УДК 541.49

ЭЛЕКТРОХИМИЧЕСКИЙ СИНТЕЗ И ИССЛЕДОВАНИЕ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ МЕДИ(II) И ЦИНКА(II) С НИКОТИНОВОЙ И ПИКОЛИНОВОЙ КИСЛОТАМИ

© 2021 г. Е. О. Андрийченко*, В. И. Зеленов, А. В. Беспалов, В. Е. Бовыка, Н. Н. Буков

Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия *e-mail: leka91@mail.ru

> Поступило в Редакцию 14 июля 2021 г. После доработки 14 июля 2021 г. Принято к печати 29 июля 2021 г.

Разработаны новые способы получения координационных соединений меди(II) и цинка(II) с пиридинкарбоновыми кислотами (никотиновой и пиколиновой) на основе метода электрохимического синтеза. Полученные соединения охарактеризованы методами количественного анализа и ИК спектроскопии. Осуществлен квантово-химический расчет колебательных частот синтезированных соединений методом DFT, на основании которого проведена интерпретация экспериментальных ИК спектров. Установлено, что во всех случаях пиридинкарбоксилат-ионы координированы как по атому азота, так и по карбоксилатной группе, однако в случае никотиновой кислоты это приводит к формированию координационных полимеров, в то время как для пиколиновой кислоты характерно образование моноядерных комплексов.

Ключевые слова: электрохимический синтез, комплексные соединения меди(II), комплексные соединения цинка(II), никотиновая кислота, пиколиновая кислота

DOI: 10.31857/S0044460X21090134

Координационные соединения *d*-элементов с пиридинкарбоновыми кислотами являются широко известными терапевтическими средствами и биодобавками, находящими применение в медицине и сельском хозяйстве вследствие выраженной биологической активности [1-6]. Большинство предложенных к настоящему времени способов получения этих соединений основаны на методе обмена лигандов: синтез осуществляется путем взаимодействия соли *d*-металла с пиридинкарбоновой кислотой или ее натриевой солью в водной или спиртовой среде [7-12]. Описаны также процессы, протекающие с участием производных пиридинкарбоновых кислот (нитрилов, фосфонатов) через стадию гидролиза или окислительной деструкции пролиганда: в ряде случаев такой подход позволяет получить продукты с нестандартной структурой, недоступные путем прямого взаимодействия иона металла с кислотой [13–14]. Многие из предложенных методик требуют длительного нагревания реакционной смеси (иногда до кипения), описан и гидротермальный синтез пиридинкарбоксилатов *d*-металлов [15–16]. Еще одним недостатком классического химического синтеза следует считать длительность кристаллизации целевого продукта из раствора, которая в некоторых случаях может требовать до нескольких недель.

Другие методы, традиционно применяемые для получения координационных соединений (например, механохимический синтез [11]), также не лишены недостатков – таких, как трудоемкость отделения непрореагировавших веществ, что делает поиск новых эффективных подходов актуальной научной задачей. Метод электрохимического синтеза зарекомендовал себя в качестве хорошей альтернативы описанным методам [17–20]: его использование зачастую позволяет упростить процедуру синтеза, а при корректном выборе параметров процесса – значительно увеличить выход продукта и снизить временные затраты.

В этой связи целью настоящей работы являлась разработка новых эффективных способов получения комплексных соединений меди и цинка с никотиновой (HNic) и пиколиновой (HPic) кислотами на основе метода электрохимического синтеза, а также исследование полученных веществ методами химического и физико-химического анализа.

Осуществленные нами процессы синтеза могут быть описаны уравнениями (1)–(3) (в уравнениях возможные процессы сольватации не учитываются).

Анод (+): $M - 2e^- \rightarrow M^{2+}$, где M = Cu, Zn, (1) Катод (-): $2HA + 2e^- \rightarrow 2A^- + H_2$, где $A^- = Nic^-$, Pic⁻, (2) Суммарное уравнение: $M^{2+} + 2A^- \rightarrow [MA_2]$. (3)

При оптимизации процессов электрохимического синтеза ключевым параметром является плотность электрического тока. Слишком высокие значения приводят к эрозии анода и загрязнению продукта порошком металла, слишком низкие не позволяют достичь приемлемой скорости процесса и, следовательно, желаемых выходов. Установлено, что в случае использования медного анода оптимальные значения плотности тока лежат в диапазоне 5–8 мА/см², в случае цинкового – 3–5 мА/см².

Известно, что пиридинкарбоксилаты меди отличаются низкой растворимостью в воде и по этой причине могут быть достаточно легко выделены из водных растворов [21]. Тем не менее, было установлено, что применение систем растворителей на основе диметилформамида в условиях электрохимического синтеза позволяет заметно увеличить выход. Можно предположить, что ДМФА, являясь высокодонорным растворителем, избирательно сольватирующим катионы, облегчает выход ионов меди из кристаллической решетки, что и служит основной причиной отмеченных различий.

