УДК 547.341;547.787.1

РЕАКЦИИ ТЕТРАМЕТИЛЭТИНИЛДИФОСФОНАТА С ЗАМЕЩЕННЫМИ 2-АМИНОПИРИДИНАМИ

© 2022 г. К. Н. Дакуо^а, А. С. Крылов^а, Н. И. Свинцицкая^{а,*}

^а Санкт-Петербургский государственный технологический институт (технический университет), Московский пр. 26, Санкт-Петербург, 190013 Россия *e-mail: nsvincickava@mail.ru

> Поступило в редакцию 14 июля 2022 г. После доработки 5 августа 2022 г. Принято к печати 7 августа 2022 г.

Изучена реакция гидроаминирования тераметилэтинилдифосфоната замещенными 2-аминопиридинами под действием основания. Реакция протекает стереоселективно с образованием (*E*)-енаминофосфонатов. Получен ряд новых фосфоноенаминов – диметил-[2-(диметоксифосфорил)-2-(пиридин-2-иламино)-винил]фосфонатов.

Ключевые слова: енамины, енаминофосфонаты, алкинилфосфонаты, аминопиридины, вицинальные бисфосфонаты

DOI: 10.31857/S0044460X22110105, EDN: LOIIPL

Органические производные фосфоновой кислоты, представляющие собой группу как синтетических, так и биогенных веществ, характеризующихся наличием групп $C-P(OR)_2$ (R = H, Alk, Ar), – это перспективный класс соединений с широким спектром практического применения [1-7]. Среди них большое внимание в последнее время уделяется бисфосфонатам (см. обзоры [8-10]) и, в частности, их важному подклассу – аминобисфосфонатам. Этот повышенный интерес обусловлен наличием у данных соединений различной биологической активности. Эти соединения действуют как сильные ингибиторы резорбции костной ткани, поэтому могут использоваться в качестве препаратов для лечения остеопороза, скелетных осложнений злокачественных новообразований, болезни Педжета, гиперкальциемии и фиброзной дисплазии [11-13]. Растет интерес к их применению в качестве противоопухолевых и антибактериальных агентов [14-17]. Кроме того, аминобисфосфоновые кислоты имеют важное промышленное значение и, в частности, находят применение в качестве ингибиторов образования накипи и коррозии благодаря их способность к комплексообразованию с ионами металлов [18, 19]. Растущий интерес к биологической активности аминобисфосфонатов стимулировал и разработку методов их синтеза [2, 14, 20, 21].

Наибольшую известность имеют геминальные аминобисфосфонаты - их производные (памидронат, алендронат, этидронатом, ибандронат, золедроновая кислота и др.) зарекомендовали себя в качестве эффективных средств при лечении остеопороза [22]. В отличие от геминальных вицинальные бисфосфонаты (соединения типа Р-С-С-Р), а также соединения, в которых расстояние между фосфорильными группами больше (P–C_n–P, $n \ge 2$) неактивны при нарушениях, связанных с обменом кальция. Тем не менее известны примеры, когда введение потенциальных донорных групп по соседству с фосфонатной приводило к проявлению такой активности за счет возможности образования бидентатных хелатов с переходными металлами и кальцием [23, 24], в связи с чем вицинальные аминобисфосфонаты и разработка методов их синтеза также заслуживают отдельного внимания.

Схема 1.

$$(EtO)_{2}(O)P \longrightarrow P(O)(OEt)_{2} + R^{1}R^{2}NH \xrightarrow{CH_{2}Cl_{2}} (EtO)_{2}(O)P \xrightarrow{P(O)(OEt)_{2}} H \xrightarrow{NR^{1}R^{2}} H$$

$$R^1 = H, R^2 = Me, c-Hex, Bn; R^1, R^2 = (CH_2)_4.$$

Схема 2.

R = H(a), 3-Me(б), 4-Me(в), 6-Me(г), 5-Br(д).

