К 145-летию со дня рождения А. Е. Арбузова

УДК 546.87;547.53.024;548.312.5

РЕАКЦИИ БЕНЗОЛСУЛЬФОНОВОЙ КИСЛОТЫ С НЕКОТОРЫМИ ТОЛИЛЬНЫМИ ПРОИЗВОДНЫМИ СУРЬМЫ

© 2022 г. В. В. Шарутин^{*a*}, О. К. Шарутина^{*a*}, Е. С. Механошина^{*a*,*}

^а Национальный исследовательский Южно-Уральский государственный университет, пр. Ленина 76, Челябинск, 454080 Россия *e-mail: mexev@mail.ru

> Поступило в редакцию 8 сентября 2022 г. После доработки 8 сентября 2022 г. Принято к печати 6 октября 2022 г.

Взаимодействием эквимолярных количеств бензолсульфоновой кислоты с толильными производными сурьмы p-Tol₄SbX [X = Br, ONCHCH=CHPh, OC(O)CH₂OC₆H₃Cl₂-2,4] в водно-ацетоновом растворе синтезирован бензолсульфонат тетра(*пара*-толил)сурьмы моноклинной модификации. Проведение указанных реакций в бензольном растворе приводит к образованию бензолсульфоната тетра(*пара*-толил)-сурьмы ромбической модификации. Методом PCA установлено строение полученных соединений, в которых атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с электроотрицательными заместителями в аксиальных положениях.

Ключевые слова: бромид тетра(*napa*-толил)сурьмы, циннамальдоксимат тетра(*napa*-толил)сурьмы, 2,4-дихлорфеноксиацетат тетра(*napa*-толил)сурьмы, бензолсульфонат тетра(*napa*-толил)сурьмы

DOI: 10.31857/S0044460X22120174, EDN: MWCTMP

Возрастающий интерес к органическим соединениям сурьмы во многом определяется раскрывающимся в настоящее время потенциалом их применения в самых разнообразных областях практической деятельности: в качестве лекарственных препаратов, биоцидов, фунгицидов, антиоксидантов, компонентов каталитических систем при полимеризации, реагентов в тонком органическом синтезе и др. [1]. Несмотря на то, что соединения сурьмы достаточно токсичны, они широко используются в терапии в качестве противопаразитарных средств, особенно при лечении лейшманиоза [2]. Некоторые органические производные сурьмы являются биологически активными веществами [3-5], в частности, обладают антибактериальной [6-8] и противоопухолевой активностью [9-14].

1957

Аренсульфонаты тетраарилсурьмы Ar_4^1 SbOSO₂Ar² получают взаимодействием пентаарилсурьмы с кислотой или производными сурьмы симметричного строения Ar_3^1 Sb(OSO₂Ar²)₂ [1, 15, 16]. Так, ромбическая модификация бензолсульфоната тетра(*пара*-толил)сурьмы (т. пл. 146°C) была получена из пента(*пара*-толил)сурьмы и бис(бензолсульфонато)три(*пара*-толил)сурьмы в растворе толуола (1 ч, 100°C), в то время как моноклинную модификацию (т. пл. 169°C) синтезировали из пента(*пара*-толил)сурьмы и бензолсульфоновой кислоты в спиртово-толуольном растворе [15].

Известно, что аренсульфонаты тетраорганилфосфония с высоким выходом могут быть синтезированы из галогенидов тетраорганилфосфония и аренсульфоновых кислот в воде [17], поэтому

ШАРУТИН и др.

Схема 1.

 $\begin{array}{rl} (4-\mathrm{MeC}_{6}\mathrm{H}_{4})_{4}\mathrm{SbBr} + \mathrm{HOSO}_{2}\mathrm{Ph} \rightarrow (4-\mathrm{MeC}_{6}\mathrm{H}_{4})_{4}\mathrm{SbOSO}_{2}\mathrm{Ph} + \mathrm{HBr} \\ & \mathbf{4} \\ & \mathbf{X} = \mathrm{Br} \ (\mathbf{1}), \ \mathrm{ONCHCHCHPh} \ (\mathbf{2}), \ \mathrm{OC}(\mathrm{O})\mathrm{CH}_{2}\mathrm{OC}_{6}\mathrm{H}_{3}\mathrm{Cl}_{2}\text{-}2\text{,}4 \ (\mathbf{3}). \end{array}$

нами было изучено взаимодействие бензолсульфоновой кислоты с бромидом и другими производными тетра(*пара*-толил)сурьмы.