В отличие от соединений меди, пиридинкарбоксилаты цинка кристаллизуются из водных растворов в течение нескольких суток [22]. С целью сокращения временных затрат для получения никотината и пиколината цинка нами были опробованы некоторые органические среды, среди которых наиболее эффективными оказались системы на основе ацетонитрила – растворителя, широко используемого при электрохимическом синтезе координационных соединений благодаря устойчивости в широком диапазоне потенциалов и отсутствию нежелательных сольватационных эффектов [17]. При использовании систем состава ацетонитрил–этанол–вода с объемной долей ацетонитрила более 60% помутнение раствора, вызванное образованием осадка целевого вещества, в обоих случаях было отмечено уже спустя 15–20 мин синтеза.

Согласно результатам количественного анализа, состав полученных веществ соответствует следующим формулам: $[CuNic_2]$ (1), $[CuPic_2]$ (2), $[ZnNic_2]$ (3) и $[ZnPic_2(H_2O)_2]$ (4).

Для установления способа координации лигандов были записаны ИК спектры синтезированных соединений. ИК спектры пиридинкарбоксилатов меди и цинка подробно рассмотрены в литературе, однако выполненные разными авторами отнесения полос имеют значительные расхождения. Так, авторы [22], рассматривая спектры пиколината и никотината цинка, относят к валентным симметричным колебаниям карбоксилатной группы полосы поглощения в области 1400–1450 см⁻¹, а к валентным асимметричным – полосы около 1580 см⁻¹. Разность волновых чисел, полученная с использованием данной интерпретации, для соединения 4 составила 125 см⁻¹, для соединения 3 - 164 см⁻¹ (по данным работы [22], 135 см⁻¹ для пиколината цинка и 180 см⁻¹ для никотината цинка). В случае соединения 4 величина разности свидетельствует о бидентатной координации по карбоксилатной группе, что противоречит структурным данным, согласно которым пиколинат-ион образует с ионом цинка хелатный цикл, выступая в качестве N,О-донорного лиганда, карбоксилатная группа в котором координирована по монодентатному типу. Такое несоответствие может быть связано с участием в координации пиридинового атома азота, что, по мнению авторов, делает критерий разности волновых чисел не вполне применимым для определения способа связывания карбоксилатной группы. В случае соединения 3 полученное значение соответствует ионизированной карбоксильной группе (примерно 170 см⁻¹), не образующей прочных связей с ионом металла, что согласуется с

Рис. 1. Оптимизированные структуры координационых узлов никотинатов меди (а) и цинка (б), расчет на уровне B3LYP-D3BJ/6-311G(d,p).

данными структурного анализа: установлено, что остаток никотиновой кислоты координирован через N-атом пиридинового кольца, в то время как карбоксилатная группа участвует лишь в образовании водородных связей.

К тем же выводам о строении никотинатного комплекса цинка приходят и авторы работы [23], но предложенное ими отнесение полос в ИК спектрах (для валентных симметричных колебаний – около 1400 см⁻¹, валентных асимметричных – 1618 см⁻¹) не вполне согласуется с данными об отсутствии связи между карбоксилатной группой и ионом металла: разность волновых чисел при этом составляет более 200 см⁻¹, что соответствует монодентатной координации.

Отнесение полос в спектрах никотинатов меди и цинка, выполненное авторами [7], согласуется с предложенным в работе [22], однако на его основе сделаны принципиально иные выводы. Разность волновых чисел, составляющая 210 см⁻¹ для соединения 1 и 164 см⁻¹ для соединения 3 (212 см⁻¹ в случае никотината меди и 166 см⁻¹ в случае никотината цинка по данным [7]), интерпретирована авторами как свидетельство монодентатного или псевдо-мостикового типа координации по карбоксилатной группе, при этом данных структурного анализа, подтверждающих это предположение, не приводится. Следует отметить, что полученные авторами соединения по составу отличаются от рассматриваемых в работах [22, 23] низким содержанием молекул воды, что делает невозможным описанный выше способ координации, при котором ионизированная карбоксильная группа участвует только в образовании водородных связей с молекулами воды. Однако даже в этом случае более правомерным кажется предположение о формировании полимерной структуры, в составе которой никотинат-ион координирован как по карбоксилатной группе, так и по N-атому пиридинового кольца [12, 16]. На основании изложенного можно предположить, что соединения 1 и 3, не содержащие в своем составе молекул воды, являются координационными полимерами, где никотинат-ион выступает в качестве N,O-донорного лиганда. Карбоксилатная группа при этом связана монодентатно, о чем свидетельствует разность волновых чисел симметричных и асимметричных колебаний.

