УДК 547.814.5

СИНТЕЗ НОВЫХ СПИРОИНДОЛИНОПИРРОЛИДИНОВ

© 2022 г. С. В. Борисова*, В. В. Сорокин

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, ул. Астраханская 83, Саратов, 410012 Россия *e-mail: chuvaikinasv@gmail.com

Поступило в Редакцию 29 сентября 2021 г. После доработки 9 октября 2021 г. Принято к печати 10 октября 2021 г.

Реакцией 1,3-диполярного циклоприсоединения новых диполярофилов — 3-арил-1-пиррол-2-илпроп-2-ен-1-онов — и азометинилидов на основе изатина и аминокислот (саркозин, пролина) либо бензиламина получены новые замещенные спиропирролидины.

Ключевые слова: спирооксоиндолы, 1,3-диполярное циклоприсоединение, азометинилиды, 3-арил-1-пиррол-2-ил-2-ен-1-оны

DOI: 10.31857/S0044460X22010048

Спирооксоиндольный структурный фрагмент входит в состав природных алкалоидов: спироиндолинпирролидинов и их конденсированнных аналогов, ринхофиллина, изоринхофиллина, спиротрипростатинов [1]. Применению подобных этих соединений в различных областях медицины посвящено несколько обзоров [2–4].

Несмотря на широкий круг синтезированных соединений, получение спирооксиндолов с новыми фармакофорными фрагментами остается актуальной задачей современного органического синтеза. Многообещающим в этом плане является пиррольный структурный фрагмент, который является частью порфириновых колец, входящих в состав хлорофилла, гема, витамина B_{12} и желчных пигментов. Производные пиррола обладают фунгицидными, антимикробными, противовоспалительными, холестеринснижающими, противоопухолевыми свойствами, ингибируют обратную транскриптазу и протеинкиназы клеточной ДНК-полимеразы [5–9].

Наряду с другими видами многокомпонентных реакций 1,3-диполярное циклоприсоединение азометинилидов, полученных *in situ* конденсацией изатина и различных реагентов, является достаточно

востребованным способом синтеза спирооксиндолинопирролидинов [10, 11]. Благодаря особенностям согласованного механизма, приписываемого реакциям такого типа, этот синтетический метод обладает рядом выгодных отличий: простота проведения, хорошая регио- и стереоселективность при отсутствии труднодоступных катализаторов, а также возможность синтеза разнообразных структур путем выбора диполярофила.

Введение пиррольного фрагмента в продукт реакции 1,3-диполярного циклоприсоединения азометинилидов возможно при использовании в качестве диполярофилов 3-арил-1-(1*H*-пиррол-2-ил)проп-2-ен-1-онов. Сведения об использовании этих соединений в качестве диполярофилов в реакции 1,3-диполярного циклоприсоединения отсутствуют. Целью данной работы является синтез новых производных пирролидина с помощью реакции 1,3-диполярного циклоприсоединения 3-арил-1-(1*H*-пиррол-2-ил)проп-2-ен-1-онов и азометинилидов, полученных конденсаций изатина с различными реагентами *in situ*.

Для синтеза исходных кетонов была использована конденсация Кляйзена—Шмидта 2-ацетилпиррола с замещенными бензальдегидами. Продукты

Схема 1.

 $R = 4-NO_2(1a), 2-Cl(16), 4-Cl(1B).$

Схема 2.

$$\begin{array}{c} R^1 \\ R^2 \\ R^3 \\ R^3 \\ R^2 \\ R^3 \\ R^3 \\ R^3 \\ R^3 \\ R^3 \\ R^4 \\ R^3 \\ R^4 \\ R^3 \\ R^4 \\ R^5 \\$$

1а-в, 4а, б

 $R^{1} = 2 - Cl \ (\textbf{2a}), \ 4 - NO_{2} \ (\textbf{26}), \ 4 - Cl \ (\textbf{2b}); \ R^{1} = 2 - Cl, \ R^{2} + R^{3} = (CH_{2})_{2} \ (\textbf{3a}); \ R^{1} = 4 - NO_{2} \ (\textbf{36}), \ R^{2} + R^{3} = (CH_{2})_{2}; \ R^{1} = 4 - ClPh, \ R^{2} + R^{3} = (CH_{2})_{2} \ (\textbf{3b}); \ R^{1} = 4 - NO_{2}, \ R^{2} = CH_{3}, \ R^{3} = H \ (\textbf{4a}); \ R^{1} = 4 - Cl, \ R^{2} = CH_{3}, \ R^{3} = H \ (\textbf{46}).$

реакции — (E)-3-арил-1-(1-пиррол-2-ил)проп-2-ен-1-оны 1а— \mathbf{B} — были получены с выходами до 95% (схема 1).

Диполярофилы были введены в реакцию циклоприсоединения с изатином, где в качестве третьего компонента выступали пролин, саркозин и бензиламин. Реакции проводили при темепратуре не выше 70°C (схема 2).

Как известно, реакции, происходящие по согласованному механизму, малочувствительны к природе растворителя. С другой стороны, азометинилиды как нуклеофильные реагенты чувствительны к присутствию воды в системе. Среди метановательных присутствию воды в системе.

танола, ацетонитрила, диоксана и изопропилового спирта лишь последний растворитель обеспечивал наименьшее время реакции и наибольший выход продуктов (табл. 1).