Установлено, что сурьмаорганическим продуктом взаимодействия бромида тетра(*пара*-толил) сурьмы **1**, циннамальдоксимата тетра(*пара*-толил) сурьмы **2** и 2,4-дихлорфеноксиацетата тетра(*пара*-толил)сурьмы **3** с бензолсульфоновой кислотой в водно-ацетоновом растворе является бензолсульфонат тетра(*пара*-толил)сурьмы **4** (кристаллы моноклинной сингонии), выход которого достигал 97% (схема 1).

Соединения 2, 3 получали по реакции замещения из пента(*пара*-толил)сурьмы и циннамальдок-

сима, 2,4-дихлорфеноксиуксусной кислоты по известной методике [16].

Отметим, что проведение указанных реакций в растворе бензола приводит к аналогичным результатам, однако в этом случае имело место образование кристаллов бензолсульфоната тетра(*пара*-толил)сурьмы ромбической сингонии (**5**), о синтезе которого сообщалось ранее [15].

Соединения 1–5 – бесцветные кристаллические вещества, устойчивые к действию влаги и кислорода воздуха, хорошо растворимые в ароматических углеводородах, хлороформе, тетрагидрофуране и нерастворимые в алифатических углеводородах. Соединения 4, 5 растворимы в горячей воде.

РЕАКЦИИ БЕНЗОЛСУЛЬФОНОВОЙ КИСЛОТЫ

Параметр	1	2	3	5
M	566.16	632.42	706.27	643.41
Сингония	Моноклинная	Триклинная	Триклинная	Ромбическая
Пространственная группа	$P2_1/n$	<i>P</i> -1	<i>P</i> -1	Pbca
<i>a</i> , Å	9.868(6)	10.789(4)	10.621(5)	9.923(8)
<i>b</i> , Å	23.312(11)	10.811(5)	11.016(5)	18.932(16)
<i>c</i> , Å	12.106(6)	14.558(5)	15.809(9)	32.72(3)
α, град	90.00	73.389(18)	103.55(2)	90.00
β, град	113.15(2)	75.201(15)	108.00(2)	90.00
ү, град	90.00	87.55(2)	98.34(2)	90.00
<i>V</i> , Å ³	2561(2)	1572.3(11)	1662.1(14)	6146(9)
Ζ	4	2	2	8
$d_{\rm выч},$ г/см ³	1.469	1.336	1.411	1.391
μ, мм ⁻¹	2.649	0.906	1.024	0.997
<i>F</i> (000)	1128.0	648.0	716.0	2624.0
Размер кристалла, мм	$0.39 \times 0.3 \times 0.12$	$0.29 \times 0.25 \times 0.14$	$0.39 \times 0.26 \times 0.17$	$0.21\times0.1\times0.13$
Область сбора данных по 20, град	6.4-56.76	6.04-75.9	5.68-60.22	5.954–56.644
Интервалы индексов отражений	$-13 \le h \le 13,$	$-18 \le h \le 18,$	$-14 \le h \le 14,$	$-8 \le h \le 12,$
	$-31 \le k \le 31,$	$-18 \le k \le 18,$	$-15 \le k \le 15,$	$-25 \le k \le 25,$
	$-16 \le l \le 16$	$-25 \le l \le 25$	$-22 \le l \le 22$	$-43 \le l \le 43$
Измерено отражений	42998	115476	110814	73682
Независимых отражений	6359 (<i>R</i> _{int} 0.0346)	16980 (<i>R</i> _{int} 0.0449)	9738 (<i>R</i> _{int} 0.0348)	7553 (<i>R</i> _{int} 0.0589)
Отражений с <i>I</i> > 2 <i>σ</i> (<i>I</i>)	5068	11412	8276	4775
Переменных уточнения	275	365	383	359
GOOF	1.080	1.003	1.041	1.076
R -Факторы по $F^2 > 2\sigma(F^2)$	$R_1 0.0325,$	$R_1 0.0458,$	$R_1 0.0274,$	$R_1 0.0493,$
	$wR_2 0.0665$	$wR_2 0.0870$	$wR_2 0.0640$	$wR_2 0.0981$
<i>R</i> -Факторы по всем отражениям	$R_1 0.0494,$	$R_1 0.0862,$	$R_1 0.0379,$	$R_1 0.0955,$
	$wR_2 0.0734$	$wR_2 0.0979$	$wR_2 0.0687$	$wR_2 0.1148$
Остаточная электронная плотность (min/max), <i>e</i> /Å ³	0.54/-0.71	1.27/-0.54	0.42/-0.56	0.60/-0.58