Данные по интерпретации ИК спектров пиколинатных комплексов также достаточно противоречивы. Авторы [24], рассматривая ИК спектры пиколинатов *d*-металлов (в том числе меди и цинка), относят к колебаниям карбоксилатной группы полосы, расположенные в области 1350–1400

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 9 2021

Соединение	Связь	<i>d</i> , Å	Угол	ω, град	
[CuNic ₂] (1)	Cu ¹ –N ¹	2.002	N ¹ Cu ¹ N ²	179.8	
	Cu ¹ –N ²	2.002	$N^{1}Cu^{1}O^{5}$	90.1	
	Cu ¹ –O ⁵	1.968	$N^1Cu^1O^6$	89.9	
	Cu ¹ –O ⁶	1.968 $N^2Cu^1O^5$		89.9	
			N ² Cu ¹ O ⁶	90.1	
			O ⁵ Cu ¹ O ⁶	179.7	
$[\operatorname{ZnNic}_2](3)$	Zn ¹ –N ¹	2.031	$N^{1}Zn^{1}N^{2}$	106.0	
	Zn ¹ –N ²	2.037	$N^{1}Zn^{1}O^{6}$	107.6	
	Zn ¹ –O ⁶	1.971	$N^{1}Zn^{1}O^{7}$	109.4	
	Zn^1-O^7	1.967	$N^2Zn^1O^6$	126.6	
			$N^2Zn^1O^7$	95.0	
			$O^{6}Zn^{1}O^{7}$	111.0	

Таблица 1. Геометрические параметры координационных узлов никотинатов меди и цинка по результатам квантово-химического расчета на уровне B3LYP-D3BJ/6-311G(d,p)

(валентные симметричные) и 1600–1650 см⁻¹ (валентные асимметричные), что значительно отличается от изложенного в работе [22]. Если следовать данному отнесению, разность волновых чисел составляет 285 см⁻¹ для соединения **2** и 247 см⁻¹ для соединения **4** (по данным работы [24], 296 и 254 см⁻¹ для пиколинатов меди и цинка соответственно), что лучше согласуется с данными о монодентатной координации по карбоксилатной группе.

С целью точной интерпретации полос в экспериментальных ИК спектрах исследуемых соединений был осуществлен квантово-химический расчет (DFT) колебательных частот с предварительной оптимизацией геометрии на уровне B3LYP-D3BJ/6-311G(d,p). Оптимизированные структуры координационных узлов никотинатов меди и цинка представлены на рис. 1. Как можно заметить, координационный узел никотината меди имеет плоскую квадратную конфигурацию (рис. 1а), в то время как никотината цинка – искаженную тетраэдрическую (рис. 1б). В данных комплексах каждый катион металла связан с двумя никотинат-анионами через пиридиновый атом азота, и с двумя другими – через атом кислорода карбоксилатной группы, что приводит к формированию металлополимерной структуры. В целом результаты квантово-химического расчета согласуются с представленными в литературе данными рентгеноструктурного анализа никотинатов меди [12] и цинка [16], полученных методом обмена лигандов. Рассчитанные геометрические параметры оптимизированных структур представлены в табл. 1.

Пиколинат меди имеет плоскую квадратную конфигурацию, в которой с ионом Cu²⁺ бидентатно связаны два пиколинат-аниона (рис. 2а). Ди-

Рис. 2. Оптимизированные структуры координационных узлов пиколинатов меди (а) и цинка (б), расчет на уровне B3LYP-D3BJ/6-311G(d,p).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 9 2021

Соединение	Связь	d, Å	Угол	ω, град
[CuPic ₂] (2)	Cu ¹ –N ¹	1.965	N ¹ Cu ¹ N ²	180.0
	Cu ¹ –N ²	1.965	N ¹ Cu ¹ O ¹	83.6
	Cu ¹ –O ¹	1.937	N ¹ Cu ¹ O ³	96.4
	Cu ¹ –O ³	1.938	N ² Cu ¹ O ¹	96.4
			N ² Cu ¹ O ³	83.6
			$O^1Cu^1O^3$	180.0
$[ZnPic_2(H_2O)_2](4)$	Zn ¹ –N ¹	2.097	$N^{1}Zn^{1}N^{2}$	179.9
	Zn ¹ –N ²	2.097	N ¹ Zn ¹ O ¹	80.2
	Zn ¹ –O ¹	2.046	$N^{1}Zn^{1}O^{3}$	99.8
	Zn ¹ –O ³	2.048	N ¹ Zn ¹ O ⁵	90.5
	Zn ¹ –O ⁵	2.193	$N^{1}Zn^{1}O^{6}$	89.5
	Zn ¹ –O ⁶	2.195	$N^2Zn^1O^1$	99.7
			$N^2Zn^1O^3$	80.3
			$N^2Zn^1O^5$	89.6
			$N^2Zn^1O^6$	90.4
			$O^1Zn^1O^3$	179.9
			$O^1Zn^1O^5$	90.7
			$O^1Zn^1O^6$	89.8
			$O^{3}Zn^{1}O^{5}$	89.2
			$O^3Zn^1O^6$	90.3
			$O^5Zn^1O^6$	179.5