Основным фактором, влияющим на время протекания реакции в выбранных условиях, является природа третьего реагента. Так, при использовании пролина реакция проходила в течение 40–60 мин с образованием 1'-арил-2'-(1*H*-пирролил)-1',2',5',6',7',7а'-гексагидроспиро[индолин-3,3'-пирролизин]-2-онов **3а**—в с выходом 70–80%. В случае бензиламина реакция протекала 6–12 ч с образованием 4'-арил-5'-

Таблица 1. Оптимизация условий синтеза соединения **2a**

Растворитель	Время реакции	Выход, %
Метанол	12	59
Ацетонитрил	14	43
Диоксан	10	47
Пропан-2-ол	8	68

фенил-3'-(1H-пирролил)спиро[индолин-3,2'-пирролидин]-2-онов **2**а—в с выходом 50—60%. Реакция с саркозином протекала 3—4 ч и приводила к образованию 4'-арил-1'-метил-3'-(1H-пирролил)спиро[индолин-3,2'-пирролидин]-2-онов **4**а, **6** с выходом 50—60%. Состав и строение полученных

соединений подтверждены данными элементного анализа и спектроскопии ЯМР.

Нами намеренно были выбраны реагенты, взаимодействие которых должно приводить к генерации азометинилидов, способных вступать в реакции согласованного циклоприсоединения с соединениями, содержащими двойную связь, в соответствии с общими представлениями о возможности протекания согласованных процессов путем термической активации [12]. Поэтому можно предположить, что на первой стадии должны образовываться эти диполи, а затем происходит процесс согласованного циклоприсоединения (схема 3).

Как известно, взаимодействие изатина с ами-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 1 2022

Схема 4.

нокислотой происходит через стадии образования иминиевых солей, способных легко терять протон и переходить в бетаины, находящиеся в равновесии с оксазолидин-5-онами, которые, в свою очередь, декарбоксилируются до нестабилизированных 1,3-диполей [12, 13]. Конденсация изатина с бензиламином может привести к генерации азометинилидов в результате 1,5-прототропного сдвига иминиевого основания, образованного взаимодействием изатина и бензиламина в качестве N-нуклеофила [14, 15]. Возможно также прямое депротонирование имина, однако этот путь менее вероятен (схема 3).

Различная ориентация диполя и диполярофила через переходные состояния Π C-A и Π C-Б может приводить к получению двух типов региоизомеров, различающихся заместителями при атомах углерода C^3 и C^4 . Однако данные двумерной спектроскопии HMBC однозначно свидетельствуют о реализации ишь одного направления для всех трех диполей — через переходное состояние Π C-A (схема 4).

На схеме 5 показаны возможности пространственной реализации положения диполярофила с дипольными илидами S- и W-формы, что приводит к получению продуктов разного стереохимического строения (схема 5).

В спектрах NOESY соединений $2\mathbf{a}$ - \mathbf{B} , $3\mathbf{a}$ - \mathbf{B} мы не наблюдали усиления NOE-сигналов протонов при атомах C^3 и C^4 , что свидетельствует о сохранении *транс*-конфигурации протонов в этих положениях. Пространственная близость протона при C^4 и оксиндольного фрагмента подтверждается

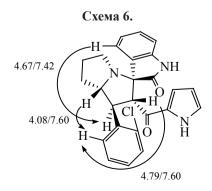
наличием кросс-пика с протонами оксиндольного фрагмента (схема 6).

Усиление интенсивности сигналов протонов пролинового и оксиндольного фрагментов в спектрах соединений $2\mathbf{a}-\mathbf{b}$, а также наличие кросс-пика между протонами при атомах углерода \mathbf{C}^2 и \mathbf{C}^5 свидетельствует об образовании S-формы реагирующего пролинового и бензиламиного илидов. Однозначный вывод о конфигурации саркозинового илида сделать нельзя, так как ключевой атом \mathbf{C}^5 является простереогенным.

Полученные закономерности могут быть объяснены на основе фундаментальных представлений о согласованных процессах, интерпретирующих взаимодействие ВЗМО диполя и НСМО диполярофила в процессе согласованного циклоприсоединения для реакции азометинилидов и электронодефицитных диполярофилов как основной тип происходящих процессов. Чем меньше энергетический разрыв между этими молекулярными орбиталями, тем эффективнее происходит реакция с диполем, а значит этот процесс эффективен с азометинилидом, имеющим большое значение энергии ВЗМО, что на качественным уровне в ряду диполей похожего строения означает наличие большего количества электронодонорных группировок. Наличие электронодонорных метиленовых звеньев структуры пролинового цикла обеспечивает ему самую высокую реакционную способность. Это выражается в сокращении времени реакции и повышении выхода продукта. Саркозиновый илид имеет меньше электронодонорных заместителей, а эффект фенильной группы бензиламинового или-

Схема 5.

$$R^{1}$$
 R^{2} R^{1} R^{2} R^{2} R^{1} R^{2} R^{1} R^{2} R^{2} R^{1} R^{2} $R^{$


да можно отнести даже к отрицательному мезомерному, поэтому время реакции диполярофила с этим илидом наибольшее.

Региоселективность реакции можно объяснить предпочтительным взаимодействием наиболее нуклеофилього атома углерода диполя C^3 и электрофильного атома диполярофила, а получение продуктов эндо-циклоприсоединения — результатом вклада вторичных орбитальных взаимодействий.

