УДК 546.92:544.47:547.1

ЦИКЛОМЕТАЛЛИРОВАННЫЕ КОМПЛЕКСЫ ПЛАТИНЫ(II) ДЛЯ ПОЛУЧЕНИЯ ФЕНИЛСОДЕРЖАЩИХ СИЛИКОНОВЫХ РЕЗИН ПО РЕАКЦИИ КАТАЛИТИЧЕСКОГО ГИДРОСИЛИЛИРОВАНИЯ

© 2022 г. М. В. Добрынин, С. О. Касаткина, С. В. Байков, П. Ю. Савко, Н. С. Антонов, А. С. Михердов, В. П. Боярский, Р. М. Исламова*

Санкт-Петербургский государственный университет, Университетская наб. 7–9, 199034 Россия *e-mail: r.islamova@spbu.ru

> Поступило в Редакцию 8 сентября 2021 г. После доработки 28 октября 2021 г. Принято к печати 31 октября 2021 г.

Исследованы С,N-хелатные депротонированные диаминокарбеновые комплексы платины(II) в качестве катализаторов реакции гидросилилирования для полисилоксановых систем. Получены фенилсодержащие силиконовые резины.

Ключевые слова: циклометаллированные комплексы платины(II), полисилоксаны, гидросилилирование, фенилсодержащие силиконовые резины

DOI: 10.31857/S0044460X22010139

Силиконовые резины являются одними из наиболее востребованных материалов в быту и технике, спрос на которые в последние годы постоянно растет [1-4]. Наиболее часто силиконовые резины получают на основе полидиметилсилоксанов. В частности, широко распространены коммерчески доступные силиконовые композиции Sylgard 182 или 184 (Dow Corning). Однако наряду с полидиметилсилоксанами научный и практический интерес представляют функционализированные полисилоксаны. Так, известно, например, что замена в полидиметилсилоксанах метильных групп на фенильные позволяет улучшить термостойкость [5-7], устойчивость к радиационному облучению [8, 9], в том числе от ядерного реактора [10], а также теплоизоляционные свойства [11] получаемых на их основе материалов.

Один из успешных и распространенных на практике методов получения силиконовых резин – это вулканизация (сшивка) по реакции гидросилилирования между винил- и гидридсодержащими полисилоксанами, катализируемая соединениями металлов платиновой группы [12-17]. Преимуществами данного подхода являются отсутствие побочных продуктов, малая токсичность продуктов реакции и минимальная усадка при получении силиконовых изделий [18]. Наиболее часто в этих процессах используется катализатор Карстедта – комплекс платины(0) с дивинилтетраметилдисилоксаном. Однако этот катализатор отличается гиперактивностью, которая, в свою очередь, может привести к преждевременной вулканизации и, следовательно, к ухудшению качества получаемых силиконовых резин - появлению трещин, пузырьков и пр. дефектов [14, 16]. В связи с этим возникает необходимость использования в сочетании с катализатором Карстедта ингибиторов, в качестве которых были апробированы непредельные спир-

ты, кетоны, нитрилы, фосфины и др. [17, 19]. В промышленности наиболее часто применяют малеаты и фумараты [20]. Ингибиторы позволяют использовать катализатор Карстедта как при комнатной температуре, так и при нагревании в зависимости от концентрации последнего [19]. Однако введение ингибиторов усложняет реакционную систему. Кроме того, может повлиять на токсичность получаемых с их помощью силиконовых материалов, так как не все ингибиторы безопасны для жизни и здоровья человека.

Актуальным и по сей день остается поиск новых катализаторов платиновой группы, которые позволят проводить вулканизацию полисилоксанов и получать, в частности, фенилсодержащие силиконовые резины без указанных выше недостатков.

На основании предыдущих исследований [21, 22] полагаем, что перспективными для решения данной проблемы будут диаминокарбеновые комплексы платины(II). Так, недавно нами было продемонстрировано, что некоторые C,N-хелат-

ные депротонированные диаминокарбеновые комплексы платины(II) успешно катализируют сшивку винилсодержащего полидиметилсилоксана с гидридсодержащим аналогом [22].

Целью данной работы является исследование влияния циклометаллированных комплексов платины(II) **1–4** (схема 1) на процесс сшивки α, ω -дивинилполи(диметилсилоксан-*со*-дифенилсилоксана) **5** с поли(диметилсилоксан-*со*-метилгидросилоксаном) **6** по реакции каталитического гидросилилирования и получение фенилсодержащей силиконовой резины **7** (схема 2).