Таблица 2. Геометрические параметры координационных узлов пиколинатов меди и цинка по результатам квантово-химического расчета на уровне B3LYP-D3BJ/6-311G(d,p)

гидрат пиколината цинка имеет октаэдрическую конфигурацию (рис. 26), при этом в двух вершинах октаэдра расположены молекулы воды. Полученные результаты также хорошо согласуются с данными рентгеноструктурного анализа [25–26], рассчитанные геометрические параметры оптимизированных структур пиколинатов меди и цинка представлены в табл. 2.

В результате проведенных расчетов колебательных частот пиколинатов меди и цинка было установлено, что использование поправочных коэффициентов улучшает сходимость расчетных значений с экспериментом, аналогичный эффект дает использование континуумной модели СРСМ для кристаллического состояния. Так, для пиколината меди (табл. 3) средняя абсолютная ошибка (MAPE) в определении колебательных частот составляет 2.81 (без использования поправочных коэффициентов), 2.44 (с их использованием) и 2.37% (с использованием модели СРСМ). Однако при расчете колебательных частот никотинатов меди и цинка (табл. 4) использование поправочных коэффициентов не приводит к улучшению сходимости расчетных значений с экспериментальными, в то время как применение континуумной модели так же, как и в случае пиколинатов, повышает точность расчета колебательных частот.

Таким образом, использование модели проводящего континуума СРСМ во всех рассматриваемых случаях является предпочтительным, так как средняя абсолютная ошибка в этом варианте минимальна. Также следует отметить, что точность расчета колебательных частот для комплексов меди несколько выше, чем для комплексов цинка. В целом, используемые расчетные схемы приводят к достаточно хорошему согласию между расчетными и экспериментальными частотами.

Расчетная разность волновых чисел валентных симметричных и асимметричных колебаний карбоксилатной группы с использованием модели СРСМ составляет 348 и 303 см⁻¹ для пиколинатов меди и цинка соответственно (эксперименталь-

	$[CuPic_2] (2)$				$[ZnPic_2(H_2O)_2]$ (4)			
	r.	расчет			расчет			
Отнесение	эксперимент	B3LYP-D3BJ	с поправкой ^а	CPCM	эксперимент	B3LYP-D3BJ	с поправкой ^а	CPCM
$v_{as}(H_2O)$	-	-	_	_	3163	3890	3742	3878
v(C-H) _{Ar}	3060	3206	3084	3218	_	_	_	_
v _{as} (COO ⁻)	1635	1770	1703	1704	1620	1760	1693	1671
$v(C-C)_{Ar}, v(C-N)_{Ar}$	1600	1650	1587	1644	1589	1644	1581	1635
$v(C-C)_{Ar}, v(C-N)_{Ar}$	1570	1613	1552	1610	1566	1611	1550	1607
$v(C-C)_{Ar}, v(C-N)_{Ar}$	1470	1504	1447	1501	1474	1501	1444	1497
ν (C–C) _{Ar} , ν (C–N) _{Ar}	1455	1475	1419	1470	1441	1470	1414	1466
v _s (COO ⁻)	1350	1342	1291	1356	1373	1345	1294	1368
ρ(C–H) _{Ar}	1287	1314	1264	1308	1290	1316	1266	1312
$v(C-C)_{Ar}$, $v(C-N)_{Ar}$	1265	1295	1246	1297	1259	1294	1245	1295
$\delta_{\rm s}({\rm C-H})_{\rm Ar}$	1160	1190	1145	1190	1169	1188	1143	1189
$\delta_{\rm s}({\rm C-H})_{\rm Ar}$	1142	1175	1130	1163	1142	1172	1127	1160
$\delta_{\rm s}({\rm C-H})_{\rm Ar}$	1100	1116	1073	1113	1092	1113	1071	1109
$\delta_{\rm s}({\rm C-H})_{\rm Ar}$	1045	1070	1029	1069	1047	1066	1025	1064
$\delta(C-C)_{Ar}$ $\delta(C-N)_{Ar}$	1031	1052	1012	1052	1020	1046	1006	1046
δ(COO ⁻)	845	855	864	855	856	849	857	850
ω (C–H) _{Ar}	773	775	783	767	762	781	789	773
ω (C–H) _{Ar}	693	703	710	702	700	714	721	710
$\delta(C-C)_{Arr} \delta(C-N)_A$	658	681	688	678	638	668	675	665
τ(H ₂ O)	_	_	_	_	432	566	572	489
v(Me–O)	440	475	480	468	411	443	447	438
MAPE, %	_	2.81	2.44	2.37	_	5.40	4.98	3.80

Таблица 3. Экспериментальные и расчетные колебательные частоты (v, см⁻¹) в ИК спектрах пиколинатов меди и цинка

^аПоправочный коэффициент 0.9619 для высокочастотных (>1000 см⁻¹) и 1.0100 для низкочастотных колебаний (<1000 см⁻¹) [27]..

