УДК 547.773:547.779.1

НОВЫЕ РЕАКЦИИ ГЕТЕРОЦИКЛИЗАЦИИ 5-АМИНО-3-(ЦИАНОМЕТИЛ)-1*Н*-ПИРАЗОЛ-4-КАРБОНИТРИЛА С НЕКОТОРЫМИ 1,3-ДИЭЛЕКТРОФИЛЬНЫМИ АГЕНТАМИ

© 2022 г. А. М. Семенова^{*a*}, Я. Р. Гаджиахмедова^{*a*}, А. В. Беспалов^{*a*}, В. В. Доценко^{*a,b,**}, Н. А. Аксенов^{*b*}, И. В. Аксенова^{*b*}

^а Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия ^b Северо-Кавказский федеральный университет, Ставрополь, 355009 Россия *e-mail: victor dotsenko @mail.ru

> Поступило в Редакцию 7 декабря 2021 г. После доработки 27 января 2022 г. Принято к печати 28 января 2022 г.

5-Амино-3-(цианометил)-1*H*-пиразол-4-карбонитрил вступает в реакции конденсации с β-дикетонами и дибензальацетоном с образованием производных 2-(цианометил)пиразоло[1,5-*a*]пиримидин-3-карбонитрила. Реакция с цианогуанидином в кислой среде приводит к образованию 2,4-диамино-7-(цианометил)пиразоло[1,5-*a*][1,3,5]триазин-8-карбонитрила. Строение полученных соединений подтверждено спектральными данными, а также результатами квантово-химического исследования возможных реакционных маршрутов для взаимодействия 5-амино-3-(цианометил)-1*H*-пиразол-4-карбонитрила с бензоилтрифторацетоном. Для полученных продуктов проведено предсказание параметров биодоступности *in silico*, методом протеин-лигандного докинга спрогнозированы возможные белковые мишени.

Ключевые слова: 3(5)-аминопиразолы, дициандиамид, пиразоло[1,5-*а*]пиримидины, расчетная биологическая активность, квантово-химические исследования

DOI: 10.31857/S0044460X22030052

3(5)-Аминопиразолы представляют значительный интерес ввиду их биологического действия; также они широко используются в качестве легкодоступных реагентов при разработке и создании разнообразных функциональных производных пиразола {обзорные работы по химии 3(5)-амино-[1–9]}. 5-Амино-3-(цианомепиразолов CM. тил)-1*Н*-пиразол-4-карбонитрил 1, получаемый взаимодействием малононитрила [10] или димера малононитрила [10, 11] с гидразином, вследствие высокой функционализации может вступать в реакции конденсации с образованием различных полигетероциклических производных пиразола. Так, соединение 1 широко используется в синтезе для получения замещенных пиразоло[3,4-d]- пиридазинов **2** [12], пиразоло[4,3-*c*]пиридинов **3** [13, 14], пиразоло[1,5-*a*]пиримидинов **4** [15–17], пиразоло[1,5-*a*]хиназолинов **5** [18], пиразоло[1,5-*a*]пиридинов **6** [19–21], пиразоло[3,4-*d*]пиримидинов **7** [22], пиразоло-1,3-тиазинов **8** [23], 3,4-диамино-1*H*-тиено[3,4-*c*]пиразол-6-карбонитрила **9** [24] и др. (схема 1).

Полученные гетероциклические соединения, в первую очередь производные пиразоло[1,5-*a*]пиримидина **4**, привлекают внимание химиков благодаря доступности и интересному профилю биологической активности (недавние обзорные работы по химии и применению пиразоло[1,5-*a*]пиримидинов см. [25–29]). Производные пиразоло[1,5-*a*]пиримидина широко представлены на рынке ле-

EWG – электроноакцепторная группа (CN, CO₂R).

