (CH₃)], 549 (Sb-C). Найдено, %: С 26.94; H 2.99; N 4.12. С₅₄H₇₈Hg₂I₆N₆O₂S₂Sb₂. Вычислено, %: С 28.02; H 3.40, N 3.63.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Егорова Ирина Владимировна, ORCID: http:// orcid.org/0000-0001-8799-608X

Гринишак Иван Петрович, ORCID: http://orcid. org/0000-0003-2547-1629

Багрянская Ирина Юрьевна, ORCID: http:// orcid.org/0000-0001-7760-5540

Первухина Наталья Викторовна, ORCID: http:// orcid.org/0000-0001-6200-5657

БЛАГОДАРНОСТЬ

Авторы работы выражают благодарность Центру исследования строения молекул Института элементоорганических соединений им. А.Н. Несмеянова РАН, Химическому сервисному центру коллективного пользования СО РАН за проведение рентгеноструктурного анализа.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Potratz H.A., Rosen J.M. // Anal. Chem. 1949. Vol. 21. N 10. P. 1276. doi 10.1021/ac60034a037
- Willard H.H., Perkins L.R. // Anal. Chem. 1953. Vol. 25. N 11. P. 1634. doi 10.1021/ac60083a016
- Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма, висмут. М.: Наука, 1976. С. 184.
- Huang Y.-Z., Liao Y. // J. Org. Chem. 1991. Vol. 56. P. 1381. doi 10.1021/jo00004a010

- Huang Y.-Z., Zhang L.-J., Chen C., Guo G.-Z. // J. Organometal. Chem. 1991. Vol. 412. P. 47. doi 10.1016/0022-328X(91)86040-W
- *Zhang L.-J., Huang Y.-Z., Huang Z.-H.* // Tetrahedron Lett. 1991. Vol. 32. N 45. P. 6579. doi 10.1016/0040-4039(91)80226-V
- Zhang L.-J., Mo X.-S., Huang J.-L, Huang Y.-Z. // Tetrahedron Lett. 1993. Vol. 34. N 10. P. 1621. doi 10.1016/0040-4039(93)85024-Q
- Rochow E.G., Hurd D.T., Lewis R.N. The Chemistry of Organometallic compounds. New York: John Wiley & Sons, 1957. P. 344. doi 10.1002/jps.3030461026
- Brinnand M.E., Dyke W.J.C., Jones W.H., Jones W.J. // J. Chem. Soc. 1932. P. 1815. doi 10.1039/JR9320001815
- Henry M.C., Wittig G. // J. Am. Chem. Soc. 1960.
 Vol. 82. N 3. P. 563. doi 10.1021/ja01488a017
- Henning D., Kempter G., Ahrens E., Benecke K.D., Paul P. // Z. Chem. 1967. Vol. 7. N 12. P. 463. doi 10.1002/zfch.19670071213
- 12. Henning D., Kempter G., Worlitzer K.-D. // Z. Chem. 1969. Vol. 9. N 8. P. 306. doi 10.1002/zfch.19690090813
- Wada M., Miyake S., Hayashi S., Ohba H., Nobuki S., Hayase S., Erabi T. // J. Organometal. Chem. 1996. Vol. 507. P. 53. doi 10.1016/0022-328X(95)05716-3
- Егорова И.В., Жидков В.В., Гринишак И.П., Багрянская И.Ю., Первухина Н.В., Ельцов И.В., Куратьева Н.В. // ЖНХ. 2019. Т. 64. № 1. С. 15; Egorova I.V., Zhidkov V.V., Grinishak I.P., Bagryanskaya I.Yu, Pervukhina N.V., El'tsov I.V., Kurat'eva N.V. // Russ. J. Inorg. Chem. 2019. Vol. 64. N 1. P. 28. doi 10.1134/S0036023619010078
- Pearson R.G. // J. Chem. Educ. 1968. Vol. 45. N 9. P. 581. doi 10.1021/ed045p581
- Egorova I., Zhidkov V., Zubakina I., Rodionova N., Eltsov I. // J. Organometal. Chem. 2020. Vol. 907. P. 121077. doi 10.1016/j.jorganchem.2019.121077
- Burt J., Levason W., Reid G. // Coord. Chem. Rev. 2014.
 Vol. 260. P. 65. doi 10.1016/j.ccr.2013.09.020
- Smith B.C. Infrared Spectral Interpretation: A Systematic Approach. Boca Raton: CRC Press, 1998. 288 pp.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: J. Wiley & Sons, 1986. 484 pp.
- 20. Cotton F.A., Francis R., Horrocks W.D., Jr. // J. Phys. Chem. 1960. Vol. 64. P. 1534. doi 10.1021/j100839a046

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 7 2021

- Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. // J. Phys. Chem. 2009. V. 113. P. 5806. doi 10.1021/jp8111556
- Cordero B., Gomez V., Platero-Prats A.E., Reves M., Echeverria J., Cremades E., Barragan F., Alvarez S. // J. Chem. Soc., Dalton Trans. 2008. Vol. 21. P. 2832. doi 10.1039/B801115J
- 23. Baker L.-J., Rickard C.E.F., Taylor M.J. // J. Chem. Soc., Dalton Trans. 1995. P. 2895. doi 10.1039/dt9950002895
- Sheldrick G.M. SHELX-97, Programs for Crystal Structure Analysis. Göttingen University, Göttingen, 1997.
- Sheldrick G.M. // Acta Crystallogr. 2007. Vol. 64. P. 112. doi 10.1107/S0108767307043930
- 26. Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71.
 P. 3. doi 10.1107/S2053229614024218

Synthesis and Structure of Antimony Complex Compounds [(4-N,N-Me₂C₆H₄)₃MeSb]I and [(4-N,N-Me₂C₆H₄)₃MeSb]₂[Hg₂I₆]·2DMSO

I. V. Egorova^{*a*,*}, V. V. Zhidkov^{*a*}, I. P. Grinishak^{*a*}, N. A. Rodionova^{*a*}, I. Y. Bagryanskaya^{*b*}, and N. V. Pervukhina^{*c*}

 ^a Blagoveschensk State Pedagogical University, Blagoveschensk, 675000 Russia
 ^b N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
 ^c A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
 *e-mail: bgpu.chim.egorova@mail.ru

Received April 26, 2021; revised May 25, 2021; accepted May 27, 2021

For the first time tris(4-*N*,*N*-dimethylaminophenyl)methylstibonium iodide was prepared as a result of the alkylation of tris(4-*N*,*N*-dimethylaminophenyl)stibane with methyliodide. Decomposition of this complex in hot water has led to tris(4-*N*,*N*-dimethylaminophenyl)stibane formation. $[(4-N,N-(Me)_2C_6H_4)_3MeSb]_2[Hg_2I_6] \cdot 2DMSO$ was obtained. A significant distortion of the tetrahedral cation coordination is caused by the additional interaction of the oxygen atom of the DMSO molecule with the antimony atom.

Keywords: tris(4-*N*,*N*-dimethylaminophenyl)stibane, methyliodide, mercury(II) iodide, X-ray diffraction analysis, NMR spectroscopy