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры соединений 1–3, 5

В ИК спектрах соединений 1–3, 5 присутствуют интенсивные полосы поглощения в области 484–471 см⁻¹, которые относятся к валентным колебаниям связи Sb–C. Полосы поглощения при 1591, 1558, 1491, 1447 см⁻¹ (2); 1591, 1474, 1431 см⁻¹ (3); 1591, 1494, 1444 см⁻¹ (5) отвечают валентным колебаниям углеродного скелета ароматических фрагментов. Валентные колебания связей C_{Ar} –H характеризуют полосы поглощения средней интенсивности при 3026 (2), 3024 (3), 3017 (5) см⁻¹; внеплоскостные деформационные колебания этих же связей – полосы при 800, 804, 803 см⁻¹, плоскостные деформационные колебания – полосы при 1072–1030 см⁻¹. В ИК спектрах также наблюдаются полосы поглощения валентных колебания

ний метильных групп при 2916 (2), 2918 (3), 2917 (5) см⁻¹. Полосы поглощения, соответствующие валентным колебаниям связей С=О и С-О в соединении **3**, расположены при 1657 и 1279–1246 см⁻¹. Валентным колебаниям связей С=N и N-O в спектре соединения **2** отвечают высокоинтенсивные полосы при 1558 и 970 см⁻¹. К асимметричным и симметричным валентным колебаниям SO₂-групп в спектре структуры **5** относятся интенсивные полосы при 1259 и 1158, 1110 см⁻¹ соответственно. Присутствие связей C_{Ar}-Cl в молекуле **3** характеризуется полосой при 725 см⁻¹ [18].

О строении соединений 1, 4, 5 ранее сообщалось в работах [15, 19]. В настоящей работе струк-

Рис. 2. Общий вид молекулы соединения 3 в кристалле.

туры 1, 5 расшифрованы с большей точностью, а строение соединений 2 и 3 определено впервые. По данным РСА, в кристаллах производных 2, 3 атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода и углерода в аксиальных положениях (рис. 1, 2, табл. 1).

Аксиальные углы OSbC в молекулах соединений 2 и 3 равны 178.94(7) и 176.95(5)°. Аксиальные связи Sb–C [2.1808(18) и 2.1544(19) Å соответственно] длиннее экваториальных Sb–C [2.1158(18)–2.1311(19) и 2.1117(19)–2.118(2) Å соответственно], как и для большинства подобных соединений сурьмы [20]. Суммы валентных углов CSbC в экваториальной плоскости составляют 358.7(6) (2) и 355.60(8)° (3), их значения изменяются в интервалах 118.77(7)-120.79(7)° и 110.87(7)-133.06(7)° (табл. 2). Атомы сурьмы выходят из экваториальной плоскости к аксиальному атому углерода на 0.14 и 0.25 Å соответственно; расстояния Sb-O [2.1785(16) и 2.3319(15) Å] несколько меньше аналогичного расстояния в соединении 4 [2.409(3) Å], что значительно больше суммы ковалентных радиусов атомов-партнеров (2.14 Å [21]), но меньше суммы их ван-дер-ваальсовых радиусов (3.7 Å [22]) и свидетельствует о возрастании ионного характера связи Sb–O в ряду соединений 2, 3, 5. В молекулах 2 и 3 присутствуют короткие внутримолекулярные контакты Sb…N [2.835(3) Å] (2) и Sb···O(=C) [3.189(3) Å] (3), что характерно для подобных производных сурьмы [20]. В молекуле 3 карбоксилатный лиганд расположен таким образом, что внутримолекулярный

