УДК 544.43:547-39:(543.429.23+544.18)

ИЗУЧЕНИЕ ВЛИЯНИЯ N-ВИНИЛПИРРОЛИДОНА НА РАСПАД ПЕРОКСИДА БЕНЗОИЛА

© 2022 г. Т. Г. Тюрина^{*a*,*}, О. М. Заречная^{*a*}

^а Институт физико-органической химии и углехимии имени Л. М. Литвиненко, ул. Р. Люксембург 70, Донецк, 283114 Россия *e-mail: t tiurina@mail.ru

> Поступило в редакцию 12 июля 2022 г. После доработки 23 августа 2022 г. Принято к печати 25 августа 2022 г.

Методом спектроскопии ЯМР ¹Н изучен распад пероксида бензоила в растворе или массе N-винилпирролидона, его смесях с малеиновым ангидридом и/или метилметакрилатом. Обнаружено, что константы скорости распада пероксида изменяются от 10^{-3} с⁻¹ для смеси N-винилпирролидона с малеиновым ангидридом (1:1, 313 K) до 10^{-4} с⁻¹ для смеси с метилметакрилатом (1:1, 333 K). Энергия активации распада пероксида бензоила в N-винилпирролидоне составила 75.5±6.8 кДж/моль. Предложены возможные реакции взаимодействия N-винилпирролидона с бензоатным радикалом, на уровне ω B97x-V/def2-TZVP оценены их термохимические характеристики.

Ключевые слова: пероксид бензоила, N-винилпирролидон, спектроскопия ЯМР, квантово-химические расчеты

DOI: 10.31857/S0044460X22110014, EDN: LNBQDB

Изучение распада пероксида бензоила, начатое в 50-х годах XX века, продолжается до настоящего времени. Такая ситуация обусловлена широким применением пероксида бензоила как инициатора в промышленных процессах, а также возможностью создания инициирующих систем на его основе, позволяющих ускорять распад пероксидной связи и снижать температуру полимеризационных процессов [1–3].

Ранее в ряде работ, например [1, 4], были представлены результаты, показывающие, что низкотемпературное (278–308 К) инициирование пероксидами характерно для гомо- и сополимеризации азотсодержащих виниловых мономеров. Факты специфического увеличения скорости распада в присутствии некоторых мономеров привели к появлению гипотезы о распаде комплексно-связанных молекул инициатора, что в ряде случаев подтверждено методом спектроскопии ЭПР [5]. В то же время влияние среды на кинетику термолиза пероксида бензоила чаще всего связывают с механизмом индуцированного распада, при котором радикалы, образующиеся в мономолекулярной реакции гомолитического разрыва пероксидной связи, реагируют с молекулами растворителя или мономера.

Полимеризация N-винилпирролидона, содержащего азот в лактамном цикле, в присутствии пероксида бензоила практически не изучалась, так как полагалось, что в протонных растворителях, используемых для получения поли-N-винилпирролидона, могут протекать побочные реакции образования бензойной кислоты и гидролиза N-винилпирролидона [6]. Этот полимер весьма перспективен в качестве носителя в фармацевтике [7], но его молекулярная масса и разветвленность цепей существенно зависят от условий синтеза [8]. В работе [9] показана возможность получения поли-N-винилпирролидона при использовании пероксида бензоила в качестве инициатора в отсут-

Рис. 1. Спектр ЯМР ¹Н пероксида бензоила (0.1 моль/л) в ацетонитриле: исходный раствор (*1*); через 100 мин выдержки при 333 К (2–4). Добавки: 2 моль/л N-винилпирролидона (*3*), 2 моль/л N-метилпирролидона (*4*).

ствие растворителя. Нами в аналогичных условиях были получены (со)полимеры N-винилпирролидона. При этом вопрос о том, каким образом протекает распад пероксида в присутствии N-винилпирролидона, нельзя считать вполне выясненным.

Цель работы состоит в исследовании экспериментальными и теоретическими методами процесса распада пероксида бензоила в N-винилпирролидоне и в его смесях с другими мономерами, а также специфических особенностей полимеризации N-винилпирролидона, инициируемой пероксидом бензоила.

Попытка определить величины константы распада пероксида бензоила (k_d) в ацетонитриле с добавками N-винилпирролидона или N-метилпирролидона, насыщенного аналога N-винилпирролидона, распространенным методом иодометрии

[10] при ~ 353 К привела к следующим результатам. Величина $k_{\rm d}$ в среде ацетонитрила в данном эксперименте составила (7.3±0.2)×10⁻⁶ с⁻¹. Это значение в 2.4 раза меньше, чем опубликованное ранее (1.76×10⁻⁵ с⁻¹) [11], и в 2.6 раза больше, чем рассчитанное по данным работы [2] (2.8× 10⁻⁶ с⁻¹), что можно считать удовлетворительным совпадением. В растворе, содержащем 2.6 моль/л N-метилпирролидона, величина $k_{\rm d} \approx 10^{-4} \ {\rm c}^{-1}$ в 14 раз больше, чем в чистом ацетонитриле, что свидетельствует о существенном ускорении распада пероксида в присутствии насыщенного соединения с лактамным циклом. При введении в раствор пероксида 2.2 моль/л N-винилпирролидона, имеющего лактамный цикл и винильную группу, активный распад пероксида бензоила проходит уже во время подготовки к анализу при температуре 298-303 К. По титрованию пробы в этих условиях найдено, что $k_{\rm d}$ составляет ~ 1.4×10⁻⁴ c^{-1} , тогда как в ацетонитриле при 303 К k_d равна 1.76×10⁻⁸ с⁻¹ [2]. Таким образом, вследствие высокой скорости распада пероксида бензоила в среде N-винилпирролидона метод иодометрии оказался непригодным. Для исследования данной системы мы использовали метод ЯМР ¹Н спектроскопии, применявшийся ранее для сравнительного анализа продуктов разложения диацилпероксидов под действием СВЧ-излучения и температуры [12].