карственных средств; среди последних стоит отметить агонисты бензодиазепиновых рецепторов ГАМК_А – снотворные средства залеплон (Zaleplon, Sonata[®]), индиплон (Indiplon) и лоредиплон (Lorediplon), анксиолитик оцинаплон (Ocinaplon), ингибитор циклин-зависимых киназ с противоопухолевым действием динациклиб (Dinaciclib), ингибитор костных морфогенетических сигнальных белков (bone morphogenetic proteins, BMPs) дорсоморфин (Dorsomorphin), ингибиторы нейротрофных рецепторных тирозинкиназ (NTRK) ларотректиниб (Larotrectinib, Vitrakvi[®]), селитректиниб (Selitrectinib) и репотректиниб (Repotrectinib), ингибитор протекина MRP1 (multidrug resistanceassociated protein 1) и Р-гликопротеина (P-gp) реверсан (Reversan), антидиабетический препарат анаглиптин (Anagliptin, Suiny[®]), антивирусный препарат пресатовир (Presatovir) (схема 2). Следует также упомянуть используемый против мучнистой росы фунгицид пиразофос (Pyrazophos).

Нужно отметить, что несмотря на доступность пиразола 1 как исходного реагента, в литературе описано ограниченное число циклизаций в производные пиразоло[1,5-*a*]пиримидина с его участием [15–18, 30–34]. В продолжение исследований в области реакций циклизации 3(5)-аминопиразолов [35–37], мы решили изучить взаимодействие 5-амино-3-(цианометил)-1*H*-пиразол-4-карбонитрила 1 с рядом 1,3-диэлектрофильных агентов.

Установлено, что аминопиразол 1 легко реагирует с 1,3-дикетонами (дибензоилметаном и бензоилтрифторацетоном) в кипящей AcOH с образо-

ванием производных пиразоло[1,5-а]пиримидина 10 и 11 (выходы 63-66%). Следует указать, что получение соединения 10 было описано в недавней работе [30] путем взаимодействия халкона (либо дибензоилметана) с аминопиразолом 1 в кипящем ДМФА в присутствии основания (выход 70%, спектральные характеристики идентичны). Реакция дибензилиденацетона с пиразолом 1 приводит к образованию с умеренным выходом (39%) продукта конденсации 1:1, которому, по данным ЯМР, соответствует структура дигидропиразолопиримидина 12. При использовании цианогуанидина (дициандиамида) как диэлектрофильного реагента был получен азааналог соединений 10 и 11, пиразоло[1,5-а][1,3,5]триазин 13 с низким выходом 17% (схема 3). Низкий выход связан, вероятно, с частичным гидролизом цианогрупп в условиях реакции и хорошей растворимостью продуктов в водно-кислотном растворе. Будучи биоизостерами пуриновых оснований, пиразоло[1,5-*a*][1,3,5]триазины представляют особой интерес и обнаруживают широкий спектр биологической активности (см. обзорные работы [38, 39]). Соединения **11–13** являются новыми и в литературе не описаны; близкие структурные аналоги соединения **11** и **13** представлены в патентных работах [40, 41] соответственно.

Строение полученных соединений подтверждено данными ИК, ЯМР ¹Н и ¹³С DEPTQ спектроскопии. В ИК спектрах всех соединений обнаруживаются характерные полосы поглощения сопряженной (2208–2241 см⁻¹) и несопряженной (2260–2264 см⁻¹) цианогрупп, что указывает на неучастие этих функциональных фрагментов в реакции. В ИК спектре пиразоло[1,5-*a*][1,3,5]триазина **13** обнаруживаются интенсивные полосы поглощения, соответствующие наличию первичных NH₂-групп. В спектрах ЯМР всех соединений

обнаруживаются характерные сигналы протонов CH₂CN, атомов углерода цианогрупп и пиразольного цикла. В ИК спектре дигидропиразолопиримидина 12 обнаруживаются полосы поглощения, соответствующие валентным колебаниям N-H, в спектре ЯМР ¹Н отсутствует характерный сигнал ароматического протона Н⁶, проявляющийся для соединений 10 и 11 при 8.0-8.5 м. д., но присутствует мультиплетный сигнал при 6.92-6.93 м. д. (H⁵). Выбор между изомерными 4,5-дигидро- и 4,7-дигидроструктурами сделан на основании отсутствия в области сильного поля сигнала Н⁷; кроме того, алкеновые протоны стирильного фрагмента -- СН=СН- обнаруживаются как пара дублетов без дополнительного расщепления, что указывает на связь стирильного фрагмента с четвертичным атомом углерода. Стирильный фрагмент находится в транс-конфигурации (исходя из значения КССВ ³*J* 16.1 Гц).