Связь	Длина, Å	Угол	ω, град
Sb ¹ –O ¹	2.1785(16)	C ¹ Sb ¹ O ¹	87.72(6)
Sb^1-C^1	2.1158(18)	$C^{11}Sb^1O^1$	85.39(6)
$Sb^{1}-C^{11}$	2.1311(19)	$C^{21}Sb^1O^1$	85.56(7)
$Sb^{1}-C^{21}$	2.1223(19)	$C^{31}Sb^1O^1$	178.94(5)
$Sb^{1}-C^{31}$	2.1808(18)	$C^1Sb^1C^{11}$	119.14(7)
N^1-O^1	1.367(2)	$C^{11}Sb^1C^{21}$	120.79(7)
$N^{1}-C^{49}$	1.286(3)	$C^{21}Sb^{1}C^{31}$	94.48(7)
$C^{48}-C^{49}$	1.437(3)	$C^1Sb^1C^{21}$	118.77(7)
$C^{47} - C^{48}$	1.346(3)	$C^{1}Sb^{1}C^{31}$	93.18(7)
C^{41} - C^{47}	1.458(3)	$C^{11}Sb^1C^{31}$	93.68(7)
$C^{4}-C^{7}$	1.506(3)	$C^{49}N^1O^1$	114.13(18)
C^{14} – C^{17}	1.515(3)	$N^1O^1Sb^1$	103.82(11)
Sb^1-O^1	2.3319(15)	$C^1Sb^1O^1$	82.22(6)
Sb^1-C^1	2.1117(19)	$C^{11}Sb^1O^1$	82.89(6)
$Sb^{1}-C^{11}$	2.1128(19)	$C^{21}Sb^1O^1$	84.59(6)
$Sb^{1}-C^{21}$	2.118(2)	$C^{31}Sb^1O^1$	176.95(5)
$Sb^{1}-C^{31}$	2.1544(19)	$C^1Sb^1C^{11}$	133.06(7)
$O^1 - C^{48}$	1.280(2)	$C^{11}Sb^1C^{21}$	110.87(7)
$O^2 - C^{48}$	1.218(2)	$C^{21}Sb^{1}C^{31}$	98.36(8)
$O^{3}-C^{41}$	1.354(3)	$C^1Sb^1C^{21}$	111.67(8)
$O^{3}-C^{47}$	1.425(3)	$C^1Sb^1C^{31}$	95.92(7)
$Cl^{1}-C^{42}$	1.719(2)	$C^{11}Sb^{1}C^{31}$	96.73(7)
$Cl^2 - C^{44}$	1.740(2)	$C^{48}O^1Sb^1$	114.37(12)
$C^{47}-C^{48}$	1.527(3)	$O^{1}C^{48}O^{2}$	126.66(17)
$C^{4}-C^{7}$	1.508(3)	$C^{41}O^3C^{47}$	117.63(17)

Таблица 2. Основные длины связей и валентные углы в структурах **2**, **3**

контакт Sb····O(=C) формируется внутри наибольшего [133.06(7)°] из экваториальных углов.

Таким образом установлено, что бензолсульфоновая кислота вытесняет из толильных производных сурьмы *p*-Tol₄SbX [X = Br, ONCHCH=CHPh, OC(O)CH₂OC₆H₃Cl₂-2,4] кислотные остатки в водно-ацетоновом растворе. Продукт реакций – бензолсульфонат тетра(*пара*-толил)сурьмы в зависимости от природы растворителя кристаллизуется либо в моноклинной сингонии (вода-ацетон), либо в ромбической (бензол).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК Фурье-спектрометре Shimadzu в таблетках КВг. Рентгеностуктурный анализ проводили на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Bruker (графитовый монохроматор) при 293 К. Сбор, редактирование данных, уточнение параметров элементарной ячейки, учет поглощения, определение и уточнение структур проведены по программам [23–25]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Основные кристаллографические данные и результаты уточнения структур приведены в табл. 1. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [ССDC 2182608 (1), 2130472 (2), 2131084 (3), 2126493 (5)].

Бензолсульфонат тетра(*пара*-толил)стибония моноклинной модификации (4). Раствор 283 мг (0.50 ммоль) бромида тетра(*пара*-толил)сурьмы 1 в 10 мл ацетона приливали к раствору 79 мг (0.50 ммоль) бензолсульфоновой кислоты в 5 мл воды, концентрировали раствор до объема 1 мл. Выделившиеся кристаллы фильтровали и сушили. Получили 316 мг (99%) бесцветных кристаллов комплекса 4 с т. пл. 169°С. Найдено, %: С 63.38; Н 5.16. С₃₄Н₃₃O₃SSb. Вычислено, %: С 63.45; Н 5.13.