В спектре анализируемой пробы молекула N-винилпирролидона характеризуется 5 мультиплетами в области от 7.1 до 2.0 м. д., группа CH₃ ацетонитрила представлена синглетом с центром при 2.029 м. д., тогда как сигналы *орто-, пара-* и *мета-*протонов пероксида бензоила регистрируются при 8.066, 7.826, 7.661 м. д. (растворитель – ДМСО-*d*₆). Таким образом, сигналы пероксида бензоила не перекрываются сигналами N-винилпирролидона и ацетонитрила, что позволяет выявить их в исследуемых смесях.

Первоначально было рассмотрено протекание процесса распада пероксида бензоила в ацетонитриле. В ходе прогрева бесцветный раствор приобретал слабо-желтое окрашивание, которое несколько усиливалось во времени, что может указывать на образование ненасыщенных продуктов с атомом N при кратной связи. При этом на протяжении 10 ч вид спектров в области 8.2–7.6 м. д. (рис. 1)

	Интегральная интенсивность сигналов в области б, м. д.								
Время,	пероксид бензоила			пр	бензол				
МИН	8.12–8.04 (<i>opmo</i> -H)	7.86–7.77 (<i>napa</i> -Н)	7.71–7.60 (<i>мета-</i> Н)	8.04-7.90	7.71–7.60 ⁶	7.58–7.46	7.42–7.33		
Раствор 0.1 моль/л пероксида бензоила в ацетонитриле (333 К)									
0	0.368	0.207	0.425	_	_	_	_		
100	0.369	0.202	0.411	_	_	_	0.013		
360	0.384	0.196	0.395	_	_	_	0.035		
600	0.372	0.190	0.381	_	_	_	0.052		
Раствор 0.1 моль/л пероксида бензоила в ацетонитриле + 2 моль/л N-метилпирролидона (333 K)									
0	0.392	0.202	0.407						
100	0.181	0.099		0.166	0.279	0.171	0.091		
150	0.127	0.069		0.208	0.244	0.217	0.108		
210	0.122	0.063		0.241	0.244	0.247	0.125		
Раствор 0.1 моль/л пероксида бензоила в ацетонитриле + 2 моль/л N-винилпирролидона (333 K)									
0	0.414	0.202	0.383				_		
60	0.015	0.008		0.385	0.203	0.390	_		
100	0.006	0.003		0.405	0.205	0.411	_		
210	0	0		0.392	0.185	0.397	-		
	Раствор 0.1 моль/л пероксида бензоила в N-винилпирролидоне (313 K)								
0	0.386	0.204	0.406						
20	0.232	0.103		0.192	0.296	0.199			
40	0.117	0.064		0.270	0.253	0.292			
60	0.067	0.039		0.338	0.241	0.358			
80	0.033	0.021		0.349	0.221	0.381			
Раствор 0.1 моль/л пероксида бензоила в N-винилпирролидоне (333 K)									
0	0.386	0.204	0.406						
5	0.061	0.036		0.349	0.246	0.372			
15	0.025	0.014	.	0.389	0.226	0.422			
25	0.010	0.005		0.372	0.201	0.380			
45	0.005	0.002		0.373	0.197	0.393			
Раствор 0.01 моль/л пероксида бензоила в смеси N-винилпирролидон:метилметакрилат 1:1 (333 K)									
0	0.375	0.202	0.424						
21	0.343	0.176			0.394	0.088			
33	0.298	0.175		0.052	0.357	0.119			
51	0.308	0.154		0.019	0.373	0.145			
71	0.293	0.146		0.018	0.355	0.138			

Таблица 1. Величина интегральной интенсивности сигналов протонов пероксида бензоила и продуктов его распада в различных средах^а

^а Сумма интенсивностей сигналов пероксида бензоила приведена к 1.

⁶ Суммарная интенсивность сигналов 7.71–7.60 (пероксид бензоила) и 7.74–7.60 м. д. (продукты распада).

не изменялся, а интенсивность сигналов *пара*-Н пероксида бензоила уменьшалась примерно на 4, 7 и 10% за 1.7, 6 и 10 ч (табл. 1). Единственным новым сигналом в спектрах этих растворов был соответствующий бензолу синглет при 7.37 м. д.

[13], интенсивность которого возрастала со временем прогрева (рис. 1, табл. 1).

Из этих результатов следует, что в растворе ацетонитрила распад пероксида бензоила (1) со-

провождается выделением $CO_2(2)$ и образованием радикала ацетонитрила за счет отрыва фенильным радикалом атома водорода от молекулы растворителя (3):

$$(C_6H_5COO)_2 \rightarrow 2 C_6H_5COO^{\bullet}, \qquad (1)$$

$$C_6H_5COO^{\bullet} \rightarrow C_6H_5^{\bullet} + CO_2, \qquad (2)$$

$$C_6H_5 + CH_3CN \rightarrow C_6H_6 + CH_2CN.$$
 (3)

Протекание реакции (3) вполне вероятно, так как ранее [14, 15] на примере радикала адамантана было показано, что в растворе ацетонитрила осуществляется отрыв атома водорода от молекулы растворителя или присоединение к ней этого радикала, причем скорость отрыва в 4 раза больше. Учитывая, что продукты, полученные при участии радикала ацетонитрила, предположительно имеют кратные связи, можно представить их образование следующей реакцией (4).

$$2^{\circ}CH_2CN + CH_3CN \rightarrow CH_3 - C(CH_2CN) = N - CH_2CN.$$
 (4)

Безусловно, реакция (4) не доказана экспериментально, однако представляется весьма вероятной. Так, сигналы протонов образующегося в ней нитрила, согласно инкрементам заместителей [16], должны находиться примерно при ~ 4.4 (NCH₂), ~ 3.4 (C–CH₂) и ~ 2.3 м. д. (CH₃). Действительно, в спектре раствора после 10 ч распада обнаруживается сигнал при 4.28 м. д. с интенсивностью, составляющей 1/7 от таковой для сигнала бензола (теоретически ожидаемое соотношение по реакциям (3) и (4) 1:6). Два других сигнала продукта реакции (4) не могут быть видны, поскольку в соответствующей области спектра находятся интенсивные сигналы протонов воды из ДМСО- d_6 и CH₃-группы ацетонитрила.