ные значения для соединений 2 и 4 составляют 285 и 247 см⁻¹), что позволяет сделать вывод о монодентатной координации катионов металла в полученных комплексах. В случае никотинатов меди и цинка расчетная разность волновых чисел составляет 259 и 274 см⁻¹ соответственно (экспериментальные значения для соединений 1 и 3 составляют 243 и 218 см⁻¹), что также указывает на монодентатную координацию. Таким образом, данные ИК спектроскопии свидетельствуют в пользу геометрии, полученной с использованием квантово-химических расчетов.

Таким образом, в результате проведенных исследований было показано, что метод электрохи-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 9 2021

мического синтеза может быть успешно применен для получения координационных соединений меди и цинка с пиридинкарбоновыми кислотами, а выбор оптимальных параметров процесса позволяет увеличить выход и значительно снизить временные затраты по сравнению с классическими методами. На основании данных ИК спектров показано, что структура комплексов, образуемых пиридинкарбоксилатными лигандами, зависит от взаимного расположения карбоксильной группы и N-атома пиридинового кольца: так, никотинат-ион проявляет склонность к формированию полимерных структур, в то время как для пиколинат-иона характерно образование хелатных циклов.

АНДРИЙЧЕНКО и др.

	$[CuNic_2](1)$				$[ZnNic_2] (3)$			
Отнесение	эксперимент	расчет				расчет		
		B3LYP-D3BJ	с поправкой ^а	CPCM	эксперимент	B3LYP-D3BJ	с поправкой ^а	CPCM
v(C-H) _{Ar}	3094	3160	3040	3188	3080	3140	3020	3183
v(C–H) _{Ar}	3042	3114	2995	3153	3049	3109	2991	3152
$v_{as}(COO^{-})$	1628	1690	1626	1642	1616	1696	1631	1657
ν (C–C) _{Ar} , ν (C–N) _{Ar}	1595	1627	1565	1625	1599	1642	1579	1635
$v(C-C)_{Ar}$, $v(C-N)_{Ar}$	1570	1610	1549	1603	1562	1610	1549	1599
v(C–C) _{Ar} , v(C–N) _{Ar}	1474	1494	1437	1497	1468	1495	1438	1497
ν (C–C) _{Ar} , ν (C–N) _{Ar}	1425	1453	1398	1453	1439	1465	1409	1460
v _s (COO ⁻)	1385	1383	1330	1383	1398	1390	1337	1383
$\rho(C-H)_{Ar}$	1308	1320	1270	1329	1323	1328	1277	1336
$v(C-C)_{Ar}$, $v(C-N)_{Ar}$	1250	1284	1235	1282	1248	1284	1235	1283
$\delta_{\rm s}({\rm C-H})_{\rm Ar}$	1190	1210	1164	1207	1194	1219	1173	1209
ν (C–C) _{Ar} , ν (C–N) _{Ar}	1157	1168	1123	1170	1159	1170	1125	1171
$\delta_{\rm s}({\rm C-H})_{\rm Ar}$	1113	1117	1074	1117	1119	1118	1075	1119
δ _s (C–H) _{Ar}	1092	1105	1063	1115	1099	1106	1064	1115
$\delta_{\rm s}({\rm C-H})_{\rm Ar}$	1049	1077	1036	1078	1053	1078	1037	1077
$\delta(C-C)_{Ar}, \delta(C-N)_{Ar}$	1036	1046	1006	1043	1032	1046	1006	1043
τ(C–H) _{Ar}	970	969	979	979	959	979	989	979
$\delta(C-C)_{Ar}, \delta(C-N)_{Ar}$	851	831	839	842	866	831	839	841
ω (C–H) _{Ar}	760	760	768	763	762	772	780	768
ω (C–H) _{Ar}	717	721	728	718	719	725	732	723
$\delta(C-C)_{Ar}$, $\delta(C-N)_{Ar}$	692	718	725	715	702	720	727	717
$\delta(C-C)_{Ar}$, $\delta(C-N)_{Ar}$	650	678	685	676	650	675	682	672
ν (Me–O)	586	570	576	573	536	560	566	562
$\delta(C_{Ar}-COO^{-})$	447	450	455	450	440	441	445	449
δ(COO ⁻)	430	444	448	443	409	431	435	431
MAPE, %	_	1.82	2.29	1.74	_	2.18	2.71	2.14