Фосфонилированные енамины являются ценными интермедиатами в органической химии. Например, их литиированные производные оказались эффективными замаскированными гомоенолятными анионами карбоновой кислоты, которые могут использоваться в синтезе различных гетероциклических систем [25–27]. С другой стороны, фосфоноенамины, которые можно рассматривать как аналоги дегидроаминокислот, могут быть удобными предшественниками при получении α,β -аминофосфонатов посредством каталитического гидрирования [28–31]. В связи с этим наблюдается интерес к совершенствованию и разработке новых методов синтеза данных соединений (см. обзор [32]).

В продолжение исследований по химии алкинилфосфонатов [33–35] нами предложен подход к синтезу новых енаминобисфосфонатов на основе реакций диметилового эфира этинилдифосфоновой кислоты с замещенными 2-аминопиридинами. На сегодняшний день в литературе представлено всего два примера подобного взаимодействия этинилдифосфонатов с аминами (схема 1) [36, 37]. Авторы указывают, что полученные енамины могут служить предшественниками иминиевых анионов при алкилировании и вреакциях Виттига–Хорнера– Эммонса [37].

В качестве N-нуклеофильных агентов для присоединения по тройной связи алкинилбисфосфоната 1 нами были выбраны 2-аминопиридины, которые являются удобными лигандами для создания различных металлокомплексов, а также универсальными предшественниками для создания молекул с широким спектром биологической активности [38, 39]. Реакцией гидроаминирования тетраметилэтинилдифосфоната 1 2-аминопиридинами 2а-д под действием безводного K₂CO₃ (5 мол%) нами получен ряд новых фосфорилированных енаминов – диметил-[2-(диметоксифосфорил)-2-(пиридин-2-иламино)винил]фосфонатов (схема 2). В отличие от реакций с алифатическими аминами взаимодействие алкинилбисфосфоната 1 с 2-аминопиридинами, более слабыми нуклеофилами, проходит в более жестких условиях: кипячение реакционной массы при 80°С в ацетонитриле в течение 48-72 ч в присутствии безводного K₂CO₃.

Выход целевых диметил-[2-(диметоксифосфорил)-2-(пиридин-2-иламино)винил]фосфонатов **За**-д после очистки методом колоночной хроматографии составил 32–78%. Реакция протекает стреоселективно с образованием исключительно *E*-изомера.

Следует отметить, что в проведение реакции в отсутствие K₂CO₃ или с использованием других катализаторов и растворителей не привело к ожидаемому результату: реакция либо не протекала вовсе, либо требовала более длительного нагревания, при этом конверсия исходного тетраметилэтинилдифосфоната и выход конечного продукта реакции были крайне низкими.

Лучше всего в реакцию вступают 2-аминопиридины, имеющие донорные заместители в кольце. При этом легче всего протекает реакция с 2-аминопиридинами 26-г, содержащими метильную группу в орто-, мета- или пара-положении к аминогруппе. Однако в случае 2-амино-3-гидроксипиридина реакция сопровождается значительным осмолением реакционной смеси, вследствие чего выделить ожидаемый енаминобисфосфонат нам не удалось. Более длительное нагревание требуется при использовании 2-амино-5-бромпиридина 2д. Следует отметить, что в случае менее реакционноспособных 5-хлор-, 4-нитро- и 4-трифторметил-2-аминопиридинов длительное нагревание реакционной смеси приводило к образованию целевого енаминобисфосфоната лишь в следовых количествах, выделить который нам не удалось.

Реакция тетраметилэтинилдифосфоната 1 с аналогами 2-аминопиридина – 2-аминохинолином 4a и 1-аминоизохинолином 4б – требует более длительного нагревания (более 5 сут), однако и это не позволяет довести ее до конца. Соответствующие [2-(изо)хинолиниламино)винил]бисфосфонаты 5а, б были выделены с выходом 15–28%. При этом конверсия исходного этинилдифосфоната 1 не превышала 50% (по данным ЯМР ³¹Р).