При сопоставлении спектров реакционных смесей с добавками N-винилпирролидона и N-метилпирролидона, выдержанных при 333 K, обнаружено, что интенсивность мультиплетов *орто-* и *пара*-протонов пероксида бензоила снижается в ходе распада при соблюдении их соотношения ~2:1 (табл. 1) и сохранении формы сигналов (рис. 1, 2), вместе с тем наблюдается появление новых сигналов с δ 8.04–7.90 и 7.60–7.47 м. д., которые характеризуют продукты распада.

Интенсивность сигнала при 7.71–7.60 м. д. (*мета*-Н исходного пероксида бензоила) в ходе ре-

акции снижается медленнее, чем сигналов *орто*и *пара*-Н (табл. 1) и удовлетворительно соответствует сумме удвоенной интенсивности сигнала *пара*-Н пероксида бензоила при 7.87–7.78 м. д. и половине интенсивности сигнала при 8.04– 7.91 м. д. Таким образом, сигналы при 8.04– 7.91 м. д. Таким образом, сигналы при 8.04– 7.91 м. д. соответствуют *орто*- и *мета*-протонам бензоатных остатков, а мультиплет при 7.71–7.60 м. д. является неразделенной суммой сигналов *мета*-протонов пероксида бензоила и *пара*-протонов образовавшегося бензоата, что подтверждается сопоставлением со спектрами эфиров бензойной кислоты [17].

Из сравнения результатов распада пероксида бензоила в ацетонитриле без добавок и с добавкой N-метилпирролидона (рис. 1, 2 и 4) следует, что за одинаковое время нагрева в смеси с N-метилпирролидоном происходит существенное снижение интенсивности сигналов протонов пероксида бензоила и образование намного большего количества бензола (синглет при 7.42-7.33 м. д.), интенсивность сигнала которого составила 1.3 и 9.2% от общей интенсивности сигналов при 8.2-7.3 м. д. без и в присутствии N-метилпирролидона соответственно (100 мин нагрева). Установлено, что на протяжении 210 мин соотношение количества образовавшихся бензоатов и бензола в смеси с N-метилпирролидоном оставалось постоянным и равным 3, что соответствует протеканию параллельных реакций присоединения бензоатного радикала к молекуле добавки и его участию в реакциях образования бензола подобно реакциям (2)–(3), как показано на схеме 1.

Возможность образования радикала N-метилпирролидона обусловлена характерной для N-замещенных пирролидонов лабильностью связей C–H в α-положении к гетероатому или карбонилу [18, 19], которая должна быть присуща также и N-винилпирролидону. Такой путь передачи цепи на этот мономер с созданием центров разветвления поли-N-винилпирролидона рассмотрен в работе [8].

В спектре реакционной смеси с 2 моль/л N-винилпирролидона в ацетонитриле после 100 мин выдержки при 333 К сигналы исходного пероксида бензоила отсутствуют (рис. 1, 3), поэтому распад в массе N-винилпирролидона изучали, сокра-

тив время реакции, либо уменьшив температуру до 313 К (рис. 2, табл. 1). Обнаружено, что при 333 К в ацетонитриле с добавкой 2 моль/л N-винилпирролидона и в массе N-винилпирролидона через 60 и 45 мин реакции интенсивность сигналов *орто-* и *пара*-протонов пероксида бензоила составляет ~4 и ~ 1% от исходной соответственно (табл. 1), тогда как в смеси N-винилпирролидона с метилметакрилатом (1:1, [N-винилпирролидон] ~ 4.6 моль/л) за 51 мин реакции она снижается всего на ~20%.

В смесях N-винилпирролидона с малеиновым ангидридом, N-винилпирролидона с малеиновым ангидридом и метилметакрилатом интенсивный синглет малеинового ангидрида при ~7.46 м. д. перекрывает малоинтенсивные сигналы параи мета-протонов пероксида бензоила, однако имеется возможность следить за концентрацией орто-Н пероксида. Оказалось, что что в смеси N-винилпирролидона с малеиновым ангидридом уже через 52 мин выдержки при 313 К дублет орто-Н пероксида не виден, но появляется мультиплет орто-Н бензоата при 8.00-7.95 м. д., тогда как в трехкомпонентной смеси сигнал орто-Н обнаруживается еще через 94 мин с начала реакции (313 К). Таким образом, введение метилметакрилата в N-винилпирролидон существенно замедляет распад пероксида бензоила, видимо, вследствие увеличения вклада основного процесса роста цепи и снижения вклада побочных реакций.

Установлено, что при нормировке к 1 суммарная интенсивность сигналов в диапазоне 8.2– 7.4 м. д. для каждой серии опытов с участием N-винилпирролидона остается постоянной (в пределах стандартной ошибки ее определения 5–10%). В

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

спектрах реакционных смесей отсутствуют сигналы кислотных (~12.5 м. д. для бензойной кислоты в ДМСО-*d*₆) и фенильных протонов (~7.37 м. д.), т. е. в данных условиях в ходе распада пероксида

Рис. 2. Изменения в спектре ЯМР ¹Н пероксида бензоила (0.1 моль/л) в N-винилпирролидоне (1) после нагревания при 313 К в течение 20 (2) и 80 мин (3), при 333 К в течение 5 (4) и 25 мин (5). 6 – фрагмент спектра поли-N-винилпирролидона, выделенного из смеси, выдержанной при 313 К в течение 80 мин в присутствии 0.1 моль/л пероксида бензоила.