Таким образом, 3-арил-1-(1*H*-пиррол-2-ил)-проп-2-ен-1-оны реагируют с исследуемыми диполями, находящимися предположительно в S-форме, через согласованное эндо-циклоприсоединение регио- и диастереоселективно. Природа диполя влияет на эффективность взаимодействия, но не влияет на тип продукта.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Элементный анализ проводили на CHNS-анализаторе Elementar Vario Micro cube (Elementar Analysensysteme GmbH, Германия). Спектры ЯМР 1 Н (400 МГц) и 13 С (100 МГц) регистрировали на спектрометре Varian 400 (Varian, США), внутренний стандарт — ТМС. Контроль за ходом ре-

акции осуществляли методом TCX на пластинках Alugram® Sil G UV254 (Macherey-Nagel GmbH & Co. KG, Германия), элюент — гексан—этилацетат—хлороформ (3:2:1) для синтеза исходных халконов, гексан—этилацетат—хлороформ (2:2:1) — для синтеза продуктов рекции.

Общая методика синтеза 3-арил-1-(пиррол-2-ил)проп-2-ен-1-онов 1а—в. К суспензии 2-ацетилпиррола (4.5 ммоль) и замещенного бензальдегида (4.5 моль) в 5 мл этанола при постоянном перемешивании добавляли по каплям 1 мл 5%-ного раствора гидроксида натрия. Полученную смесь перемешивали при 65°С. За ходом реакции следили с помощью ТСХ. После окончания реакции к полученному раствору добавляли 10 мл воды и нейтрализовали 10%-ным раствором соляной кислоты. Выходы и т. пл. полученных соединений соответствуют ранее опубликованным [16, 17].

3-(2-Хлорфенил)-1-пиррол-2-илпроп-2-ен-1- он (1а). Выход 0.79г (70%), желтые кристаллы, $R_{\rm f}$ 0.71, т. пл. 72–74°C (этанол–вода, 2:1).

3-(4-Нитрофенил)-1-пиррол-2-илпроп-2-ен-1-он (1б). Выход 0.792 г (72%), бежевые кристаллы, $R_{\rm f}$ 0.73, т. пл. 215–217°C (этанол–вода, 2:1).

3-(4-Хлорфенил)-1-пиррол-2-илпроп-2-ен-1-он (1в). Выход 0.82 г (73%), светло-желтые кристаллы, $R_{\rm f}$ 0.69, т. пл. 120–123°C (этанол—вода, 2:1).

Общая методика синтеза 4'-арил-5'-фенил-3'-(1*H*-пиррол-2-ил)спиро[индолин-3,2'-пирролидин]-2-онов 2а-в. Суспензию 3-арил-1-(пиррол-2-ил)проп-2-ен-1-она 1 (4.5 ммоль), изатина (4.5 ммоль) и бензиламина (4.5 ммоль) в 10 мл абсолютного изопропилового спирта нагревали при постоянном перемешивании при 50°С. За ходом реакции следили с помощью ТСХ. После окончания реакции осадок отфильтровывали и перекристаллизовывали из смеси этанол-вода (1:1).

4'-(2-Хлорфенил)-5'-фенил-3'-(1*H*-пиррол-2-ил)спиро[индолин-3,2'-пирролидин]-2-он (2а). Выход 1.44 г (69%), светло-желтый порошок, т. пл. 188–189°С. Спектр ЯМР ¹Н (CD₃COOD), δ , м. д.: 2.69 с (1H, NH_{пиррол}), 4.32 т (1H, С⁴'H, $^3J_{\rm HH}$ 10.6 Γ u),4.47 д (1H, С²'H, $^3J_{\rm HH}$ 11.0 Γ u), 5.08 д (1H, С⁵'H, $^3J_{\rm HH}$ 10.3 Γ u), 6.06 м (1H, С₄H₃NH), 6.64 д (1H, С₆H_{4индол}, $^3J_{\rm HH}$ 7.6 Γ u), 6.74–6.69 м (1H, С₄H₃NH), 6.80 уш. с (1H, С₄H₃NH), 7.13–7.06 м (1H,

 $C_6H_{4индол}$), 7.30–7.22 м (5H, C_6H_5), 7.39–7.30 м (2H, C_6H_4Cl), 7.43 д (1H, $C_6H_{4индол}$, J_{HH} 7.3 Γ ц), 7.53–7.47 м (2H, $C_6H_{4индол}$), 7.61 с (1H, $NH_{индол}$), 8.11–8.04 м (2H, C_6H_4Cl), 8.93 с (1H, $NH_{пиррол}$). Спектр ЯМР 13 С (СDС 13), $\delta_{\rm C}$, м. д.: 55.03 (24), 62.04 (23), 68.14 (25), 69.14 (22), 109.51 (22), 109.51 (24), 110.83 (24), 7.37 (24), 110.83 (24), 110.83 (24), 110.83 (24), 123.78 (24), 125.54 (24), 128.13 (24), 126.35 (24), 128.92 (24), 129.31 (24), 128.13 (24), 139.64 (24), 146.67 (24), 129.31 (24), 181.82 (22), 184.68 (24), 146.67 (24), 146.67 (24), 181.82 (24), 184.68 (24). Найдено, %: С 71.75; H 4.56; N 8.65 С 24