Для достижения поставленной цели были синтезированы C,N-хелатные депротонированные диаминокарбеновые комплексы платины(II) 1–4 (схема 1), среди которых соединения 1–3 были исследованы ранее в качестве катализаторов получения аналогичной силиконовой резины на основе полидиметилсилоксана [22], тогда как соединение 4 было получено впервые (схема 3).

Исследована каталитическая активность платиновых комплексов 1–4 при концентрациях 1×10⁻³

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 1 2022

Схема 2.

1-4

и 1×10⁻⁴ моль/л в реакции гидросилилирования с участием функционализированных полисилоксанов 5 и 6 (схема 2) при комнатной температуре (20-23°С) и при нагревании (80 и 100°С). Обнаружено, что предложенные катализаторы активны только при 100°С (табл. 1). В изученных условиях исходные жидкие полимеры вулканизируются и превращаются в твердые, при этом эластичные, резиноподобные материалы. Следует отметить, что все полученные силиконовые резины 7, независимо от типа используемого катализатора 1-4,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 1 2022

являются прозрачными, что заметно расширяет их потенциальные области применения, например, в оптоэлектронике. Кроме того, они однородны по структуре, не содержат дефектов, пузырьков, трещин и т. п.

При более низких температурах (80°С и ниже) вязкость реакционной полисилоксановой смеси в присутствии комплексов 1-4 не изменяется в течение недели, а значит, реакция гидросилилирования между соединениями 5 и 6 в данных условиях не протекает.

Рис. 1. Термогравиграмма комплекса **1**. *1* – ТГ, *2* – ДТГ.

На примере комплекса 1 показано, что температура начала его разложения равна примерно 150°С (рис. 1). В связи с этим температура вулканизации не должна превышать указанное значение.

Обнаружено, что природа комплексов 1–3, а именно наличие 4-пиколинового, хинолинового и изохинолинового заместителей в структуре (схема 1), практически не влияет на их каталитическую активность в изученной полисилоксановой системе. Так, время вулканизации (время, за которое жидкие полисилоксаны 5 и 6 превращаются в твердый сшитый продукт 7) равно одному часу независимо от типа используемого катализатора 1–3, при концентрации последних 1×10^{-3} моль/л. Уменьшение концентрации комплексов 1–3 до 1×10^{-4} моль/л увеличивает время вулканизации до 2 ч (с учетом погрешности измерения, равной примерно 10%) (табл. 1).

Таблица 1. Каталитическая активность комплексов 1–4 при вулканизации полисилоксанов 5 и 6 по реакции гидросилилирования (T 100°С)

	· · · · ·	
Катализатор	с _{кат} , моль/л	Время вулканизации, ч
1	1×10 ⁻³	1.0
	1×10^{-4}	2.2
2	1×10^{-3}	1.0
	1×10^{-4}	1.9
3	1×10^{-3}	1.0
	1×10^{-4}	2.0
4	1×10^{-3}	2.5
	1×10^{-4}	3.5

Следует отметить, что замена диметиламинового лиганда в комплексе 1 на пиперидиновый в комлексе 4 заметно снижает каталитическую активность последнего. Так, время вулканизации полисилоксанов 5 и 6 в присутствии катализатора 4 возрастет примерно в 2 раза (табл. 1). Это может быть обусловлено бо́льшим объемом лиганда в комплексе 4.

На основании литературных данных можно предположить, что реакция гидросилилирования между винил- и гидридсодержащими полисилоксанами 5 и 6 в присутствии платиновых катализаторов 1-4 протекает по известному механизму Чока-Харрода [19, 25]. Данный механизм включает последовательные стадии окислительного присоединения кремнийгидрида к комплексу металла платиновой группы ([М]), координации алкена, внедрения алкена по связи [М]-Н и последующего восстановительного элиминирования. По всей видимости, комплекс 4 из-за стерических факторов затрудняет подход алкена к координационному центру, что и приводит к относительному уменьшению каталитической активности комплекса 4 по сравнению с комплексом 1. Другой возможной причиной этого является то, что пиперидинзамещенный мочевиновый фрагмент в комплексе 4 обладает большей способностью при определенных условиях разлагаться с образованием изоцианата и амина [23, 24].