В спектрах ЯМР ¹Н и ¹³С DEPTQ соединений **10** и **11** наблюдаются характерные сигналы аннелированного пиримидинового цикла – синглет ароматического протона H⁶ и сигналы углеродных атомов C⁵–C⁷ (C⁶ при 108.0–108.2 м. д., C⁵ и C⁷ в области слабого поля 134–160 м. д.). Отдельный интерес представляет проблема региоселективности, наблюдаемой при взаимодействии 5-амино-3-(цианометил)-1*H*-пиразол-4-карбонитрила **1** с несимметричным 1,3-дикетоном – бензоилтрифторацетоном: из реакционной массы был выделен только один продукт, тогда как, в принципе, возможно образование двух региоизомерных пиразолопиримидинов – 7-CF₃-изомера **11А** и 5-CF₃-изомера **11Б** (схема 4).

Выбор в пользу 7-CF₃-региоизомера **11А** сделан на основании анализа литературных данных

по аналогичным структурам и по реакционной способности несимметричных фторированных кетонов в аналогичных реакциях с 3(5)-аминопиразолами, а также на основании детального анализа спектральной картины. Кроме того, мы провели квантово-химические исследования строения исходных реагентов (пиразола 1 и бензоилтрифторацетона) в контексте возможных реакционных путей взаимодействия.

Анализ литературных данных о взаимодействии несимметричных кетонов общего строения СF₃C(O)CH₂C(O)R с различными 3(5)-аминопиразолами показывает, что в подавляющем большинстве случаев реакция протекает региоселективно с образованием 7-СГ₃-изомера [42-51]. При этом экзоциклическая аминогруппа взаимодействует с карбонильной группой C(O)R, а эндоциклический NH пиразола атакует карбонильный атом углерода C(O)CF₃. В то же время, описан ряд примеров образования 5-CF₃-изомеров в аналогичных условиях [52-54]. В работе [55] проведен детальный сравнительный анализ картины в спектрах ЯМР ¹³С для различных региоизомеров на примере 2-фенилпиразоло[1,5-а]пиримидинов. Показано, что сигнал углеродов C⁵ на ~10-13 м. д. сдвинут в область слабого поля относительно сигналов углеродов С⁷ при одинаковых заместителях (схема 5); углерод \underline{C}^5 CF₃ резонирует при ~146 м. д., тогда как углерод <u>С</u>⁷СF₃ – при ~133–135 м. д. Таким образом, квартет при 134.3 м. д. с константой спин-спинового взаимодействия ²*J*_{CF} 38.0 Гц в спектре соединения 11 следует отнести к углероду C⁷ (региоизомер **11A**).

Квантово-химические расчеты осуществляли в программном пакете ORCA 5.0 [56, 57] с использованием гибридного функционала B3LYP [58, 59] с дисперсионной поправкой D3BJ [60] в базисном наборе def2-TZVPP [61]. Для визуализации молекулярной геометрии использовали программу ChemCraft 1.8. Для генерации Input-файлов применяли программу Gabedit 2.5 [62]. Все расчеты проводили с учетом неспецифической сольватации в рамках континуумной модели СРСМ (растворитель – уксусная кислота) [63].

Молекула бензоилтрифторацетона (4,4,4-трифтор-1-фенилбутан-1,3-диона) может существовать в виде трех таутомерных форм: дикетонной

По данным работы [53]:

(A) и двух енольных (Б и В). Для оценки устойчивости данных форм 4,4,4-трифтор-1-фенилбутан-1,3-диона был произведен квантово-химический DFT-расчет энергии таутомеров как в вакууме, так и в среде уксусной кислоты (учет растворителя производили с помощью модели проводникового поляризуемого континуума СРСМ). Оптимизированные молекулярные структуры таутомеров представлены на рис. 1.