4'-(4-Нитрофенил)-5'-фенил-3'-(1*H*-пиррол-2-ил)спиро[индолин-3,2'-пирролидин]-2-он **(26).** Выход 1.43г (68%), бежевый порошок, т. пл. 228–230°С. Спектр ЯМР 1 Н (ацетон- d_{6}), δ , м. д.: 3.34 д (1H, NH $_{пиррол}$, J_{HH} 24.0 Гц), 4.54 д (1H, С 4 H, $J_{\rm HH}$ 10.3 Гц), 4.90 т (1H, С³H $J_{\rm HH}$ 10.3 Гц), 5.05 д (1H, C^2 H J_{HH} 10.2 Γ ц), 6.00 д. т (1H, C_4 H₃NH $^3J_{HH}$ 3.8, ${}^{4}J_{HH}$ 2.0 Гц), 6.65 д. д (1H, C₄H₃NH, ${}^{3}J_{HH}$ 3.9, $^4J_{\rm HH}$ 2.1 Гц), 6.91 д (1H, С $_6$ Н $_4$ индол, $J_{\rm HH}$ 7.5 Гц), 6.68 д (1H, $C_6H_{4\mu\mu\eta\eta\eta}$, J_{HH} 7.8 Гц), 6.88 уш. с (1H, C_4H_3NH), 7.05 т (1H, $C_6H_{4\mu\mu\eta\eta\eta}$, ${}^3J_{HH}$ 7.6 Γ ц), 7.12– 7.17 м (1H, $C_6H_4NO_2$), 7.19 д (1H, $C_6H_4NO_2$, J_{HH} 1.5 Γ ц), 7.23 к (3H, C_6H_5 $^3J_{HH}$ 5.6, $^4J_{HH}$ 3.9 Γ ц), 7.34– 7.39 м (3H, C_6H_5 , $^3J_{HH}$ 5.6, $^4J_{HH}$ 3.9 Γ ц), 7.41 д (1H, $C_6H_{4\mu\mu\eta\eta\eta}$, $^3J_{HH}$ 7.5 Гц), 7.94 д (1H, $C_6H_4NO_2$, $^2J_{HH}$ 7.8 Гц), 9.47 с (1H, NH_{индол}), 10.53 с (1H, NH_{пиррол}). Спектр ЯМР ¹³С (ацетон- d_6), δ_C , м. д: 51.18 (C^4), 61.96 (C³'), 68.71 (C⁵'), 68.98 (C²'), 109.06 (C₄H₃NH), 109.66 ($C_6H_{4\mu_{\Pi}00}$), 115.61 (C_4H_3NH), 121.68 $(C_6H_{4индол})$, 125.46 (C_4H_3NH) , 126.73 $(C_6H_{4инлол})$, 127.08, 127.27, 127.34 (C₆H₅), 127.93 (C₆H₅), 128.60 $(C_6H_{4индол})$, 129.35 $(C_6H_4NO_2)$, 129.40 $(C_6H_4NO_2)$, $134.77 \text{ } (C_6H_4NO_2), 137.64 \text{ } (C_6H_4NO_2), 141.70$ $(C_6H_{4инлол})$, 181.93 (C^2), 184.89 (C=O). Найдено, %: С 69.98; H 4.83; N 11.84 С₂₈H₂₂N₄O₄. Вычислено, %: C 70.28; H 4.63; N 11.71.

4'-(4-Хлорфенил)-5'-фенил-3'-(1*H*-пиррол-**2-ил)спиро[индолин-3,2'-пирролидин]-2-он (2в).** Выход 1.37 г (65%), белый порошок, т. пл. 205–206°С. Спектр ЯМР 1 H (CDCl₃), δ , м. д.: 4.50 д (1H, 4 H', 3 J_{HH} 10.5 Γ U), 4.89 т (1H, 3 H_H 3 J_{HH} 10.5 Γ U), 4.99 д (1H, 2 H, 3 J_{HH} 10.4 Γ U), 6.04 д (1H, 4 H₃NH, 3 J_{HH} 4.1 Γ U), 6.66 д (1H, 6 H_{4индол}, 3 J_{HH} 7.7 Γ U), 6.71 уш. с (1H, 6 H₃NH), 6.97 т (1H,

 $C_6H_{4индол}$, $^3J_{HH}$ 7.6 Гц), 7.07 т (1H, $C_6H_{4индол}$, $^3J_{HH}$ 8.0 Гц), 7.24 м (4H, C_6H_5), 7.36 д (2H, C_6H_4 Cl, C_6H_5 , $^3J_{HH}$ 6.9 Гц), 7.45 д (1H, $C_6H_{4индол}$, $^3J_{HH}$ 7.5 Гц), 7.72 д (1H, C_6H_4 Cl, $^3J_{HH}$ 8.4 Гц), 8.16 с (1H, $NH_{индол}$), 9.37 с (1H, $NH_{пиррол}$). Спектр ЯМР 13 С (СDCl₃), $\delta_{\rm C}$, м. д.: 50.36 (${\rm C}^4$ '), 61.88 (${\rm C}^3$ '), 68.82 (${\rm C}^5$ '), 72.52 (${\rm C}^2$ '), 110.65 (${\rm C}_4H_3NH$), 116.47 (${\rm C}_4H_3NH$), 123.01 (${\rm C}_6H_{4индол}$), 125.67 (${\rm C}_4H_3NH$), 126.36 (${\rm C}_6H_{4индол}$), 127.02 (${\rm C}_6H_4$ Cl), 127.51 (${\rm C}_6H_{4индол}$), 128.37 (${\rm C}_6H_5$), 129.23 (${\rm C}_6H_{4индол}$), 129.88 (${\rm C}_6H_4$ Cl), 132.15 (${\rm C}_4H_3NH$), 139.98 (${\rm C}_6H_{4индол}$), 182.24 (${\rm C}^2$), 185.06 (C=O). Найдено, %: С 71.69; H 4.43; N 8.87 С $_{28}H_{22}$ ClN $_3$ O $_2$. Вычислено, %: С 71.87; H 4.74; N 8.98.