Таким образом, изученные С,N-хелатные депротонированные диаминокарбеновые комплексы платины(II) **1–4** являются катализаторами реакции гидросилилирования между винилтерминированным фенилсодержащим и гидридсодержащим полисилоксанами, которые позволяют получать прозрачные однородные (без дефектов, трещин и т. п.) фенилсодержащие силиконовые резины при температуре 100°С, не требуют использования ингибиторов и особых условий при хранении.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплексы 1–3 были получены согласно литературной методике [22]. Полисилоксаны 5 (16% дифенилсилоксановых звеньев, содержание винильных групп – 7.6×10⁻⁴ моль/г, среднечисленная молекулярная масса – 9300) и 6 (вязкость – 25–35 сСт, содержание гидридных групп – 3.5×

10⁻³ моль/г) были получены из коммерческих источников (Sigma-Aldrich) и использовались без дополнительной очистки. Дихлорметан был очищен в соответствии с литературной методикой [26] перед использованием.

Спектры ЯМР ¹Н, ¹³С и ¹⁹⁵Рt были сняты на приборе Bruker AVANCE III 400 при комнатной температуре на частотах 400, 101 и 86 МГц соответственно; растворитель – CDCl₃. Инфракрасные спектры (4000-400 см⁻¹) были сняты на приборе Shimadzu FTIR 8400S в таблетках КВг. Масс-спектры высокого разрешения (HRESIMS) были сняты на приборе Bruker Maxis HRMS-ESI-qTOF (ионизация электроспреем). Указан наиболее интенсивный сигнал в изотопном распределении. Термогравиметрический анализ комплекса 1 был проведен на приборе Netzsch TG 209 F1 Libra. Образец предварительно сушили в вакууме при 50°С, затем нагревали от 40 до 450°С со скоростью 10 К/мин. Образец обдували током сухого аргона со скоростью 10 мл/мин.

Синтез комплекса 4. Триэтаноламин (0.36 ммоль, 0.048 мл) добавляли к смеси мочевины 9 (0.30 ммоль, 66 мг) и раствора *cis*-[PtCl₂(CNXyl)₂] (комплекс 8) (0.30 ммоль, 160 мг) в хлороформе (5 мл). Смесь перемешивали при 35°С в течение 3 сут, затем фильтровали и упаривали досуха при 45°С в вакууме. Выход 93% (198 мг), белый порошок. ИК спектр, v, см⁻¹: 2196 с (С≡N), 1695 с (C=O), 1609 с (C=N). Спектр ЯМР ¹Н, б, м. д.: 9.12 д (1Н, Ј 6.4 Гц), 7.13 т (1Н, Ј 7.6 Гц), 6.99 д (2Н, J 7.6 Гц), 6.82–6.70 м (3H), 6.64 д (1H, J 7.6 Гц), 6.15 т (1H, J 7.6 Гц), 4.21-4.12 м (1H), 3.76-3.68 м (1H), 3.46–3.36 м (2H), 2.42 с (3H), 2.27 с (6H), 2.23 д (6Н, Ј 2.8 Гц), 1.86–1.37 м (6Н). Спектр ЯМР ¹³С, δ_с, м. д.: 156.91, 153.88, 152.61, 150.93, 149.10, 145.26, 134.40, 128.80, 128.73, 127.77, 127.33, 127.22, 123.01, 116.69, 107.85, 48.00, 44.91, 26.88, 25.68, 24.25, 21.94, 19.57, 19.42, 18.41. Спектр ЯМР ¹⁹⁵Рt: б_{Рt} -3808.96 м. д. Масс-спектр (ESI), *m/z*: 675.2395 $[M - Cl]^+$ (вычислено для $C_{30}H_{34}ClN_5OPt$: 675.2406).