Результаты расчета энергии таутомеров 4,4,4-трифтор-1-фенилбутан-1,3-диона приведены на рис. 2. Как можно заметить, по расчетным данным дикетонная форма А является наименее устойчивой как в вакууме, так и в среде АсОН (разница в энергии с наиболее устойчивой енольной формой составляет более 25 кДж/моль). Из енольных форм несколько более устойчивой является Б, однако разница в энергии с формой В невелика и составляет всего 0.2 кДж/моль в вакууме и 7.7 кДж/моль в уксусной кислоте, что указывает на возможное существование таутомерного равновесия между енольными формами Б и В.

Аналогичным образом была оптимизирована молекулярная геометрия и определена устойчи-

вость таутомерных форм А1 и Б1 5-амино-3-(цианометил)-1*H*-пиразол-4-карбонитрила 1 (рис. 3). Расчет без учета сольватации показал несколько большую устойчивость таутомерной формы А1 (разница в энергии с таутомером Б1 составляет 5.1 кДж/моль), в то время как в среде уксусной кислоты более устойчивым оказывается уже таутомер Б1 (разница в энергии с оставляет 8.9 кДж/моль). Учитывая незначительную разницу в энергии между этими таутомерными формами, можно сделать вывод об их совместном присутствии в растворе. Для пиразола 1 теоретически возможно существование и других таутомеров, однако их разница в энергии с вышеуказанными таутомерными формами А1 и Б1 составляет более 90 кДж/моль как в вакууме, так и с учетом сольватации, поэтому далее они не рассматриваются.

С целью определения наиболее вероятных реакционных путей были рассчитаны частичные атомные заряды по Малликену для таутомерных форм как 4,4,4-трифтор-1-фенилбутан-1,3-диона, так и пиразола 1. Результаты проведенных расчетов представлены в табл. 1. Результаты проведенных расчетов показали, что в двух енольных тау-

Рис. 1. Оптимизированные на уровне B3LYP-D3BJ/def2-TZVPP молекулярные структуры таутомерных форм 4,4,4-трифтор-1-фенилбутан-1,3-диона: **А** – дикетонная форма, **Б**, **В** – енольные формы.

томерах 4,4,4-трифтор-1-фенилбутан-1,3-диона (Б и В) атом углерода C^2 обладает более высоким частичным положительным зарядом по сравнению с атомом C^4 , а в таутомерных пиразолах A1 и Б1 атом азота экзоциклической аминогруппы N⁹ обладает более высоким частичным отрицательным зарядом, чем эндоциклический атом пиразола N⁵. Это позволяет сделать вывод о том, что на первом этапе реакции наиболее вероятно реализуется нуклеофильная атака атома N⁹ аминогруппы пиразола 1 на углеродный атом C² енольной формы бензоилтрифторацетона, что в итоге и обусловливает региоселективное образование C⁷–CF₃ изомера 11.

Многие производные пиразоло[1,5-*a*]пиримидина [25–29] и пиразоло[1,5-*a*][1,3,5]триазина [38, 39, 41] обладают биологической активностью. В контексте перспективности изучения активности синтезированных соединений нами был проведен расчет параметров биодоступности для структур **10–13** *in silico*. Первичный анализ структур на соответствие «правилу пяти» К. Липински [*c*Log*P* ≤ 5.0, молекулярная масса (MW)≤500, TPSA≤140 Å²,

Рис. 2. Энергии таутомеров 4,4,4-трифтор-1фенилбутан-1,3-диона, рассчитанные без учета влияния растворителя (1) и с учетом неспецифической сольватации в среде уксусной кислоты (2), относительно минимального значения – энергии енольной формы Б в среде уксусной кислоты.

Рис. 3. Оптимизированные на уровне B3LYP-D3BJ/def2-TZVPP молекулярные структуры таутомерных форм A1 и Б1 пиразола 1.