Общая методика синтеза 1'-арил-2'-(1*Н*-пиррол-2-ил)-1',2',5',6',7',7а'-гексагидроспиро[индолин-3,3'-пирролизин]-2-онов За-в. Суспензию 3-арил-1-(пиррол-2-ил)проп-2-ен-1-она1(4.5 ммоль), изатина(4.5 ммоль) и пролина (4.5 ммоль) в 10 мл абсолютного изопропилового спирта нагревали при постоянном перемешивании при 65°C. За ходом реакции следили с помощью ТСХ. После окончания реакции осадок отфильтровывали и перекристаллизовывали из этанола.

1'-(2-Xлорфенил)-2'-(1*H*-пиррол-**2-ил)-1',2',5',6',7',7а'-гексагидроспиро[индолин-3,3'-пирролизин]-2-он (3а).** Выход 1.68 г (86%), светло-бежевый порошок, т. пл. 222–223°С. Спектр ЯМР 1 Н (ацетон- d_{6}), δ , м. д.: 1.91 м (6H, $C^{6'}H_2$, $C^{7'}H_2$), 2.66 к (2H, $C^{5'}H_2$, ${}^3J_{HH}$ 6.3 Гц), 4.01– 4.15 м (1H, C^{7a}H), 4.62–4.71 м (1H, C¹H), 4.79 д. д $(1H, C^{2}H, ^{3}J_{HH} 11.9, ^{4}J_{HH} 2.4 \Gamma ц), 6.05 квинтет (1H,$ $C_4H_3NH_3J_{HH}$ 3.3 Гц), 6.69 д. д (1H, $C_4H_3NH_3J_{HH}$ 7.7, ${}^{4}J_{HH}$ 2.4 Гц), 6.78 д (1H, C₄H₃NH, ${}^{2}J_{HH}$ 2.9 Гц), 6.87–6.94 м (1H, $C_6H_{4индол}$), 7.02 т (1H, $C_6H_{4индол}$), $^3J_{
m HH}$ 7.8 Гц), 7.11 д. д (1H, С $_6$ H $_4$ Cl, $^3J_{
m HH}$ 7.4, $^4J_{
m HH}$ 4.9 Гц), 7.13–7.17 м (1H, $C_6H_{4индол}$), 7.18–7.25 м $(1H, C_6H_4Cl)$, 7.36 д. д $(1H, C_6H_4Cl, {}^3J_{HH} 8.0, {}^4J_{HH})$ 2.2 Гц), 7.42 д (1H, $C_6H_{4индол}$, $^3J_{HH}$ 7.6 Гц), 7.60 д $(1H, C_6H_4Cl, {}^3J_{HH} 7.9 \Gamma \mu), 7.82 д (1H, NH_{индол.} {}^2J_{HH})$ 8.0 Γ ц), 9.01 с (1H, $NH_{\text{пиррол}}$). Спектр ЯМР 13 С (ацетон- d_6), δ_C , м. д.: 27.40 (C^7), 30.35 (C^6), 47.62 $(C^{1'})$, 48.05 $(C^{5'})$, 63.14 $(C^{2'})$, 72.76 $(C^{7a'})$, 74.45 $(C^{3'})$, 109.99 $(C_6H_{4индол})$, 110.70 (C_4H_3NH) , 117.12 (C_4H_3NH) , 122.26 (C_4H_3NH) , 125.20 $(C_6H_{4\mu\mu\eta\eta\eta})$, $125.28 (C_4H_3NH), 127.24 (C_6H_4Cl), 127.75 (C_6H_4Cl),$ 127.80 ($C_6H_{4индол}$), 128.10 (C_6H_4Cl), 129.29 $(C_6H_{4\mu\mu\eta\eta\eta})$, 129.84, 131.95 (C_6H_4Cl) , 134.76 (C_6H_4Cl) , 137.10 (C_6H_4Cl) , 140.43 $(C_6H_{4индол})$, 180.66 (C^2) , 184.31 (C=O), Найдено, %: С 69.21; Н 5.24; N 10.03 $C_{25}H_{22}ClN_3O_2$. Вычислено, %: С 69.52; Н 5.13; N 9.73.