Вулканизация. Готовили двухкомпонентную систему А и Б. Компонент А: расчетное количество катализатора 1–4, растворенного в CH₂Cl₂ (≈0.5 мл), добавляли к полисилоксану 5. Далее смесь перемешивали в течение 5 мин с помощью

стеклянной палочки. После этого смесь сушили в вакууме при комнатной температуре в течение 12 ч, чтобы избавиться от растворителя. Компонент Б: готовили смесь полисилоксанов 5 и 6. Соотношение полимеров в компоненте Б были расчитаны таким образом, чтобы соотношение гидридных и винильных групп составило 3:1 в конечной реакционной смеси. Для проведения вулканизации 0.5 мл компонента А помещали в алюминиевую форму, добавляли 0.5 мл компонента Б и затем активно перемешивали стеклянной палочкой в течение 30 с. После этого алюминиевую форму помещали в термостат, заранее разогретый до 100°С. Каждые 10-15 мин проводили проверку состояния реакционной смеси. Время вулканизации определяли как время между смешиванием компонентов и получением готовой силиконовой резины. Измерения проводились по методике dry-to-touch в соответствии со стандартом ASTM D1640 [27].

ИНФОРМАЦИЯ ОБ АВТОРАХ

Добрынин Михаил Валерьевич, ORCID: https:// orcid.org/0000-0002-6041-4104

Касаткина Светлана Олеговна, ORCID: https:// orcid.org/0000-0002-7943-7525

Байков Сергей Валентинович, ORCID: https:// orcid.org/0000-0002-8912-5816

Антонов Никита Сергеевич, ORCID: https:// orcid.org/0000-0001-5161-9098

Михердов Александр Сергеевич, ORCID: https://orcid.org/0000-0002-6471-5158

Боярский Вадим Павлович, ORCID: https:// orcid.org/0000-0002-6038-0872

Исламова Регина Маратовна, ORCID: https:// orcid.org/0000-0003-1180-6539

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-33-90130) с использованием оборудования ресурсных центров Санкт-Петербургского государственного университета «Нанотехнологии», «Магнитно-резонансные методы исследования», «Методы анализа состава вещества», «Термогравиметрические и калориметрические методы исследования».

КОНФЛИКТ ИНТЕРЕСОВ

Боярский В.П. является членом редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Moretto H.-H., Schulze M., Wagner G. // Silicones, Ullmann's Encycl. Ind. Chem. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2000. doi 10.1002/14356007.a24_057
- Park S., Mondal K., Treadway R.M., Kumar V., Ma S., Holbery J.D., Dickey M.D. // ACS Appl. Mater. Interfaces. 2018. Vol. 10. P. 11261. doi 10.1021/ acsami.7b18394
- Brook M. // Biomaterials. 2006. Vol. 27. P. 3274. doi 10.1016/j.biomaterials.2006.01.027
- Eduok U., Faye O., Szpunar J. // Prog. Org. Coatings. 2017. Vol. 111. P. 124. doi 10.1016/j. porgcoat.2017.05.012
- Grassie N., Francey K.F., Macfarlane I.G. // Polym. Degrad. Stab. 1980. Vol. 2. P. 67. doi 10.1016/0141-3910(80)90016-6
- Hamdani S., Longuet C., Perrin D., Lopez-cuesta J.-M., Ganachaud F. // Polym. Degrad. Stab. 2009. Vol. 94. P. 465. doi 10.1016/j.polymdegradstab.2008.11.019
- Li R., Zhang B.T., Liu B.L., Chen X.N., Wang G.Y. // Adv. Mater. Res. 2012. Vol. 496. P. 109. doi 10.4028/ www.scientific.net/AMR.496.109
- Peng D., Mu Q.H., Zhang S., Li J.H., Wang F. // Mater. Sci. Forum. 2018. Vol. 926. P. 39. doi 10.4028/www. scientific.net/MSF.926.39
- Aksüt D., Demeter M., Vancea C., Şen M. // Radiat. Phys. Chem. 2019. Vol. 158. P. 87. doi 10.1016/j. radphyschem.2019.01.024
- Labouriau A., Robison T., Shonrock C., Simmonds S., Cox B., Pacheco A., Cady C. // Radiat. Phys. Chem. 2018. Vol. 144. P. 288. doi 10.1016/j. radphyschem.2017.08.027
- Wu S., Zhang S., Akram R., Yasir A., Wang B., Han Z., Wu Z., Wu D. // High Perform. Polym. 2019. Vol. 31. P. 1112. doi 10.1177/0954008318824861
- Wang D., Klein J., Mejía E. // Asian J. 2017. Vol. 12. P. 1180. doi 10.1002/asia.201700304
- Dobrynin M.V., Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Starova G.L., Kukushkin V.Y., Islamova R.M. // ACS Appl. Polymer Mater. 2021. Vol. 3. P. 857. doi 10.1021/acsapm.0c01190
- Dobrynin M.V., Pretorius C., Dumisani K., Roodt A., Boyarskiy V.P., Islamova R.M. // J. Catal. 2019. Vol. 372. P. 193. doi 10.1016/j.jcat.2019.03.004