число акцепторов водородных связей ≤ 10, доноров ≤ 5] [64–66] сделан с использованием расчетного сервиса OSIRIS Property Explorer [67]. Были оценены параметры cLogP [вычисленный логарифм коэффициента распределения между *н*-октанолом и водой $\log(c_{\text{octanol}}/c_{\text{water}})]$, растворимости (logS), площади топологической полярной поверхности (Topological Polar Surface Area, TPSA), токсикологических параметров – рисков побочных эффектов (мутагенные, онкогенные, репродуктивные эффекты), сходства с известными лекарственными препаратами (drug-likeness), а также общей оценки фармакологического потенциала соединения (drug score). Полученные данные суммированы в табл. 2. В целом, все соединения показывают отсутствие рисков токсичности, достаточно благоприятное сочетание параметров биодоступности и высокие значения drug score (0.26–0.43). Значения показателей cLogP << 5.0, TPSA (< 140 Å², кроме соединения 13) указывают на вероятную способность к проникновению через клеточную мембрану или гематоэнцефалический барьер. В то же время, значение $\log S < -4.0$ для соединений 10–12 указывает на невысокую растворимость (менее 1×10⁻⁴ моль/л). Для прогнозирования параметров ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) использовали программные пакеты SwissADME [68], admetSAR [69], GUSAR [70, 71]. Оценка острой токсичности позволяет отнести все соединения к IV (300 мг/кг < LD₅₀ < 2000 мг/кг) и V (2000 мг/кг < LD $_{50}$ < 5000 мг/кг) классам опасности согласно критериям ОЕСD [72]. Для всех соединений прогнозируется высокая гастроэнтеральная абсорбция и возможность прохождения через гематоэнцефалический барьер (табл. 3). Оценка возможного мутагенного действия в тесте Эймса указывает на вероятное отсутствие подобных эффектов (кроме соединения 12).

Молекулярный докинг с целью поиска возможных протеиновых мишеней для полученных соединений **10–13** проведен с использованием нового протокола протеин-лигандного до-

Таблица 1. Малликеновские заряды на атомах C^2 и C^4 в енольных таутомерах бензоилтрифторацетона (4,4,4-трифтор-1-фенилбутан-1,3-диона) и на атомах N^5 и N^9 в таутомерах 5-амино-3-(цианометил)-1*H*-пиразол-4-карбонитрила 1, рассчитанные на уровне B3LYP-D3BJ/def2-TZVPP

Параметр	4,4,4-Tr	оифтор-1-фе	енилбутан-1	,3-дион	5-Амино-3-(цианометил)-1 <i>Н</i> -пиразол-4- карбонитрил 1				
Таутомер]	5	1	3	A1		Б1		
Атом	C^2	C^2 C^4		C ⁴	N ⁵	N ⁹	N^5	N ⁹	
Заряд по Малликену	0.299	0.139	0.250	0.089	-0.251	-0.298	-0.017	-0.288	

Coommonwo	Риск токсичности ^а			Физико-химические параметры						
Соединение	A	В	С	D	cLogP	logS	MW	TPSA	drug-likeness	drug score
$NC \qquad NC \qquad N \qquad Ph \\ NC \qquad N \qquad Ph \\ 10$	_	_	_	_	2.96	-6.44	335	77.77	-2.78	0.28
NC N Ph NC N CF_3 11	_	_	_	_	2.11	-5.47	327	77.77	-10.14	0.32
$NC \xrightarrow{HN}_{N} \xrightarrow{Ph}_{N} \xrightarrow{Ph}_{Ph}$	_	_	_	_	3.72	-6.12	363	77.43	-4.63	0.26
NC $N \rightarrow NH_2$ NC $N \rightarrow NH_2$	_	_	_	_	-1.28	-3.96	214	142.7	-4.18	0.43

Таблица 2. Риски токсичности и физико-химические параметры соединений 10–13, спрогнозированные с помощью сервиса OSIRIS Property Explorer

^а Знаком «+» показан высокий риск токсичности, «–» – отсутствие токсичности. А – Мутагенность, В – канцерогенность, С – раздражающее действие, D – репродуктивные эффекты.