Рис. 3. Изменение концентрации пероксида бензоила в ацетонитриле, содержащем 2 моль/л N-метилпирролидона (1) или N-винилпирролидона (2), а также в массе N-винилпирролидона (3) и накопление (S) продуктов распада: бензоатов (1'-3') и бензола (1'') в указанных выше средах (1-3) при 333 К.

выделения СО₂ не происходит, и других продуктов распада пероксида, кроме бензоатов, не образуется. Это означает, что в процессе инициированной пероксидом полимеризации N-винилпирролидона или его сополимеризации с метилметакрилатом в массе рост макромолекулярной цепи начинается с реакций присоединения мономеров к бензоатным радикалам. Действительно, в спектрах смесей, содержащих пероксид бензоила и N-винилпирролидон, сигналы бензоатных протонов имеют сглаженную структуру, характерную для высокомолекулярных продуктов, что особенно ярко проявляется в отсутствие растворителя (рис. 2). Более того, три мультиплета в области 8.05-7.45 м. д., аналогичные по положению, форме и соотношению интенсивностей, присутствуют в спектрах выделенного из этих смесей поли-N-винилпирролидона (рис. 2).

Концентрацию пероксида бензоила при распаде в различных средах [ПБ], а также содержание

Рис. 4. Анаморфоза в полулогарифмических координатах кривых расходования пероксида бензоила в смеси N-винилпирролидон–метилметакрилат (50:50) при 333 К (1), N-винилпирролидон–малеиновый ангидрид– метилметакрилат (45:45:10) (2), N-винилпирролидона (3) и N-винилпирролидон–малеиновый ангидрид (50:50) (4) при 313 К.

продуктов распада (рис. 3) рассчитывали, используя начальную и текущую величину интегральной интенсивности сигналов (I_0 , I_t) (табл. 1) только *орто-* или суммы *орто-* и *пара-*Н пероксида при 8.12–8.04 и 7.87–7.78 м. д., что приводит к практически одинаковому результату.

Константу скорости распада пероксида бензоила (k_d) определяли по зависимости $\ln I_0/I_t \equiv \ln[\Pi B]_0/[\Pi B]_t$ от продолжительности реакции, которая является линейной (рис. 4), подтверждая, что распад пероксида бензоила в изучаемых средах протекает как реакция первого порядка. Найденная таким образом величина k_d в ацетонитриле при 333 К составила 2.9×10^{-6} с⁻¹ (табл. 2), что хорошо согласуется с теоретически ожидаемым значением, $2-3 \times 10^{-6}$ с⁻¹ (по данным публикаций $k_d \times 10^6 = 0.018$, 0.26 и 17.6 с⁻¹ при 303, 323 [2] и 343 К [11] соответственно). Это еще раз подтверждает, что метод ЯМР можно применять для контроля за количеством пероксида бензоила в

	$k_{\rm d},{ m c}^{-1}$			
Среда, в которои проводили распад пероксида оензоила	313 K	333 K		
Ацетонитрил	8.5×10 ^{-8 a}	(2.9±0.3)×10 ⁻⁶		
2 моль/л N-метилпирролидона в ацетонитриле		$(1.3\pm0.1)\times10^{-4}$		
2 моль/л N-винилпирролидона в ацетонитриле		4×10 ⁻³		
N-Винилпирролидон	(5±1)×10 ⁻⁴	6×10 ^{-3 б}		
N-Винилпирролидон-малеиновый ангидрид, 50:50	1×10 ^{-3 б}	_		
N-Винилпирролидон-малеиновый ангидрид-метилметакрилат, 45:45:10	(1.79±0.08)×10 ⁻⁴	_		
N-Винилпирролидон-метилметакрилат, 50:50		$(0.81\pm0.08)\times10^{-4}$		
Метилметакрилат [16]		3.6×10 ⁻⁶		

	Таблица 2. Константы	распада пероксида	і бензоила (k_d)) в ј	растворителях	к, мономе	рах и их	смесях
--	----------------------	-------------------	--------------------	-------	---------------	-----------	----------	--------

^а Значение k_d рассчитано по данным для 303, 323 [2] и 343 К [11].

^б Оценка по одной точке.

процессе распада при условии, что сигналы протонов среды полностью или частично не перекрывают область 8.1–7.4 м. д.

Определенные в среде N-винилпирролидона при температурах от 298 до 323 К величины констант распада пероксида бензоила (k_d от 0.84× 10^{-4} до 1.15×10^{-3} с⁻¹ соответственно) линеаризуются в координатах уравнения Аррениуса и дают активационные параметры реакции: E_a 75.5± 6.8 кДж/моль, ln.4 21.1±2.6 (R^2 0.976). Таким образом, найденная величина энергии активации распада пероксида бензоила в массе N-винилпирролидона примерно в 2 раза меньше, чем в ацетонитриле (136±4 кДж/моль [2]).

Из величин констант распада (табл. 2) следует, что с наименьшей скоростью распад пероксида бензоила протекает в ацетонитриле, а с максимальной – в смеси N-винилпирролидона с малеиновым ангидридом, что может быть связано с образованием в этой смеси радикальных частиц в отсутствие инициатора, как было показано в работе [20]. Из-за высокой скорости реакции определение константы распада пероксида в смеси N-винилпирролидон– малеиновый ангидрид (1:1) при 313 К оказалось затруднительным.