- Islamova R.M., Dobrynin M.V., Vlasov A.V., Eremina A.A., Kinzhalov M.A., Kolesnikov I.E., Zolotarev A.A., Masloborodova E.A., Luzyanin K.V. // Catal. Sci. Technol. 2017. Vol. 7. P. 5843. doi 10.1039/ C7CY02013A
- Islamova R.M., Dobrynin M.V., Ivanov D.M., Vlasov A.V., Kaganova E.V., Grigoryan G.V., Kukushkin V.Y. // Molecules. 2016. Vol. 21. P. 311. doi 10.3390/ molecules21030311
- Исламова Р.М., Власов А.В., Добрынин М.В., Маслобородова Э.А., Каганова Е.В. // ЖОХ. 2015. Т. 85.
 С. 1868; Islamova R.M., Vlasov A.V., Dobrynin M.V., Masloborodova E.A., Kaganova E.V. // Russ. J. Gen. Chem. 2015. Vol. 85. P. 2609. doi 10.1134/ S1070363215110171
- Shit S.C., Shah P. // Natl. Acad. Sci. Lett. 2013. Vol. 36
 P. 355. doi 10.1007/s40009-013-0150-2
- Marciniec B. Hydrosilylation. Amsterdam: Springer, 2009. P. 176. doi 10.1007/978-1-4020-8172-9
- Lewis L.N., Stein J., Colborn R.E., Gao Y., Dong J. // J. Organomet. Chem. 1996. Vol. 521. P. 221. doi 10.1016/0022-328x(96)06247-x
- Afanasenko A.M., Chulkova T.G., Boyarskaya I.A., Islamova R.M., Legin A.A., Keppler B.K., Selivanov S.I., Vereshchagin A.N., Elinson M.N., Haukka M. // J. Organomet. Chem. 2020. Vol. 923. P. 121435. doi 10.1016/j.jorganchem.2020.121435
- Dobrynin M.V., Kasatkina S.O., Baykov S.V., Savko P.Yu., Antonov A., Mikherdov A.S., Boyarskiy V.P., Islamova R.M. // Dalton Trans. 2021. doi 10.1039/ D1DT02823E
- Hutchby M., Houlden C.E., Ford J.G., Tyler S.N.G., Gagné M.R., Lloyd-Jones G.C., Booker-Milburn K.I. // Angew. Chemie Int. Ed. 2009. Vol. 48. P. 8721. doi 10.1002/anie.200904435
- Kasatkina S.O., Geyl K.K., Baykov S.V., Boyarskaya I.A., Boyarskiy V.P. // Org. Biomol. Chem. 2021. Vol. 19. P. 6059. doi 10.1039/D10B00783A
- Meister T.K., Riener K., Gigler P., Stohrer J., Herrmann W.A., Kühn F.E. // ACS Catal. 2016. Vol. 6. P. 1274. doi 10.1021/acscatal.5b02624
- 26. *Armarego W.L.F., Chai C.L.L.* Purification of laboratory chemicals. Waltham: Elsevier, 2013. P. 141.
- Handbook G., Koleske J.V. Paint and Coating Testing Manual. Bridgeport: ASTM International, 2012. P. 529. doi 10.1520/MNL17-2ND-EB

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 1 2022

Cyclometallated Platinum(II) Complexes for Obtaining Phenyl-Containing Silicone Rubbers via Catalytic Hydrosilylation Reaction

M. V. Dobrynin, S. O. Kasatkina, S. V. Baykov, P. Yu. Savko, N. S. Antonov, A. S. Mikherdov, V. P. Boyarskiy, and R. M. Islamova*

St. Petersburg State University, Saint Petersburg, 199034 Russia *e-mail: r.islamova@spbu.ru

Received September 8, 2021; revised October 28, 2021; accepted October 31, 2021

C,N-Chelate deprotonated diaminecarbene platinum(II) complexes were studied as polysiloxane system hydrosilylation catalysts. Phenyl-containing silicone rubbers were obtained.

Keywords: cyclometallated platinum(II) complexes, polysiloxanes, hydrosilylation, phenyl-containing silicone rubbers