Бензолсульфонат тетра(пара-толил)стибония ромбической модификации (5). К смеси 283 мг (0.50 ммоль) бромида тетра(пара-толил)сурьмы (1) и 79 мг (0.50 ммоль) бензолсульфоновой кислоты прибавляли 15 мл бензола и выдерживали при комнатной температуре 12 ч. Затем прибавляли 2 мл октана и упаривали растворитель до объема 2 мл. Выделившиеся кристаллы фильтровали и сушили. Получили 310 мг (97%) бесцветных кристаллов комплекса 5 с т. пл. 146°С. ИК спектр, v, cm⁻¹: 3017, 2917, 2867, 1892, 1591, 1494, 1444, 1396, 1315, 1259 (SO₂), 1212, 1194, 1158 (SO₂), 1110 (SO₂), 1068, 1030, 1009, 994, 803, 754, 726, 689, 608, 578, 564, 484. Найдено, %: С 63.26; Н 5.20. С₃₄Н₃₃О₃SSb. Вычислено, %: С 63.45; Н 5.13.

Циннамальдоксимат тетра(*пара*-толил)сурьмы (2). К раствору 288 мг (0.50 ммоль) пента(*пара*-толил)сурьмы в 15 мл бензола прибавляли 73 мг (0.50 ммоль) бензолсульфоновой кислоты и перемешивали реакционную смесь 12 ч при комнатной температуре. Затем прибавляли 2 мл октана и медленно упаривали раствор до объема 2 мл. Наблюдали образование 253 мг (80%) бесцветных кристаллов комплекса **3** с т. пл. 164°С. ИК спектр, v, см⁻¹: 3026, 2916, 1591, 1558, 1491, 1447, 1391, 1342, 1308, 1209, 1186, 1132, 1059, 1015, 970, 905, 800, 745, 689, 604, 569, 604, 569, 549, 476, 459. Найдено, %: С 63.26; Н 5.20. С₃₇Н₃₆NOSb. Вычислено, %: С 70.21; Н 5.69.

Соединение 3 получали аналогично.

2,4-Дихлорфеноксиацетат тетра(*пара*-толил) сурьмы (3). Выход 89%, бесцветные кристаллы, т. пл. 151°С. ИК спектр, v, см⁻¹: 3024, 2918, 1657, 1591, 1474, 1431, 1389, 1373, 1318, 1279, 1260, 1246, 1231, 1190, 1103, 1072, 1065, 1045, 1015, 912, 864, 839, 804, 725, 698, 646, 608, 577, 557, 471, 442. Найдено, %: С 61.10; H 4.81. C₃₆H₃₃O₃Cl₂Sb. Вычислено, %: С 61.17; H 4.67.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Шарутин Владимир Викторович, ORCID: https://orcid.org/0000-0003-2582-4893

Механошина Евгения Сергеевна, ORCID: https://orcid.org/0000-0003-1524-7949

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. хим. 2020. Т. 46. № 10. С. 579. doi 10.31857/ S0132344X20100011; Sharutin V.V., Poddel'sky A.I., Sharutina O.K. // Russ. J. Coord. Chem. 2020. Vol. 46. N 10. P. 663. doi 10.1134/S1070328420100012
- Mishra J., Saxena A., Singh S. // Curr. Med. Chem. 2007. Vol. 14. P. 1153. doi 10.2174/092986707780362862
- Mushtaq R., Rauf M.K., Bond M., Badshah A., Nadhman A., Yasinzai M., Tahir M.N. // Appl. Organomet. Chem. 2016. Vol. 30. P. 465. doi 10.1002/ aoc.3456
- Saleem L., Altaf A.A., Badshah A., Rauf M.K. // Inorg. Chim. Acta. 2018. Vol. 474. P. 148. doi 10.1016/j. ica.2018.01.036
- Oliveira L.G., Silva M.M., Paula F.C.S., Pereira-Maia E.C., Donnici C.L., Simone C.A., Frézard F., Silva Júnior E.N., Demicheli C. // Molecules. 2011. Vol. 16. P. 10314. doi 10.3390/molecules161210314
- Islam A., Da Silva J.G., Berbet F.M., Da Silva S.M., Rodrigues B.L., Beraldo H., Melo M.N., Frézard F., Demicheli C. // Molecules. 2014. Vol. 19. P. 6009. doi 10.3390/molecules19056009