Строение полученных соединений подтверждено данными спектроскопии ЯМР ¹H, ¹³C и ³¹P. Так, в спектрах ЯМР ¹Н аминовинилдифосфонатов За-д и 5а, б характерным является сигнал метинового протона РСН=, представленный дублетом дублетов в области 5.08-5.88 м. д. с константами спин-спинового взаимодействия ²J_{HP} 15.2-16.5 и ³*J*_{HP} 18.2–18.3 Гц, что указывает на *транс*-расположение фосфонатных групп. В спектрах ЯМР ¹³С атомы углерода при двойной связи резонируют дублетными сигналами в области 104.15-109.15 м. д. с константами спин-спинового взаимодействия с ядром фосфора ¹*J*_{CP} 187.9–204.1 Гц. Наличие двух дублетных сигналов в спектрах ЯМР ³¹Р алкендифосфонатов **За-д**, **5а**, **б** в области 12.35-22.18 м. д. с константой спин-спинового взаимодействия ³ *J*_{PP} 89.6-92.5 Гц свидетельствует о Е-конфигурации кратной связи. Для сравнения, в случае Z-алкендифосфонатов величина ³*J*_{PP} составляет 27–30 Гц [33, 35, 40].

Таким образом, на основе стереоселективной реакции гидроаминирования тетраметилового

эфира этинилдифосфоновой кислоты замещенными 2-аминопиридинами и амино(изо)хинолинами получен новый ряд (*E*)-енаминобисфосфонатов. Полученные фософоноенамины могут представлять интерес как ценные синтоны для построения фармацевтически активных молекул.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Замещенные 2-аминопиридины, 2-аминохинолин и 1-аминоизохинолин – коммерческие продукты, использовались без дополнительно очистки. Тетраметиловый эфир этинилдифосфоновой кислоты **1** был получен по методике, описанной ранее [41].

Спектры ЯМР ¹H, ¹³С и ³¹Р регистрировали на спектрометре Bruker Avance III HD 400 NanoBay с использованием рабочих частот 400.17 (¹H), 100.62 (¹³С) и 161.98 МГц (³¹Р). Масс-спектры (HMR-ESI) снимали на масс-спектрометре Bruker MicroTOF. Для колоночной хроматографии использовали силикагель 60 (Merck, 0.063–0.100 мм).

Общая методика получения соединений За–д, 5а, б. К раствору 1 ммоль тетраметилэтинилдифосфоната 1 в 5 мл безводного ацетонитрила прибавляли 1 ммоль соответствующего 2-аминопиридина 2а–д или амино(изо)хинолина 4а, б и 1 ммоль безводного K₂CO₃. Полученную смесь перемешивали при 80°C течение 48–72 ч (За–д) или 5 сут (5а, б). Контроль за ходом реакции осуществляли методом ЯМР ³¹Р. После окончания реакции осадок отфильтровывали и промывали хлористым метиленом. Фильтрат упаривали в вакууме. Остаток хроматографировали, элюент – CH₂Cl₂–MeOH (9:1).

Диметиловый эфир (*E*)-2-(диметоксифосфорил)-2-(пиридин-2-иламино)винил]фосфоновой кислоты (3а). Выход 57%, желтое масло. Спектр ЯМР ¹H, δ , м. д.: 3.65 д (6H, CH₃OP, ³J_{HP} 11.3 Гц), 3.81 д (6H, CH₃OP, ³J_{HP} 10.5 Гц), 4.58 уш. с (1H, NH), 5.77 д. д (1H, PCH=, ²J_{HP} 16.5, ³J_{HP} 18.2 Гц), 5.99 т (1H, C⁵H, ³J_{HH} 6.7 Гц), 6.50 д (1H, C³H, ³J_{HH} 8.2 Гц), 6.52 т (1H, C⁴H, ³J_{HH} 6.7 Гц), 8.06 д (1H, C⁶H, ³J_{HH} 6.4 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 53.37 д (CH₃OP, ²J_{CP} 6.2 Гц), 52.08 д (CH₃OP, ²J_{CP} 5.7 Гц), 105.02 (C⁵), 106.49 д (PC=, ¹J_{CP} 189.4 Гц), 107.99 д (PCH=, ¹J_{CP} 187.9 Гц), 108.86 (C³), 136.09 (C⁴), 138.04 (C⁶), 155.53 (C²). Спектр ЯМР ³¹P, $\delta_{\rm PP}$ м. д.: 12.86 д и 19.42 д (${}^{3}J_{\rm PP}$ 91.6 Гц). Массспектр, *m/z*: 359.0517 [*M* + Na]⁺ (вычислено для C₁₁H₁₈N₂NaO₆P₂⁺: 359.0532).