Таблица 4. Экспериментальные и расчетные колебательные частоты (v, см⁻¹) в ИК спектрах никотинатов меди и цинка

^а Поправочный коэффициент 0.9619 для высокочастотных (>1000 см⁻¹) и 1.0100 для низкочастотных колебаний (<1000 см⁻¹) [27].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали коммерческие продукты HNic, HPic, KCl квалификации ЧДА, безводные ДМФА, ацетонитрил, этанол (Merck) и электроды, изготовленные из меди марки M00 и цинка марки Ц00.

Содержание металлов в синтезированных образцах определяли методом комплексонометрического титрования, содержание пиридинкарбоксилат-ионов – по методике, описанной ранее [28], содержание координированных молекул воды – методом термического анализа. Для фотометрического определения пиридинкарбоксилат-ионов использовали прибор Leki SS 2110 UV со спектральным диапазоном 190–1100 нм, спектры записывали в кварцевых спектрофотометрических кюветах с толщиной поглощающего слоя 1 см. ИК спектры синтезированных соединений записывали на ИК Фурье-спектрометре Bruker Vertex 70, оснащенном приставкой НПВО, в области 400–4000 см⁻¹.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 9 2021

1422

Квантово-химические расчеты методом DFT проводили в программном пакете ORCA [29, 30], с использованием широко известного гибридного функционала B3LYP [31, 32] с дисперсионной поправкой D3BJ [33] и валентно-расщепленного базисного набора 6-311G(d,p). Расчет колебательных частот осуществлялся после предварительной оптимизации геометрии соответствующих координационных узлов исследуемых соединений. Сравнение рассчитанных частот с экспериментальными осуществляли как с учетом поправочных коэффициентов (0.9619 для высокочастотных (>1000 см⁻¹) и 1.0100 для низкочастотных колебаний (<1000 см⁻¹) [27]), так и с использованием модели проводящего континуума (СРСМ) для кристаллического состояния [34]. Для генерации Input-файлов применяли программу Gabedit [35]. Для визуализации молекулярной геометрии и колебательных частот использовали программу ChemCraft.

Никотинат меди(II) (1). Раствор 2.00 г (16.2 ммоль) никотиновой кислоты и 0.03 г (0.4 ммоль) хлорида калия в 100 мл смешанного растворителя, содержащего ДМФА и воду в объемном соотношении 85:15, помещали в бездиафрагменную ячейку с медными электродами и подвергали электролизу в течение 1.5 ч при постоянном электрическом токе плотностью 8 мА/см². Осадок отделяли фильтрованием и подвергали сушке. Выход 81%. Найдено, %: Cu²⁺ 21.91; Nic⁻ 77.53; H₂O 0.22. [CuNic₂]. Вычислено, %: Cu²⁺ 20.78; Nic⁻ 79.22; H₂O 0.00.

Пиколинат меди(II) (2) получали аналогично. Выход 78%. Найдено, %: Cu²⁺ 20.33; Nic⁻ 80.12; H₂O 0.11. [CuPic₂]. Вычислено, %: Cu²⁺ 20.78; Nic⁻ 79.22; H₂O 0.00.

Никотинат цинка (3). Раствор 1.00 г (8.1 ммоль) никотиновой кислоты и 0.03 г (0.4 ммоль) хлорида калия в 100 мл смешанного растворителя, содержащего ацетонитрил, этанол и воду в объемном соотношении 75:23:2, помещали в бездиафрагменную ячейку с цинковыми электродами и подвергали электролизу в течение 1.5 ч при постоянном электрическом токе плотностью 5 мА/см². Осадок отделяли фильтрованием и подвергали сушке. Выход 72%. Найдено, %: Zn²⁺ 20.97; Nic⁻ 78.32; H₂O 0.17. [ZnNic₂]. Вычислено, %: Zn²⁺ 21.12; Nic⁻ 78.88; H₂O 0.00.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 91 № 9 2021

Пиколинат цинка (4) получали аналогично при объемном соотношении ацетонитрил:этанол:вода 70:25:5. Выход 90%. Найдено, %: Zn²⁺ 18.42; Pic⁻ 69.89; H₂O 9.91. [ZnPic₂(H₂O)₂]. Вычислено, %: Zn²⁺ 18.84; Pic⁻ 70.72; H₂O 10.44.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Андрийченко Елена Олеговна, ORCID: https:// orcid.org/0000-0002-2324-8987

Зеленов Валерий Игоревич, ORCID: https:// orcid.org/0000-0003-3031-3844

Беспалов Александр Валерьевич, ORCID: https://orcid.org/0000-0002-9829-9674

Бовыка Валентина Евгеньевна, ORCID: https:// orcid.org/0000-0001-9419-0818

Буков Николай Николаевич, ORCID: https:// orcid.org/0000-0001-8559-110X

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Эколого-аналитического центра системных исследований, математического моделирования и экологической безопасности Юга России Кубанского государственного университета и Научно-образовательного центра «Диагностика структуры и свойств наноматериалов» Кубанского государственного университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0044460X21090134 для авторизованных пользователей.