Таким образом, введение малеинового ангидрида в среду N-винилпирролидона (1:1) ускоряет распад пероксида бензоила примерно в 2 раза, тогда как добавка 10 мол% метилметакрилата к этой смеси замедляет его в ~5 раз, что вполне ожидаемо, так как величина k_d в метилметакрилате незначительно выше (на ~20%), чем в ацетонитриле (при 333 К). При введении 2 моль/л N-метилпирролидона в ацетонитрил величина k_d возрастает в ~40 раз, а такого же количества N-винилпирролидона – на ~2 порядка по сравнению с ацетонитрилом (табл. 2), что свидетельствует как о возможности реакции радикалов пероксида бензоила с лактамным кольцом N-метилпирролидона или N-винилпирролидона, так и активации винильной группы, находящейся при атоме азота N-винилпирролидона по сравнению с группой C–CH=CH₂ в составе традиционных виниловых мономеров.

Несмотря на то, что скорость распада пероксида бензоила в N-винилпирролидоне намного превышает таковую в среде других виниловых мономеров, образование поли-N-винилпирролидона при инициировании пероксидом бензоила протекает с относительно малой скоростью – 10.1%/ч (0.01 моль/л пероксида бензоила, 333 K), что в ~5 раз меньше, чем в присутствии азобисизобутиронитрила (51.9%/ч) в аналогичных условиях. Более того, скорость полимеризации N-винилпирролидона в присутствии пероксида бензоила снижается со временем (рис. 5).

Действительно, высокая скорость реакции распада и образование большого количества первичных радикалов могут приводить к появлению небольших цепей, участвующих далее в реакциях обрыва и передачи цепи. Это наиболее заметно

Рис. 5. Накопление поливинилпирролидона в течение полимеризации при 333 (1-3) и 313 К (4) в присутствии 0.1 (1), 0.01 (2, 3) и 0.001 (4) моль/л пероксида бензоила. Контроль за конверсией осуществлялся методами ЯМР (1, 2) и дилатометрии (3, 4).

должно проявляться при высокой концентрации пероксида бензоила, что подтверждает ход кривых накопления полимера на рис. 5.

Для проверки этого предположения был проведен анализ содержания групп двойной связи N-винилпирролидона в его смесях с пероксидом бензоила по данным ЯМР, который показал, что при высокой концентрации пероксида бензоила (0.1 моль/л) распад пероксида и полимеризация N-винилпирролидона идут со скоростями, обеспечивающими соотношение раскрытых двойных связей N-винилпирролидона и бензоатных остатков на уровне ~2 и 2.5-4 при 313 и 333 К (в растворе 2 моль/л N-винилпирролидона в ацетонитриле это соотношение близко к 1). Вместе с тем в образцах поли-N-винилпирролидона, выделенных из указанных реакционных смесей, обнаруживается ~8 и ~13 звеньев N-винилпирролидона на 1 бензоатную группу соответственно, т. е. полимеры содержат в 3-4 раза меньше бензоатных остатков, чем находилось в смеси. Масса выделенного поли-N-винилпирролидона ниже, чем рассчитанная по количеству прореагировавших групп двойной связи N-винилпирролидона по результатам ЯМР (ср. кривые 2 и 3 на рис. 5). Это означает, что в реакционной смеси находится большое количество ди- и олигомерных продуктов или продуктов замещения по кольцу.

При уменьшении содержания пероксида бензоила в смеси до 0.01 моль/л количество бензоатных остатков в поли-N-винилпирролидоне (~48 звеньев N-винилпирролидона/бензоат) приближается к рассчитанному по конверсии N-винилпирролидона и концентрации пероксида бензоила в реакционной среде (~33 звена N-винилпирролидона/бензоат), хотя и в этом случае распад пероксида протекает с высокой скоростью: через 60 мин (333 K) его присутствие в смеси не обнаруживается.

Отсутствие в реакционных смесях с N-винилпирролидоном следов бензойной кислоты или бензола позволяет полагать, что бензоатные радикалы присоединяются к кольцу или группе двойной связи N-винилпирролидона (1 или 2 бензоатных фрагмента на молекулу N-винилпирролидона). К сожалению, такие соединения невозможно идентифицировать методом ЯМР ¹Н на фоне существенного (10-50-кратного) избытка мономера N-винилпирролидона относительно продуктов полимеризации (или замещения/присоединения) вследствие близкого соответствия положения сигналов протонов исходного, замещенного N-винилпирролидона и поли-N-винилпирролидона. В спектрах образцов полимеров, выделенных из этих смесей, имеются слабые уширенные сигналы с центрами при 6.45, 5.75 (5.47, 5.25) и 4.8 м. д., которые могут быть отнесены к резонансу протонов в замещенных радикалом бензоата (R) группах цикла N-CHR, CHR-C(=O) и C-CHR-C соответственно со слабой интенсивностью до 5-6% от звена N-винилпирролидона.

В спектрах выделенных полимеров обнаруживается также дублетный сигнал при 1.19, 1.18 (1.15, 1.14) м. д., интенсивность которого составляет от 1 до 3 мол% относительно звена поли-N-винилпирролидона. Это свидетельствует о присутствии примеси, содержащей группу –СНСН₃. Таким соединением может быть димер [20] или олигомер N-винилпирролидона.

Подводя краткий итог экспериментальных исследований, можно констатировать специфические особенности процесса инициированной пероксидом бензоила полимеризации N-винилпирролидона и предложить схему взаимодействия

1662

N-винилпирролидона с бензоатными радикалами (схема 2).