Диметиловый эфир (Е)-[2-(диметоксифосфорил)-2-(3-метилпиридин-2-иламино)винил]фосфоновой кислоты (36). Выход 78%, желтое масло. Спектр ЯМР ¹Н, б, м. д.: 2.15 с (3H, CH₃), 3.53 д (6H, CH₃OP, ³*J*_{HP} 11.2 Гц), 3.59 д (6H, CH₃OP, ³*J*_{HP} 11.2 Гц), 4.45 уш. с (1Н, NН), 5.08 д. д (1Н, РСН=, ²*J*_{HP} 15.2, ³*J*_{HP} 18.3 Гц), 6.23 т (1Н, С⁵Н, ³*J*_{НН} 6.8 Гц), 6.64 т (1Н, С⁴Н, ³*J*_{НН} 5.8 Гц), 7.97 д (1H, C⁶H, ³*J*_{HH} 5.8 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: д 17.12 (CH₃), 53.26 д (CH₃OP, ²J_{CP} 5.7 Гц), 53.53 д (CH₃OP, ²*J*_{CP} 6.3 Гц), 105.77 д (PCH=, ¹*J*_{CP} 187.9 Гц), 106.39 д (РС=, ¹*J*_{СР} 204.1 Гц), 108.08 (С³), 114.49 (C⁵), 137.83 (C⁴), 145.49 (C⁶), 156.98 (C²). Спектр ЯМР ³¹Р, б_р, м. д.: 15.20 д и 22.18 д (³*J*_{PP} 92.0 Гц). Масс-спектр, m/z: 373.0649 $[M + Na]^+$ (вычислено для C₁₂H₂₀N₂NaO₆P₂⁺: 373.0689).

Диметиловый эфир (*E*)-[2-(диметоксифосфорил)-2-(4-метилпиридин-2-иламино)винил]фосфоновой кислоты (3в). Выход 72%, желтое масло. Спектр ЯМР ¹H, δ , м. д.: 2.01 с (3H, CH₃), 3.65 д (6H, CH₃OP, ³J_{HP} 11.3 Гц), 3.81 д (6H, CH₃OP, ³J_{HP} 10.5 Гц), 4.62 уш. с (1H, NH), 5.69 д. д (1H, PCH=, ²J_{HP} 16.5, ³J_{HP} 18.3 Гц), 6.23 д (1H, C⁵H, ³J_{HH} 8.4 Гц), 6.27 с (1H, C³H), 7.01 д (1H, C⁶H, ³J_{HH} 6.7 Гц). Спектр ЯМР ¹³С, δ_{C} , м. д.: 21.52 (CH₃), 53.28 д (CH₃OP, ²J_{CP} 6.7 Гц), 53.92 д (CH₃OP, ²J_{CP} 5.7 Гц), 104.15 д (PCH=, ¹J_{CP} 190.6 Гц), 105.96 д (PC=, ¹J_{CP} 200.2 Гц), 107.77 (C³), 113.60 (C⁵), 137.27 (C⁴), 147.52 (C⁶), 157.45 (C²). Спектр ЯМР ³¹P, δ_{P} , м. д.: 12.85 д и 19.72 д (³J_{PP} 92.5 Гц).