1'-(4-**Нитрофени**л)-2'-(1*H*-пиррол-2ил)-1',2',5',6',7',7а'-гексагидроспиро[индо**лин-3,3'-пирролизин]-2-он (36).** Выход 1.61 г (81%), кремовый порошок, т. пл. 239-240°С. Спектр ЯМР 1 Н (CD₃COOD- d_{4}), δ , м. д.: 2.03 м $(4H, C^{6'}H_2, C^{7}H_2), 2.26 \text{ c} (2H, C^{5'}H_2), 4.42 \text{ T} (1H, C^{1'})$ H, $^2J_{\rm HH}$ 10.7 Гц), 4.85 д (1H, ${\rm C^2H, ^2} ^2J_{\rm HH}$ 11.4 Гц), 4.93 уш. с (1H, C^{7a} H), 6.13 к (1H, $C_4H_3NH_3J_{HH}$ 2.8 Ги), 6.91 д (1H, $C_6H_{4индол}$, $^3J_{HH}$ 7.8 Ги), 6.94– 7.04 м (2H, C_4H_3NH), 7.09 т (1H, $C_6H_{4индол}$, $^3J_{HH}$ 7.6 Гц), 7.30 т (1H, $C_6H_{4индол}$, $^3J_{HH}$ 7.7 Гц), 7.58 д $(1H, C_6H_{4инлол}, {}^3J_{HH}, 7.7 \Gamma II), 7.82 д (2H, C_6H_4NO_2),$ $^{3}J_{\rm HH}$ 8.3 Гц), 8.21 д (2H, С $_{6}$ Н $_{4}$ NO $_{2}$, $^{2}J_{\rm HH}$ 8.0 Гц). Спектр ЯМР 13 С (CD₃COOD- d_4), $\delta_{\rm C}$, м. д.: 25.34, $28.36 (C^{6'}, C^{7'}), 50.26 (C^{5'}), 51.39 (C^{1'}), 61.28 (C^{2'}),$ 71.97 ($C^{7a'}$), 74.34 ($C^{3'}$), 111.30 (C_4H_3NH), 111.48 $(C_6H_{4\mu_{H_707}})$, 120.04 (C_4H_3NH) , 120.94 $(C_6H_{4\mu_{H_7}})$ $_{100}$), 123.92 (C₆H₄NO₂), 128.22 (C₆H_{4 μ H₇IO₇), 128.70} $(C_6H_{4\mu\mu\rho\rho})$, 129.06 $(C_6H_4NO_2)$, 129.29 $(C_6H_4NO_2)$, 131.22 (C_6H_{4MH707}), 131.29 (C_4H_3NH), 141.84 $(C_6H_{4индол})$, 144.42 $(C_6H_4NO_2)$, 147.74 $(C_6H_4NO_2)$, 176.04 (C²), 182.28 (C=O),. Найдено, %: С 67.70; Н 5.08; N 12.32 C₂₅H₂₂N₄O₄. Вычислено, %: С 67.86; H 5.01; N 12.66.

1'-(4-Xлорфенил)-2'-(1*H*-пиррол-2ил)-1',2',5',6',7',7а'-гексагидроспиро[индо**лин-3,3'-пирролизин]-2-он (3в).** Выход 1.53 г (80%), светло-бежевый порошок, т. пл. 208–210°С. Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 1.85–2.05 м (2H, $C^{7}H$), 2.40–2.52 m (1H, $C^{6}H$), 2.75 m (3H, $C^{5}H$), 3.93-3.84 м (1H, $C^{7a}H'$), 4.04 д. т (1H, $C^{4}'H$, J_{HH} 11.2, 5.4 Γ ц), 4.61 д (1H, C^2 'H, J_{HH} 11.5 Γ ц), 6.03 д. т (1H, C_4H_3NH , $^3J_{HH}$ 4.3, $^4J_{HH}$ 2.2 Γ ц), 6.84 д (1H, $C_6H_{4индол}$, ${}^3J_{HH}$ 8.2 Гц), 6.87–7.02 м (4H, ArH), 6.71 д (1H, J_{HH} 7.7 Гц), 6.78 д. т (1H, C_4H_3NH , $^3J_{\text{HH}}$ 3.9, $^{4}J_{\rm HH}$ 1.7 Гц), 7.05–7.14 м (2H, ArH), 7.34 д (1H, $C_6H_{4\mu\mu\nu\rho}$, J_{HH} 7.5 Гц), 9.26 с (1H, $NH_{\mu\mu\nu\rho}$), 10.42 с (1H, NH_{пиррол}). Спектр ЯМР 13 С (CDCl₃), $\delta_{\rm C}$, м. д.: 29.92, 36.65 ($C^{6'}$, $C^{7'}$), 47.45 ($C^{5'}$), 52.67 ($C^{1'}$), 63.39 $(C^{2'})$, 71.44 $(C^{3'})$, 109.39 (ArH), 109.68 (C_4H_3NH) , 110.00 (ArH), 112.05 (ArH), 112.18 (ArH), 116.35 (C_4H_3NH) , 119.85 (ArH), 120.85 (ArH), 125.26 (ArH), 128.01 (ArH), 128.81 ($C_6H_{4\mu\mu\eta\eta\eta}$), 201.70 (C²), 205.18 (C=O). Найдено, %: С 69.37; Н 5.29; N

 $9.88 \, \mathrm{C}_{25}\mathrm{H}_{22}\mathrm{CIN}_3\mathrm{O}_2$. Вычислено, %: С 69.52; Н 5.13; N 9.73.