Единственным продуктом распада пероксида в присутствии N-винилпирролидона являются бензоатные радикалы C₆H₅C(O)O[•] (R[•]), присоединение которых к «голове» или «хвосту» винильной группы мономера (N-винилпирролидона) инициирует реакции роста цепи с образованием первичных радикалов 2а или 26, а затем димеров или олигомеров N-винилпирролидона (через образование радикалов За или Зб). Вследствие высокой скорости распада пероксида бензоила и образования большого количества бензоатных радикалов возможно присоединение второго радикала R[•] к радикалу 2а (26), обрывающее цепь с образованием продукта 6. Возможно также взаимодействие молекулы N-винилпирролидона с первичным радикалом 2а (2б) с отрывом атома Н от лактамного кольца [продукты 4а (4б) и радикал 5], что при присоединении R[•] приводит к обрыву цепи с образованием продукта 7.

Для кинетической и термодинамической оценки вероятности предполагаемых путей взаимодействия N-винилпирролидона с бензоатным радикалом в рамках теории переходного состояния (TS) был проведен квантово-химический расчет на уровне DFT ω B97х-V/def2-TZVP//BP86/def2-SVP, результаты которого приведены в табл. 3. Судя по рассчитанным значениям ΔG , реакции инициирования, роста и передачи цепи протекают самопроизвольно (за исключением реакции образования радикала **36**) с барьерами свободной энергии ΔG^{\neq} , возрастающими в порядке: инициирование < рост < передача.

Присоединение бензоатного радикала к «голове» (образование радикала 2а) характеризуется более низким активационным барьером, хотя термодинамические параметры присоединения к «хвосту» ниже; в то же время для дальнейшего роста цепи энергетически выгоднее присоединение молекулы N-винилпирролидона к радикалу 2а. Последнее справедливо также для реакции передачи цепи с образованием продукта 4 и радикала 5; участием в ней радикала 26 можно практически пренебречь.

В реакциях обрыва цепи отсутствует барьер активации ΔG^{\neq} и имеется существенный выигрыш в

 Decentry	A	ктивационнь	ие	Термодинамические			
Реакция	ΔH^{\neq}	$T\Delta S^{\neq}$	ΔG^{\neq}	ΔΗ	$T\Delta S$	ΔG	
$1 + R^{\bullet} \rightarrow TS_{1a} \rightarrow 2a$	-35.8	-55.1	19.3	-99.7	-53.3	-46.4	
$1 + \mathrm{R}^{\bullet} ightarrow \mathrm{TS}_{16} ightarrow 26$	-25.0	-57.0	32.0	-130.7	-57.6	-73.1	
$1 + 2a \rightarrow TS_{2a} \rightarrow 3a$	-24.2	-63.5	39.4	-153.1	-66.1	-86.9	
$1 + 26 ightarrow \mathrm{TS}_{26} ightarrow 36$	-0.8	-60.5	59.7	-103.6	-59.2	-44.4	
$1 + 2a \rightarrow TS_{3a} \rightarrow 4a + 5$	19.2	-58.4	77.6	-43.1	-1.1	-42.0	
$1+26 ightarrow { m TS}_{36} ightarrow 46+5$	38.9	-57.2	96.1	10.6	3.6	7.0	
$2a + R \rightarrow TS_4 \rightarrow 6$	_	_	_	-388.7	-68.8	-319.9	
$26 + \mathrm{R}^{\scriptscriptstyle\bullet} ightarrow \mathrm{TS}_4 ightarrow 6$	-	_	-	-357.7	-64.5	-293.2	
$5 + R^{\bullet} \rightarrow TS_5 \rightarrow 7$	-	_	_	-372.3	-65.1	-307.2	

Таблица 3. Активационные и термодинамические параметры реакций (кДж/моль) при 298.15 К

 ΔG , что неизбежно должно привести к превалированию их относительно реакции роста.

Из этого анализа следует, что радикал пероксида бензоила с смесях с N-винилпирролидоном может активно расходоваться в реакциях обрыва, в том числе за счет отрыва лабильных атомов водорода лактамного цикла. Образующиеся соединения (радикал 5, продукт 7) могут также участвовать в росте и включаться в полимерную цепь, на что указывает наличие сигналов в области 6.5-4.8 м. д. в спектрах выделенных образцов полимеров. Этот результат совпадает с выводом авторов [18], которыми было показано, что при полимеризации N-винилпирролидона в водных растворах наиболее вероятным является передача цепи с образованием радикала 5. Кроме того, полученные результаты не противоречат предложенной авторами [8] схеме образования разветвленных цепей поли-N-винилпирролидона.

Таким образом, применение метода спектроскопии ЯМР при изучении распада пероксида бензоила в N-винилпирролидоне, его растворах и смесях позволило не только определить константы скорости распада, но и количественно проанализировать кинетику расходования групп двойных связей и бензоатных радикалов, и тем самым получить экспериментальное свидетельство их участия в побочных реакциях обрыва и передачи цепи. Последнее подтверждается проведенными теоретическими расчетами и объясняется спецификой строения молекулы N-винилпирролидона, имеющей в своем составе лабильные атомы водорода лактамного цикла.

Вследствие расходования инициатора на побочные процессы инициирование полимеризации N-винилпирролидона пероксидом бензоила относительно малоэффективно, особенно в смесях с малеиновым ангидридом, где возможно образование радикалов и в отсутствие инициатора. Повышение эффективности инициирования пероксидом бензоила систем с N-винилпирролидоном и снижение вероятности побочных процессов возможно при введении в систему виниловых мономеров и снижении концентрации инициатора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Определение концентрации пероксида методом иодометрии проводили по стандартной методике [10], нагревая пробу 10–15 мин при ~353 К.