Диметиловый эфир (*E*)-[2-(диметоксифосфорил)-2-(6-метилпиридин-2-иламино)винил]фосфоновой кислоты (Зг). Выход 57%, желтое масло. Спектр ЯМР ¹H, δ , м. д.: 2.41 с (ЗН, СН₃), 3.53 д (6H, CH₃OP, ³J_{HP} 11.3 Гц), 3.69 д (6H, CH₃OP, ³J_{HP} 10.8 Гц), 4.63 уш. с (1H, NH), 5.73 д. д (1H, PCH=, ²J_{HP} 16.4, ³J_{HP} 18.1 Гц), 6.34 д (1H, C⁵H, ³J_{HH} 8.2 Гц), 6.53 д (1H, C³H, ³J_{HH} 7.8 Гц), 7.36 т (1H, C⁴H, ³J_{HH} 7.8 Гц). Спектр ЯМР ¹³С, δ_{C} , м. д.: 21.13 (CH₃), 52.07 д (CH₃OP, ²J_{CP} 5.7 Гц), 53.32 д (CH₃OP, ²J_{CP} 6.4 Гц), 104.22 д (PCH=, ¹J_{CP} 189.9 Гц), 106.03 д (PC=, ¹J_{CP} 195.8 Гц), 105.51 (C⁵), 106.23 (C³), 138.09 (C⁴), 156.47 (C²), 158.04 (C⁶). Спектр ЯМР ³¹P, δ_{P} , м. д.: 13.07 д и 19.74 д (³J_{PP} 92.2 Гц). Диметиловый эфир (*E*)-[2-(диметоксифосфорил)-2-(5-бромпиридин-2-иламино)винил]фосфоновой кислоты (3д). Выход 32%, оранжевое масло. Спектр ЯМР ¹H, δ , м. д.: 3.78 д (6H, CH₃OP, ³J_{HP} 11.1 Гц), 3.81 д (6H, CH₃OP, ³J_{HP} 11.1 Гц), 4.57 уш. с (1H, NH), 5.80 д. д (1H, PCH=, ²J_{HP} 16.4, ³J_{HP} 18.3 Гц), 7.26 д (1H, C³H, ³J_{HH} 7.2 Гц), 7.50 д (1H, C⁴H, ³J_{HH} 7.2 Гц), 8.11 с (1H, C⁶H). Спектр ЯМР ¹³С, δ_{C} , м. д.: 52.20 д (CH₃OP, ²J_{CP} 5.7 Гц), 53.41 д (CH₃OP, ²J_{CP} 6.2 Гц), 106.44 д (PCH=, ¹J_{CP} 190.3 Гц), 107.99 д (PC=, ¹J_{CP} 197.4 Гц), 117.52 (C³), 138.52 (C⁴), 143.35 (C⁵), 154.02 (C⁶), 157.32 (C²). Спектр ЯМР ³¹Р, δ_{P} , м. д.: 12.37 д и 18.74 д (³J_{PP} 90.0 Гц).

Диметиловый эфир (E)-[2-(диметоксифосфорил)-2-(хинолин-2-иламино)винил|фосфоновой кислоты (5а). Выход 28%, желтое масло. Спектр ЯМР ¹Н, б, м. д.: 3.63 д (6Н, CH₃OP, ³*J*_{HP} 10.7 Гц), 3.69 д (6H, CH₃OP, ³J_{HP} 10.7 Гц), 4.82 с (1H, NH), 5.82 д. д (1H, PCH=, ²J_{HP} 16.2, ³J_{HP} 18.1 Гц), 7.23 д (1Н, С³Н, ³*J*_{НН} 7.2 Гц), 7.55 д (1Н, С⁵Н, ³*J*_{HH} 8.1 Гц), 7.57 т (1Н, С⁶Н, ³*J*_{HH} 8.1 Гц), 7.65 т (1H, C⁷H, ³*J*_{HH} 8.1 Гц), 8.44 д (1H, C⁸H, ³*J*_{HH} 7.2), 8.51 д (1H, C⁴H, ³*J*_{HH} 7.2 Гц). Спектр ЯМР ¹³С, δ_C, м. д.: 52.65 д (CH₃OP, ²*J*_{CP} 5.8 Гц), 54.35 д (CH₃OP, ²*J*_{CP} 6.0 Гц), 106.31 д (РСН=, ¹*J*_{CP} 189.7 Гц), 109.15 д (PC=, ${}^{1}J_{CP}$ 198.4 Гц), 121.58 (C³), 125.11 (C⁶), 128.59 (C⁵), 129.64 (C⁸), 129.80 (C¹⁰), 130.75 (C⁷), 135.49 (С⁴), 140.74 (С⁹), 155.79 (С²). Спектр ЯМР ³¹Р, б_р, м. д.: 12.35 д и 18.77 д (³*J*_{рр} 89.6 Гц). Массспектр, m/z: 409.0632 $[M + Na]^+$ (вычислено для $C_{15}H_{20}N_2NaO_6P_2^+$: 409.0689).