- Mushtaq R., Rauf M.K., Bolte M., Nadhman A., Badshah A., Tahir M.N., Yasinzai M., Khan K.M. // Appl. Organomet. Chem. 2017. Vol. 31. P. 3606. doi 10.1002/aoc.3606
- Yu L., Ma Y.-Q., Liu R.-C., Wang G.-C., Li J.-S., Du G.-H., Hu J.-J. // Polyhedron. 2004. Vol. 23. P. 823. doi 10.1016/j.poly.2003.12.002
- Wang F., Yin H., Yue C., Cheng S., Hong M. // J. Organomet. Chem. 2013. Vol. 738. P. 35. doi 10.1016/j. jorganchem.2013.03.046
- Islam A., Rodrigues B.L., Marzano I.M., Perreira-Maia E.C., Dittz D., Paz M.T., Muhammad L., Frezard I.F., Demicheli C. // Eur. J. Med. Chem. 2016. Vol. 109. P. 254. doi 10.1016/j.ejmech.2016.01.003
- Iftikhar T., Rauf M.K., Sarwar S., Badshah A., Waseem D., Nawaz M., Amjad T., Khalid K., Khan M., Khan G.M. // J. Organomet. Chem. 2017. Vol. 851. P. 89. doi 10.1016/j.jorganchem.2017.09.002
- Jiang J., Yin H., Wang D., Han Z., Wang F., Cheng S., Hong M. // Dalton Trans. 2013. Vol. 42. P. 8563. doi 10.1039/C3DT50221J
- Yu L., Ma Y.-Q., Wang G.-C., Li J.-S. // Heteroatom Chem. 2004. Vol. 15. P. 32. doi 10.1002/hc.10208
- Polychronis N.M., Banti C.N., Raptopoulou C.P., Psycharis V., Kourkoumelis N., Hadjikakou S.K. // Inorg. Chim. Acta. 2019. Vol. 489. P. 39. doi 10.1016/j. ica.2019.02.004
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. // ЖНХ. 2013. Т. 58. № 11. С. 1454. doi 10.7868/ S0044457X13110196; Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Inorg. Chem. 2013. Vol. 58. N 11. P. 1302. doi 10.1134/S0036023613110181
- Шарутина О.К. // Вестн. ЮУрГУ. Сер. хим. 2022. Т. 14. № 1. С. 62. doi 10.14529/chem200404
- Шарутин В.В., Шарутина О.К., Механошина Е.С. // ЖОХ. 2022. Т. 92. № 6. С. 885. doi 10.31857/ S0044460X22060087; Sharutin V.V., Sharutina O.K., Mekhanoshina E.S. // Russ. J. Gen. Chem. 2022. Vol. 92. N 6. P. 969. doi 10.1134/S1070363222060081
- Тарасевич Б.Н. ИК спектры основных классов органических соединений. М.: МГУ, 2012. 54 с.
- Шарутин В.В., Шарутина О.К. // ЖОХ. 2014. Т. 84. № 3. С. 457; Sharutin V.V., Sharutina O.K. // Russ. J. Gen. Chem. 2014. Vol. 84. N 3. P. 515. doi 10.1134/ S1070363214030189
- 20. Cambridge Crystallographic Data Center. 2021. deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk
- Cordero B., Gomez V., Platero-Prats A.E., Reves M., Echeverria J., Cremades E., Barragan F., Alvarez S. // Dalton Trans. 2008. N 21. P. 2832. doi 10.1039/ B801115J

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 12 2022

- Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (A). 2009. Vol. 113. P. 5806. doi 10.1021/jp8111556
- 23. SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, USA, 1998.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A. K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726

Reactions of Benzenesulfonic Acid with Some Tolyl Derivatives of Antimony

V. V. Sharutin^a, O. K. Sharutina^a, and E. S. Mekhanoshina^{a,*}

^a National Research South Ural State University, Chelyabinsk, 454080 Russia *e-mail: mexev@mail.ru

Received September 8, 2022; revised September 8, 2022; accepted October 6, 2022

Reaction of equimolar amounts of benzenesulfonic acid with tolyl derivatives of antimony p-Tol₄SbX [X = Br, ONCHCH=CHPh, OC(O)CH₂OC₆H₃Cl₂-2,4] in an aqueous acetone solution furnished tetra(p-tolyl)antimony benzenesulfonate of the monoclinic modification. Changing acetone with benzene led to the formation of orthorhombic tetra(p-tolyl)antimony benzenesulfonate. Structure of the obtained compounds, in which antimony atoms have a distorted trigonal-bipyramidal coordination with electronegative substituents in axial positions, was established by single crystal X-ray diffraction analysis.

Keywords: tetra(*p*-tolyl)antimony bromide, tetra(*p*-tolyl)antimony cinnamaldoximate, tetra(*p*-tolyl)antimony 2,4-dichlorophenoxyacetate, tetra(*p*-tolyl)antimony benzenesulfonate