СПИСОК ЛИТЕРАТУРЫ

- Abdel-Mohsen M.A., Malak C.A.A., El-Shafey E.S. // Adv. Med. Sci. 2019. Vol. 64. P. 202. doi 10.1016/j. advms.2018.08.014
- Tuorkey M.J.F.-A., Abdul-Aziz K.K. // Biomed. Pharmacother. 2009. Vol. 63. P. 194. doi 10.1016/j. biopha.2008.01.015
- 3. Broadhurst C.L., Schmidt W.F., Reeves J.B., Polansky M.M., Gautschi K., Anderson R.A. // J. Inorg.

Biochem. 1997. Vol. 66. N 2. P. 119. doi 10.1016/ S0162-0134(96)00192-4

- Nair L.P., Bijini B.R., Divya R., Nair P.B., Eapen S.M., Dileep Kumar B.S., Nishanth Kumar S., Nair C.M.K., Deepa M., RajendraBabu K. // J. Mol. Struct. 2017. Vol. 1147. P. 397. doi 10.1016/j.molstruc.2017.06.047
- Sahin K., Onderci M., Sahin N. Gulcu F., Yildiz N., Avci M., Kucuk O. // Anim. Feed Sci. Technol. 2006. Vol. 129. P. 39. doi 10.1016/j.anifeedsci.2005.11.009
- Ciubotariu D., Nechifor M., Dimitriu G. // J. Trace Elem. Med. Biol. 2018. Vol. 50. P. 676. doi 10.1016/j. jtemb.2018.06.025
- Do Nascimento A.L.C.S., Caires F.J., Gomes D.J.C., Gigante A.C., Ionashiro M. // Thermochim. Acta. 2014. Vol. 575. P. 212. doi 10.1016/j.tca.2013.10.014
- Liu B., Liu Y., Chai J., Hu X., Wu D., Yang B. // J. Inorg. Biochem. 2016. Vol. 164. P. 110. doi 10.1016/j. jinorgbio.2016.09.006
- Xue D., Peng Q.-X., Li D., Zhan S.-Z. // Polyhedron. 2017. Vol. 126. P. 239. doi 10.1016/j.poly.2017.01.044
- Goher M.A.S., Abu-Youssef M.A.M., Mautner F.A. // Polyhedron. 1996. Vol. 15. N 3. P. 453. doi 10.1016/0277-5387(95)00245-N
- Tella A.C., Oladipo A.C., Adeyemi O.G., Oluwafemi O.S., Oguntoye S.O., Alimi L.O., Ajayi J.T., Degni S.K. // Solid State Sci. 2017. Vol. 68. N 6. P. 1. doi 10.1016/j.solidstatesciences.2017.03.017
- Yeh Ch.-W., Suen M.-Ch. Hu H.-L., Chen J.-D., Wang J.-Ch. // Polyhedron. 2004. Vol. 23. N 11. P. 1947. doi 10.1016/j.poly.2004.04.026
- Segl'a P., Jamnický M., Koman M., Šima J., Glowiak T. // Polyhedron. 1998. Vol. 17. N 25–26. P. 4525. doi 10.1016/S0277-5387(98)00259-9
- Żurowska B., Ochocki J., Mroziński J., Ciunik Z., Reedijk J. // Inorg. Chim. Acta. 2004. Vol. 357. P. 755. doi 10.1016/j.ica.2003.06.017
- Jia H.-B., Yu J.-H., Xu J.-Q., Ye L., Ding H., Jing W.-J., Wang T.-G., Xu J.-N., Li Z.-Ch. // J. Mol. Struct. 2002. Vol. 641. P. 23. doi 10.1016/S0022-2860(02)00168-0
- Lu J.Y., Kohler E.E. // Inorg. Chem. Commun. 2002.
 Vol. 5. P. 600. doi 10.1016/S1387-7003(02)00490-2
- Rodríguez A., García-Vázquez J.A. // Coord. Chem. Rev. 2015. Vol. 303. P. 42. doi 10.1016/j.ccr.2015.05.006
- Скопенко В.В., Гарновский А.Д., Кокозей В.Н., Кужаров А.С., Гохон-Зорилла Г., Бурлов А.С., Васильева О.Ю., Павленко В.А., Харисов Б.И., Херец Б.М., Бланко М.Л., Гарновский Д.А. Прямой синтез координационных соединений. К.: Вентури, 1997. 176 с.
- 19. Гарновский Д.А., Анцышкина А.С., Макарова Н.И., Власенко В.Г., Садиков Г.Г., Сергиенко В.С.,