Диметиловый эфир (E)-[2-(диметоксифосфорил)-2-(изохинолин-1-иламино)винил]фосфоновой кислоты (56). Выход 15%, желтое масло. Спектр ЯМР ¹Н, δ, м. д.: 3.75 д (6Н, CH₃OP, ³*J*_{HP} 11.3 Гц), 3.78 д (6Н, CH₃OP, ³J_{HP} 11.3 Гц), 5.02 с (1H, NH), 5.88 д. д (1H, PCH=, ²J_{HP} 16.8, ³J_{HP} 18.5 Гц), 7.55 д (1Н, С⁴Н, ³*J*_{НН} 8.3 Гц), 7.58 т (1Н, C⁷H, ³*J*_{HH} 7.9 Гц), 7.66 т (1H, C⁶H, ³*J*_{HH} 8.1 Гц), 7.84 д (1H, C^5 H, ${}^{3}J_{\text{HH}}$ 8.2 Гц), 8.29 д (1H, C^8 H, ${}^{3}J_{\text{HH}}$ 7.8), 8.53 д (1H, C³H, ³*J*_{HH} 7.2 Гц). Спектр ЯМР ¹³С, δ_C, м. д.: 52.56 д (CH₃OP, ²*J*_{CP} 6.0 Гц), 54.35 д (CH₃OP, ²*J*_{CP} 6.0 Гц), 107.27 д (РСН=, ¹*J*_{CP} 188.4 Гц), 109.86 д (PC=, ¹*J*_{CP} 197.8 Гц), 121.36 (C⁴), 125.88 (C⁹), 126.49 (C^8), 126.69 (C^5), 132.35 (C^6), 132.71 (C^7), 135.22 (С¹⁰), 137.84 (С³), 153.50 (С¹). Спектр ЯМР ³¹Р, б_р, м. д.: 12.12 д и 20.68 д (³*J*_{рр} 90.9 Гц).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Свинцицкая Наталья Иосифовна, ORCID: https://orcid.org/0000-0003-3715-767X

Крылов Александр Сергеевич, ORCID: https:// orcid.org/0000-0003-1773-7802

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 0785.00.Х6019) с использованием оборудования Инжинирингового центра Санкт-Петербургского государственного технологического института (технического университета).

КОНФЛИКТ ИНТЕРЕСОВ

Н.И. Свинцицкая является членом редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Quin L.D.* A guide to organophosphorus chemistry. Toronto: John Wiley & Sons Inc., 2000.
- Gałęzowska J., Gumienna-Kontecka E. // Coord. Chem. Rev. 2012. Vol. 256. N 1–2. P. 105. doi 10.1016/j. ccr.2011.07.002
- Yücesan G., Zorlu Y., Stricker M., Beckmann J. // Coord. Chem. Rev. 2018. Vol. 369. P. 105. doi 10.1016/j. ccr.2018.05.002
- Manghi M.M., Masiol M., Calzavara R., Graziano P.L., Peruzzi E., Pavoni B. // Chemosphere. 2021. Vol. 283. P. 131187. doi 10.1016/j.chemosphere.2021.131187
- Cao H.-Q., Li J.-K., Zhang F.-G., Cahard D., Ma J.-A. // Adv. Synth. Catal. 2021. Vol. 363. N 3. P. 688. doi 10.1002/adsc.202001345
- Maeda K. // Micropor. Mesopor. Mater. 2004. Vol. 73. N 1–2. P. 47. doi 10.1016/j.micromeso.2003.10.018
- Krečmerová M., Majer P., Rais R., Slusher B.S. // Front. Chem. 2022. doi 10.3389/fchem.2022.889737
- Popov K., Oshchepkov M., Tkachenko S., Sergienko V., Oshchepkov A. // J. Mol. Liq. 2022. Vol. 351. P. 118619. doi 10.1016/j.molliq.2022.118619
- Ebetino F.H., Sun S., Cherian P., Roshandel S., Neighbors J.D., Hu E., Dunford J.E., Sedghizadeh P.P., McKenna C.E., Srinivasan V., Boeckman R.K., Russell R.G. // Bone. 2022. Vol. 156. P. 116289. doi 10.1016/j.bone.2021.116289
- Золотухина М.М., Крутиков В.И., Лаврентьев А.Н. // Усп. хим. 1993. Т. 62. № 7. С. 691;