Общая методика синтеза 4'-арил-1'-метил-3'-(1*H*-пиррол-2-ил)спиро[индолин-3,2'-пирролидин]-2-онов 4а, б. Суспензию 3-арил-1-(пиррол-2-ил)проп-2-ен-1-она 1 (4.5 ммоль), изатина (4.5 ммоль) и саркозина (4.5 ммоль) в 10 мл абсолютного изопропилового спирта при постоянном перемешивании нагревали до 65°С. За ходом реакции следили с помощью ТСХ. После окончания реакции добавляли 10 мл воды и оставляли на 1 ч в холодильнике. Полученный осадок отфильтровывали и промывали насыщенным водным раствором NaCl, затем дистилированной водой от остатков саркозина. Осадок перекристаллизовывали из этанола.

4'-(4-Нитрофенил)-1'-метил-3'-(1*H*-пиррол-2-ил)спиро[индолин-3,2'-пирролидин]-2-он **(4а).** Выход 1.36 г (73%), светло-желтый порошок, т. пл. 215–216°С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 2.22 с (3H, N–CH₃), 3.43 т (1H, C^{4} H, $^{3}J_{HH}$ 8.2 Гц), 3.59 т (1H, $C^{4'}$ H, $^{3}J_{HH}$ 9.3 Гц), 4.22 д (1H, C^{2} H, $^{3}J_{HH}$ 9.6 Гц), 4.44 к (1H, C^{3} H, $^{3}J_{HH}$ 9.1 Гц), 5.98 κ (1H, $C_6H_{4индол}$, $^3J_{HH}$ 3.0 Γ ц), 6.62 д (1H, $C_6H_{4индол}$, $^{3}J_{\rm HH}$ 7.7 Гц), 6.77 д (1H, C₄H₃NH, $^{3}J_{\rm HH}$ 3.3 Гц), 6.83 д (1H, ${}^3J_{\rm HH}$ 8.4 Гц), 6.93 д. т (1H, ${}^3J_{\rm HH}$ 9.4, $^4J_{\rm HH}$ 5.3 Гц), 7.06 д. д (1H, С $_6$ Н $_4$ индол, $^3J_{\rm HH}$ 9.7, $^4J_{\rm HH}$ 5.6 Гц), 7.40 д (2H, $C_6H_4NO_2$, $^3J_{HH}$ 8.4 Гц), 7.60 д (1H, $C_6H_4NO_2$, $^3J_{HH}$ 8.4 Гц), 7.78–7.88 м (1H, NH_{инлол}), 9.07 с (1H, NH_{пиррол}). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д.: 35.13 (N-CH₃), 41.39 (С⁵), 60.58 $(C^{4'})$, 61.11 $(C^{3'})$, 74.43 $(C^{2'})$, 110.58 (C_4H_3NH) , 115.03 ($C_6H_{4\mu\mu\eta\eta\eta}$), 116.09 (C_4H_3NH), 122.73 $(C_6H_{4\mu H JON})$, 125.00 (C_4H_3NH) , 126.65 $(C_6H_{4\mu H - 1})$ $_{707}$), 127.24 (C₆H_{4µH707}), 127.28 (C₆H₄NO₂), 127.57 $(C_6H_4NO_2)$, 127.71 $(C_6H_4NO_2)$, 128.69 $(C_6H_4NO_2)$, 128.71 ($C_6H_4NO_2$), 128.03 ($C_6H_{4индол}$), 131.50 (C_4H_3NH) , 140.15 $(C_6H_{4\mu\mu\eta\eta\eta})$, 179.18 (C^2) , 186.33 (C=O). Найдено, %: С 66.02; Н 4.79; N 13.65, C₂₃H₂₀N₄O₄. Вычислено, %: С 66.34; Н 4.84; N 13.45.

4'-(4-Хлорфенил)-1'-метил-3'-(1*H*-пиррол-**2-ил)спиро[индолин-3,2'-пирролидин]-2-он (46).** Выход 1.35г (74%), белый порошок, т. пл. 218–220°С. Спектр ЯМР 1 H (CDCl₃), δ , м. д.: 2.20 с (3H, N–CH₃), 3.33–3.47 м (1H, С 4 H), 3.53 т (1H, С 4 H, $^{3}J_{\rm HH}$ 8.1 Гц), 4.30 д. д (С 2 H, $^{3}J_{\rm HH}$ 8.9, $^{4}J_{\rm HH}$ 1.6 Гц), 4.93–5.10 м (1H, С 3 H), 6.04 д. д (1H,