Для анализа расходования пероксида бензоила методом ЯМР приготовленную весовым методом реакционную смесь, содержащую 0.1 или 0.02 моль/л пероксида бензоила, заливали в ампулы, продували аргоном и запаивали, после чего погружали в термостаты с температурой от 298 до 333 К (термостатирование $\pm 0.1^{\circ}$), отсчет времени начинали через 5 мин после погружения. Через заданные промежутки времени ампулы вынимали и резко охлаждали погружением в воду со льдом, после чего вскрывали и отбирали аликвоту для анализа (0.2 мл), которую вносили в ампулы для ЯМР, добавляя 0.5 мл ДМСО- d_6 . Спектры ЯМР ¹Н полученных растворов регистрировали с помощью прибора Вruker Avance II (400 МГц) при 298 К. В качестве внутреннего стандарта использовали ТМС, погрешность измерения химических сдвигов составляет ±0.0005 м. д. (¹Н), стандартная ошибка определения интегральной интенсивности 5–10%. Для количественного анализа данных интенсивности всех сигналов, имеющихся в спектре, проводили нормировку интенсивности I_i каждого *i*-сигнала по соотношению с общей интенсивностью сигналов исходного пероксида бензоила и бензоатов в области 8.2–7.4 м. д., а также бензола при 7.37 м. д.

Для изучения полимеризации N-винилпирролидона методом дилатометрии использовали дилатометры с объемом баллончика ~5 см³ и диаметром калиброванного капилляра 1 мм. После заполнения мономером и его дегазации в токе аргона дилатометр помещали в термостат, в котором поддерживали необходимую температуру с точностью ± 0.1 K, изменение объема фиксировали с помощью катетометра B-630. Процесс проводили до степени конверсии не более 8–10%, после чего смесь охлаждали и высаживали в диэтиловый эфир. Степень конверсии рассчитывали, используя определенную ранее величину коэффициента контракции 0.133 или 0.148 для 313 или 333 К.

Все расчеты выполнены с пакетом ORCA 4.2.1 [21] в рамках теории функционала плотности DFT в газовой фазе, в основном состоянии. Для систем с закрытыми и открытыми оболочками использовали соответственно ограниченный (RKS) и неограниченный по спину (UKS) методы Кона–Шэма.

Поиск переходных состояний (TS) осуществляли, используя одномерное сканирование поверхности потенциальной энергии с релаксацией вдоль выбранной координаты реакции (расстояние между атомами), с последующей оптимизацией геометрии полученной седловой точки. Далее релевантность структуры TS проверяли построением путей IRC [22], соединяющих TS с реактантами и продуктами реакций.

Равновесные геометрические параметры реагентов, ТS и продуктов рассчитывали с использованием GGA-функционала BP86 [23, 24] в сочетании с основным def2-SVP и вспомогательным def2/J базисными наборами [25, 26] (использовали приближение Split-RI-J [27] для аппроксимации кулоновских интегралов). На этом же уровне были рассчитаны частоты колебаний при стандартных условиях (298 К, 1 атм) для верификации характера стационарных точек (локальный минимум или TS) и определения поправок на энергию нулевых колебаний, величин энтропии (*S*), термических поправок к энтальпии (*H*) и энергии Гиббса (*G*).

Для всех равновесных структур уровня BP86/ def2-SVP была проведена одноточечная оценка электронных энергий более высокого уровня с использованием функционала wB97x-V в сочетании с трехэкспоненциальным базисом с добавлением поляризационных функций def2-TZVP [25, 26]. Применялось приближение RIJCOSX [28, 29] для аппроксимации кулоновских и обменных интегралов (дополнительный базис def2/J). (Гибридный функционал wB97x-V [30] с разделением по диапазонам и поправкой на дисперсию VV10 [31] рекомендован в исследовании [32] как один из лучших для общей термохимии на основе тестирования обширной эталонной базы данных GMTKN55).

Окончательные значения свободной энергии и энтальпии получены добавлением соответствующих термических поправок из вычислений BP86/def2-SVP к потенциальной энергии уровня ω B97x-V/def2-TZVP.

На основе полученных термохимических данных были оценены активационные (как разница сумм значений S, H и G для TS и несвязанных реагентов) и термодинамические (как разница сумм S, H и G несвязанных продуктов и реагентов) характеристики реакций.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Тюрина Татьяна Григорьевна, ORCID: hppts:// orcid.org/0000-0003-2950-3616