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

Zolotukhina M.M., Krutikov V.I., Lavrent'ev A.N. // Russ. Chem. Rev. 1993. Vol. 62. N 7. P. 647. doi 10.1070/RC1993v062n07ABEH000038

- Russell R.G. // Bone. 2011. Vol. 49. P. 2. doi 10.1016/j. bone.2011.04.022
- Ebetino F.H., Hogan A.M., Sun S., Tsuompra M.K., Duan X., Triffitt J.T., Kwaasi A.A., Dunford J.E., Barnett B.L., Oppermann U., Lundy M.W., Boyde A., Kashemirov B.A., McKenna C.E., Russell R.G. // Bone. 2011. Vol. 49. P. 20. doi 10.1016/j.bone.2011.03.774
- Maraka S., Kennel K.A. // Br. Med. J. 2015. Vol. 351. P. h3783. doi 10.1136/bmj.h3783
- 14. Kaboudin B., Daliri P., Faghih S., Esfandiari H. // Front. Chem. 2022. doi 10.3389/fchem.2022.890696
- Shi C.G., Zhang Y., Yuan W. // Am. J. Ther. 2016. Vol. 3. P. e894. doi 10.1097/MJT.00000000000236
- Chmielewska E., Kafarski P. // Open Pharm. Sci. J. 2016. Vol. 3. P. 56. doi 10.2174/1874844901603010056
- Demkowicz S., Rachón J., Daśko M., Kozak W. // RSC Adv. 2016. Vol. 6. P. 7101. doi 10.1039/C5RA25446A
- Studnik H., Liebsch S., Forlani G., Wieczorek D., Kafarski P., Lipok J. // New Biotechnol. 2015. Vol. 32. P. 1. doi 10.1016/j.nbt.2014.06.007
- Turhanen P.A., Vepsäläinen J.J., Peräniemi S. // Sci. Rep. 2015. Vol. 5. Article no. 8992.
- Chmielewska E., Kafarski P. // Molecules. 2016.
 Vol. 21. N 11. P. 1474. doi 10.3390/molecules21111474
- Chmielewska E., Kafarski P. // Molecules. 2012. Vol. 17. N 9. P. 10928. doi 10.3390/molecules170910928
- Widler L., Jaeggi K.A., Glatt M., Müller K., Bachmann R., Bisping M., Born A.-R., Cortesi R., Guiglia G., Jeker H., Klein R., Ramseier U., Schmid J., Schreiber G., Seltenmeyer Y., Green J.R. // J. Med. Chem. 2002. Vol. 45. N 17. P. 3721. doi 10.1021/jm020819i
- Van Gelder J.M., Breuer E., Ornoy A., Schlossman A., Patlas N., Golomb G. // Bone. 1995. Vol. 16. P. 511. doi 10.1016/8756-3282(95)00081-N
- Golomb G., Schlossman A., Saadeh H., Levi M., Van Gelder J.M., Breuer E. // Pharm. Res. 1992. Vol. 9. P. 143. doi 10.1023/A:1018956516640
- Palacios F., Ochoa de Retana A.M., Pascual S., López de Munain R., Oyarzabal J., Ezpeleta J.M. // Tetrahedron. 2005. Vol. 61. N 5. P. 1087. doi 10.1016/j. tet.2004.11.061
- Palacios F., Ochoa de Retana A.M., Oyarzabal J. // Tetrahedron. 1999. Vol. 55. N 18. P. 5947. doi 10.1016/ S0040-4020(99)00257-4