 C_4H_3NH , $^3J_{HH}$ 4.1, $^4J_{HH}$ 2.1 Γ ц), 6.57–6.71 м (3H, C_4H_3NH , $C_6H_{4инлол}$), 6.79 с (1H, C_4H_3NH), 6.95 т (1H, $C_6H_{4индол}$, ${}^3J_{HH}$ 7.6 Гц), 7.08 т (1H, $C_6H_{4индол}$, $^{3}J_{HH}$ 7.7 Γ _{II}), 7.25 c (2H, C₆H₅Cl), 7.33 m (2H, C₆H₅Cl, $NH_{\text{инлол}}$), 7.76 д. д (1H, C_6H_5Cl , $^3J_{HH}$ 8.6, $^4J_{HH}$ 1.6 Гц), 8.90 с (1H, NH). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, M. д.: 35.00 (N–CH₃), 41.61 (C^{5'}), 60.53 (C^{4'}), 61.13 ($C^{3'}$), 74.32 ($C^{2'}$), 110.31 (C_4H_3NH), 115.12 $(C_6H_{4индол})$, 115.59 (C_4H_3NH) , 122.78 (C_4H_3NH) , 125.00 (C_4H_3NH), 126.69 ($C_6H_{4\mu\mu\pi\sigma}$), 127.19 $(C_6H_{4\mu\mu\eta\eta\eta})$, 127.32 (C_6H_4Cl) , 127.53 (C_6H_4Cl) , 127.65 (C₆H₄Cl), 127.88 (C₆H₄Cl), 128.01 (C₆H₄Cl), 131.46 (C_4H_3NH), 139.44 ($C_6H_{4\mu\mu\eta\eta\eta}$), 178.23 (C^2), 185.48 (C=O). Найдено, %: C 67.63; H 4.87; N 10.69 C₂₃H₂₀N₃O₂Cl. Вычислено, %: С 68.06; Н 4.96; N 10.35.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Светлана Васильевна Борисова, ORCID: https://orcid.org/0000-0001-8025-1296

Виталий Викторович Сорокин, ORCID: https://orcid.org/0000-0002-5861-3307

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Pavlovska T.L., Redkin R.G., Lipson V.V, Atamanuk D.V. // Mol. Divers. 2016. Vol. 20. P. 299. doi 10.1007/s11030-015-9629-8
- Yu B., Yu D.-Q., Liu H.-M. // Eur. J. Med. Chem. 2015.
 Vol. 97. P. 637. doi 10.1016/j.ejmech.2014.06.056
- 3. *Santos M.* // Tetrahedron 2014. Vol. 70. P. 9735. doi 10.1016/j.tet.2014.08.005
- Martina KHO, Tagliapietra SHO, Veselov V.V., Cravotto GHO // Front. Chem. 2019 Vol. 7. P. 95. doi 10.3389/ fchem.2019.00095
- Bhardwaj V., Gumber D., Abbot V., Dhiman S. P. // RSC Adv. 2015. Vol. 5 P. 15233. doi 10.1039/C4RA15710A
- Petri G.L., Spanò V., Spatola R., Holl R., Raimondi M.V., Barraja P., Montalbano A. // Eur. J. Med. Chem. 2020. Vol. 208. P. 112783. doi 10.1016/j.ejmech.2020.112783
- 7. *Iqbal S.*, *Rasheed H.*, *Awan R.J.*, *Javed R. Awan, Mukhtar A.*, *Mark G. Moloney M.G.* // Curr. Org. Chem. 2020. Vol. 24. P. 11657. doi 10.2174/13852728 24999200528125651
- 8. *Estévez V., Villacampa M., Menéndez J.C.* // Chem. Soc. Rev. 2014. Vol. 43. P. 4633. doi 10.1039/c3cs60015g

- 9. *Tzankova D., Vladimirova S., Peikova L., Georgieva M.* // J. Chem. Technol. Metallurgy. 2018. Vol. 53. P 3
- Adrio J., Carretero C. // Chem. Commun. 2019. Vol. 55.
 P. 11979. doi 10.1039/C9CC05238K.
- 11. *Singh M.S., Chowdhury S., Koley S.* // Tetrahedron. 2016. Vol. 72. P. 1603. doi 10.1016/j.tet.2016.02.031
- 12. *Кузнецов М.Л.* // Усп. хим. 2006. Т. 75. № 11. С. 1045; Kuznetsov M.L. // Russ. Chem. Rev. 2006. Vol. 75. N 11. P. 935. doi 10.1070/RC2006v075n11ABEH001195
- 13. *Nájera C., Sansano J.M.* // Curr. Org. Chem. 2003. Vol. 7. P. 1105. doi 10.2174/1385272033486594

- Grigg R., Aly M.F., Sridharan V., Thianpatanagul S.J. // Chem. Soc. Commun. 1984. Vol. 182. P. 10444. doi 10.1039/P19840000041
- Sarrafi Y., Hamzehloueia M., Alimohammadi K., Yeganegi S. // J. Mol. Struct. 2012. Vol. 1030. P. 168. doi 10.1016/j.molstruc.2012.04.013
- Özdemir A., Altıntop M.D., Sever B., Gençer H.K., Kapkaç H.A., Özlem Atlı, Baysal M. // Molecules. 2017.
 Vol. 22. P. 2112. doi 10.3390/molecules22122112-2128
- 17. *Mohamed A.A., Radwaneman M.H.* // Monatsh. Chem. 2009. Vol. 140. P. 229. doi 10.1007/s00706-008-0061-y

Synthesis of New Spiroindolinopyrrolidines

S. V. Borisova* and V. V. Sorokin

N.G. Chernyshevsky Saratov National Research State University, Saratov, 410012 Russia *e-mail: chuvaikinasv@gmail.com

Received September 29, 2021; revised October 9, 2021; accepted October 10, 2021

New substituted spiropyrrolidines were obtained by the 1,3-dipolar cycloaddition reaction of new dipolar philes – 3-phenyl-1-pyrrol-2-ylprop-2-en-1-ones – and azomethine ylides based on isatin and amino acids (sarcosine, proline) or benzylamine.

Keywords: spirooxoindoles, 1,3-dipolar cycloaddition, azomethine ylides, 3-phenyl-1-pyrrol-2-ylprop-2-en-1-ones