Заречная Ольга Михайловна, ORCID: https:// orcid.org/0000-0002-6069-3967

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ибрагимов А.Т., Рафиков А.С., Исмаилов И.И., Аскаров М.А. // Высокомол. соед. (Б). 1992. Т. 34. № 12. С. 27.
- 2. Туровский Н.А., Целинский С.Ю., Опейда И.А., Шапиро Ю.Е. // ТЭХ. 1992. Т. 28. № 4. С. 324.
- Sideridou I.D., Achilias D.S., Karava O. // Macromolecules. 2006. Vol. 39. N 6. P. 2072. doi 10.1021/ma0521351
- 4. Трубицина С.Н., Исмаилов И.И., Аскаров М.А. // Высокомол. соед. (А). 1978. Т. 20. № 11. С. 2608.
- 5. Большаков А.И., Гордон Д.А., Емельянова Н.С., Кузина С.И., Кирюхин Д.П. // Химия высоких энергий. 2019. Т. 53. № 5. С. 354. doi 10.1134/ S0023119319050048; Bol'shakov A.I., Gordon D.A, Emel'yanova N.S., Kuzina S.I., Kiryukhin D.P. // High Energy Chem. 2019. Vol. 53. Р. 356. doi 10.1134/ S0018143919050047
- Кирш Ю.Э. Поли-N-винилпирролидон и другие поли-N-виниламиды: Синтез и физико-химические свойства. М.: Наука, 1998. 252 с.
- Franco P., De Marco I. // Polymers. 2020. Vol. 12. N 5. P. 1114. doi 10.3390/polym12051114
- Welzel S., Zander C., Hungenberg K.-D., Nieken U. // Macromol. React. Eng. 2022. Vol. 16. N 3. P. 2200005. doi 10.1002/mren.202200005
- Camilo A.P.R., Felisberti M.I., Mano V. // IX Brazilian MRS Meeting, 2010, Ouro Preto. Vol. 1. P. 638.
- Антоновский В.П., Бузанова М.М. Аналитическая химия органических пероксидных соединений. М.: Химия, 1978. 309 с.
- Hammond G.S., Nandi U.S. // J. Am. Chem. Soc. 1961.
 Vol. 83. N 5. P. 1213. doi 10.1021/ja01466a044
- Гайдукевич О.А., Скаковский Е.Д., Тычинская Л.Ю., Зверева Т.Д., Дикусар Е.А., Ламоткин С.А., Рыков С.В. // Ж. прикл. спектр. 2012. Т. 79. № 2. С. 323; Haidukevich O.A., Skakovskii E.D., Tychinskaya L.Y. Zvereva T.D., Dikusar E.A., Lamotkin S.A. // J. Appl. Spectrosc. 2012. Vol. 79. N 2. P. 302. doi 10.1007/s10812-012-9598-y
- Gottlieb H.E., Kotlyar V., Nudelman A. // J. Org. Chem. 1997. Vol. 62. N 21. P. 7512. doi 10.1021/jo971176v
- Engel P.S., Lee W.-K., Marschke G.E., Shine H.J. // J. Org. Chem. 1987. Vol. 52. N 13. P. 2813. doi org/10.1021/jo00389a031
- de Lijser H.J.P., Arnold D.R. // J. Phys. Chem. (A). 1998. Vol. 102. N 28. P. 5592. doi 10.1021/jp980204q

- Günter H. NMR Spectroscopy Basic Principles, Concepts, and Applications in Chemistry. Weinheim: Wiley-VCH, 2013. P. 121, 124.
- 17. Spectral Database for Organic Compounds, SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top. cgi
- Deglmann P., Hellmund M., Hungenberg K.-D., Nieken U., Schwede C., Zander C. // Macromol. React. Eng. 2019. Vol. 13. N 5. P. 1900021. doi 10.1002/ mren.201900021
- Dispenza C., Sabatino M.A., Grimaldi N., Dahlgren B., Al-Sheikhly M., Wishart J.F., Tsinas Z., Poster D.L., Jonsson M. // Radiat. Phys. Chem. 2020. Vol. 174. P. 108900. doi 10.1016/j.radphyschem.2020.108900
- Тюрина Т.Г., Заречная О.М., Зайцева В.В., Зайцев С.Ю. // ЖОХ. 2020. Вып. 5. С. 664; Tyurina T.G., Zarechnaya О.М., Zaitseva V.V., Zaitsev S.Yu. // Russ. J. Gen. Chem. 2020. Vol. 90. N 5. P. 773. doi 10.1134/S1070363220050023
- Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. Vol. 152. P. 224108. doi10.1063/5.0004608
- Fukui K. // Acc. Chem. Res. 1981. Vol. 14. P. 363. doi 10.1021/ar00072a001
- Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi 10.1063/1.464913
- Perdew J.P. // Phys. Rev. (B). 1986. Vol. 33. P. 8822. doi 10.1103/PhysRevB.33.8822
- 25. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi 10.1039/B508541A
- Weigend F. // Phys. Chem. Chem. Phys. 2006. Vol. 8. P. 1057. doi 10.1039/B515623H.
- Neese F. // J. Comput. Chem. 2003. Vol. 24. N 14. P. 1740. doi 10.1002/jcc.10318
- Neese F., Wennmohs F., Hansen A., Becker U. // Chem. Phys. 2009. Vol. 356. P. 98. doi 10.1016/j. chemphys.2008.10.036.
- Izsák R., Neese F. // J. Chem. Phys. 2011. Vol. 135.
 P. 144105. doi 10.1063/1.3646921
- Mardirossian N., Head-Gordon M. // Phys. Chem. Chem. Phys. 2014. Vol. 16. P. 9904. doi 10.1039/ C3CP54374A
- Vydrov O.A., Van Voorhis T. // J. Chem. Phys. 2010. Vol. 133. N 24. P. 244103. doi 10.1063/1.3521275
- Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. // Phys. Chem. Chem. Phys. 2017. Vol. 19. P. 32184. doi 10.1039/C7CP04913G

Study of The N-Vinylpirrolidone Effect on Destruction of Benzoyl Peroxide

T. G. Tyurina^{*a*,*} and O. M. Zarechnaya^{*a*}

^a L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, Donetsk, 83114 Ukraine *e-mail: t_tiurina@mail.ru

Received July 12, 2022; revised August 23, 2022; accepted August 25, 2022

The decomposition of benzoyl peroxide in a solution or bulk of *N*-vinylpyrrolidone, its mixtures with maleic anhydride and/or methyl methacrylate was studied by ¹H NMR spectroscopy. It was found that the peroxide decomposition rate constants vary from 10^{-3} s⁻¹ for a mixture of *N*-vinylpyrrolidone with maleic anhydride (1:1, 313 K) to 10^{-4} s⁻¹ for a mixture with methyl methacrylate (1:1, 333 K). The activation energy for the decomposition of benzoyl peroxide in *N*-vinylpyrrolidone was 75.5±6.8 kJ/mol. Possible reactions of the interaction of *N*-vinylpyrrolidone with the benzoate radical were proposed, and their thermochemical characteristics were evaluated at the level of ω B97x-V/def2-TZVP.

Keywords: benzoyl peroxide, N-vinylpyrrolidone, NMR spectroscopy, quantum-chemical calculations