- Palacios F., Ochoa de Retana A.M., Oyarzabal J. // Tetrahedron. 1999. Vol. 55. N 10. P. 3091. doi 10.1016/ S0040-4020(99)00068-X
- Zhang Z., Tamura K., Mayama D., Sugiya M., Imamoto T. // J. Org. Chem. 2012. Vol. 77. P. 4184. doi 10.1021/jo300454n
- Zhang J., Li Y., Wang Z., Ding K. // Angew. Chem. Int. Ed. 2011. Vol. 50. P. 11743. doi 10.1002/ ange.201104912
- Wassenaar J., Kuil M., Lutz M., Spek A.L., Reek J.N.H. // Chem. Eur. J. 2010. Vol. 16. P. 6509. doi 10.1002/ chem.200903476
- Zhou M., Xue Z., Cao M., Dong X.-Q., Zhang X. // Org. Biomol. Chem. 2016. Vol. 14. N 20. P. 4582. doi 10.1039/c6ob00540c
- 32. *Adler P., Fadel A., Rabasso N. //* Tetrahedron. 2014. Vol. 70. N 30. P. 4437. doi 10.1016/j.tet.2014.04.086
- Журавлева П.А., Колина А.И., Свинцицкая Н.И., Догадина А.В. // ЖОХ. 2021. Т. 91. № 10. С. 1479; Zhuravleva P.A., Kolina A.I., Svintsitskaya N.I., Dogadina A.V. // Russ. J. Gen. Chem. 2021. Vol. 91. N 10. P. 2031. doi 10.1134/S1070363221100169
- Krylov A.S., Petrosian A.A., Piterskaya J.L., Svintsitskaya N.I., Dogadina A.V. // Beilstein J. Org. Chem. 2019, Vol. 15. P. 1563. doi 10.3762/bjoc.15.159
- Svintsitskaya N.I., Dogadina A.V., Starova G.L., Trifonov R.E. // Tetrahedron Lett. 2014. Vol. 55. N 39. P. 5381. doi 10.1016/j.tetlet.2014.08.018
- Whitesell M.A., Kyba E.P. // Tetrahedron Lett. 1983.
 Vol. 24. N 16. P. 1679. doi 10.1016/S0040-4039(00)81743-8
- Whitesell J.K., Whitesell M.A. // Synthesis. 1983. N 7.
 P. 517. doi 10.1055/s-1983-30409
- Berry J.F., Roy M. // Compr. Coord. Chem. III. 2021.
 P. 406. doi 10.1016/B978-0-08-102688-5.00075-1
- Rao R.N., Chanda K. // Chem. Commun. 2022. Vol. 58.
 N 3. P. 343. doi 10.1039/D1CC04602K
- Шехаде А., Дидковский Н.Г., Догадина А.В., Ионин Б.И. // ЖОХ. 2004. Т. 74. Вып. 10. С. 1750; Shekhade A., Didkovskii N.G., Dogadina A.V., Ionin B.I. // Russ. J. Gen. Chem. 2004. Vol. 74. N 10. P. 1627. doi 10.1007/s11176-005-0071-y
- 41. Ионин Б.И., Петров А.А. // ЖОХ. 1965. Т. 35. С. 1917.

ДАКУО и др.

Reactions of Tetramethyl Ethynyldiphosphonate with Substituted 2-Aminopyridines

K. N. Dakuo^a, A. S. Krylov^a, and N. I. Svintsitskaya^{a,*}

^a St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013 Russia *e-mail: nsvincickaya@mail.ru

Received July 14, 2022; revised August 5, 2022; accepted August 7, 2022

The base-catalyzed hydroamination reaction of teramethyl ethynyldiphosphonate with substituted 2-aminopyridines was studied. The reaction proceeds stereoselectively with the formation of (E)-enaminophosphonates. A series of new phosphonoenamines, namely dimethyl [2-(dimethoxyphosphoryl)-2-(pyridin-2-ylamino)vinyl]phosphonates, was obtained.

Keywords: enamines, enaminophosphonates, alkinylphosphonates, aminopyridines, vicinal bisphosphonates