Зубавичус Я.В., Левченков С.И., Ураев А.И., Бурлов А.С. // ЖНХ. 2015. Т. 60. № 12. С. 1670. doi 10.7868/S0044457X15120119; Garnovskii D.A., Levchenkov S.I., Antsyshkina A.S., Sadikov G.G., Sergienko V.S., Makarova N.I., Uraev A.I., Burlov A.S., Vlasenko V.G., Zubavichus Ya.V. /// Russ. J. Inorg. Chem. 2015. Vol. 60. N 12. P. 1528. doi 10.1134/ S0036023615120116

- Андрийченко Е.О., Зеленов В.И., Бовыка В.Е., Буков Н.Н. // ЖОХ. 2021. Т. 91. № 4. С. 638. doi 10.31857/S0044460X2104020X; Andriychenko E.O., Zelenov V.I., Bovyka V.E., Bukov N.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 4. Р. 707. doi 10.1134/ S1070363221040204
- 21. *Березовский В.М.* Химия витаминов. М.: "Пищевая промышленность", 1973. 634 с.
- Vargová Z., Zeleòák V., Císaøová I., Györyová K. // Termochim. Acta. 2004. Vol. 423. P. 149. doi 10.1016/j. tca.2004.03.016
- Xin Y., Zhang N., Han X.X., Li B., Sun Y., Sun L.X., Bai F.Y., Xing Y.H. // J. Mol. Struct. 2020. Vol. 1205. P. 1. doi 10.1016/j.molstruc.2019.127656
- Kalinowska M., Borawska M., Świsłocka R., Piekut J., Lewandowski W. // J. Mol. Struct. 2007. Vol. 834–836. P. 419. doi 10.1016/j.molstruc.2006.11.045
- Wang Q., Yu Z., Wang Q., Li W., Gao F., Li Sh. // Inorg. Chim. Acta. 2012. Vol. 383. P. 230. doi 10.1016/j. ica.2011.11.013
- Enthaler S., Wu X.-F., Weidauer M., Irran E., Döhlert P. // Inorg. Chem. Commun. 2014. Vol. 46. P. 320. doi 10.1016/j.inoche.2014.06.020
- Andersson M.P., Uvdal P. // J. Phys. Chem. (A). 2005.
 Vol. 109. P. 2937–2941. doi 10.1021/jp045733a
- 28. Зеленов В.И., Андрийченко Е.О., Швырева П.С. Деп. ВИНИТИ. Краснодар, 2013. № 199-В2013
- Neese F. // WIREs Comput. Mol. Sci. 2011. Vol. 2. P. 73. doi 10.1002/wcms.81
- Neese F. // WIREs Comput. Mol. Sci. 2017. Vol. 8:e1327. P. 1. doi 10.1002/wcms.1327
- Becke A. D. // Phys. Rev. (A). 1988. Vol. 38. P. 3098. doi 10.1103/PhysRevA.38.3098
- Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988.
 Vol. 37. P. 785. doi 10.1103/PhysRevB.37.785
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. 1456. doi 10.1002/jcc.21759
- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. Vol. 105. P. 2999. doi 10.1021/cr9904009
- Allouche A.-R. // J. Comput. Chem. 2011. Vol. 32. P. 174. doi 10.1002/jcc.21600

Electrochemical Synthesis and Characterization of Copper(II) and Zinc(II) Coordination Compounds with Nicotinic and Picolinic Acid

E. O. Andriychenko*, V. I. Zelenov, A. V. Bespalov, V. E. Bovyka, and N. N. Bukov

Kuban State University, Krasnodar, 350040 Russia *e-mail: leka91@mail.ru

Received July 14, 2021; revised July 14, 2021; accepted July 29, 2021

New synthetic approach for copper(II) and zinc(II) coordination compounds with pyridinecarboxylic acids (nicotinic and picolinic) based on the method of electrochemical synthesis was developed. The substances were characterized by methods of quantitative analysis and IR spectroscopy. The vibrational frequencies of the compounds were calculated by using DFT and the experimental IR spectra were interpreted on the basis of the results. It was found that in all cases pyridinecarboxylate ions are coordinated both via nitrogen atom and carboxyl group; however, in the case of nicotinic acid, it leads to the formation of coordination polymers, while picolinic acid forms mononuclear complexes.

Keywords: electrochemical synthesis, copper(II) complexes, zinc(II) complexes, nicotinic acid, picolinic acid