кинга GalaxySagittarius [73] на базе веб-сервера GalaxyWeb [74, 75]. Предварительно 3D-структуры соединений были оптимизированы средствами молекулярной механики в силовом поле MM2 для оптимизации геометрии и минимизации энергии. Докинг проводили в режимах Binding compatability prediction и Re-ranking using docking. В табл. 4 представлены результаты докинга (лучшие 20 результатов) по каждому из соединений 10–13 с указанием комплексов мишень-лиганд с минимальной свободной энергией связывания $\Delta G_{\rm bind}$ (ккал/моль) и наилучшей оценкой проте-

13

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 3 2022

ин-лигандного взаимодействия. Прогнозируемые протеиновые мишени указаны с помощью ID-идентификаторов в Protein Data Bank (PDB) и в базе данных UniProt. Как можно заметить из табл. 4, общими протеиновыми мишенями со значениями скоринг-функций $\Delta G_{\text{bind}} = -18 \div -22$ ккал/моль для соединений 10 и 11 являются янус-киназа JAK2 (PDB ID 4hge, участвует в передаче сигналов цито-киновыми рецепторами типа II – рецепторами интерферона), бактериальная гликозил-гидролаза – α -N-ацетилгалактозаминидаза NagBb (PDB ID 5wzr), протеинкиназа VEGFR-2 (PDB ID 3wze,

	1epe3	ІЬНАЯ	Инг	ибирова	ние цито	кромов Р	450		Острая токсичность (крысы), LD50, log ₁₀ (ммоль/кг) мг/кг ^б			
No	Проник-новение ч ГЭБ Гастроинтестинал абсорбция	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4	Тест Эймса	IP	IV	Oral	SC	
10	+	+	+	+	+	_	+	_	0.002	-0.383	0.692	0.352
10	0.9564	1.0000	0.8965	0.6937	0.7532	0.9185	0.5000	0.6253	337.2	138.8	1652.0	754.5
11	+	+	+	+	+	-	_	_	0.059	-0.307	0.105	0.220
11	0.9621	1.0000	0.9036	0.8214	0.7772	0.7953	0.6795	0.5997	374.9	161.2	416.8	543.3
12	+	+	+	+	+	_	+	+	0.081	-0.574	0.346	0.452
	0.9132	1.0000	0.8810	0.7140	0.7954	0.8449	0.7088	0.5640	437.5	96.87	805.3	1029.0
13	+	+	+	-	-	_	-	-	0.136	-0.399	0.714	0.344
13	0.8762	0.9974	0.8144	0.6805	0.8119	0.8557	0.7622	0.5606	293.0	85.44	1108.0	473.1

аблица 3. Расчетные параметры ADMET^a для соединений 10-13

^а Знаком «+» или «-» показано наличие или отсутствие эффекта.

⁶ IP – внутрибрюшинный способ введения; IV – внутривенный путь введения; Oral – пероральный путь введения; SC – подкожный путь введения.

регулирует ангиогенез и развитие эндотелиальных клеток). Для соединения 12 приоритетными мишенями являются протоонкогенная серин/ треониновая протеинкиназа Pim-1 (PDB ID 3bgq, $\Delta G_{\text{bind}} = -21.4$ ккал/моль), р38альфа митоген-активируемая протеинкиназа (MAPK, PDB ID 3itz, $\Delta G_{\text{bind}} = -22.9$ ккал/моль), для пиразоло-1,3,5-триазина 13 - сериновая протеаза PLAU (PDB ID 1gj7, $\Delta G_{\text{bind}} = -15.2$ ккал/моль, активатор фибринолитической ферментной системы), циклофилин А (пептидилпролил-иис-транс-изомераза А, PDB ID 5nor, $\Delta G_{\text{bind}} = -14.2$ ккал/моль, участвует в патогенезе аутоиммунных, сердечно-сосудистых и онкологических заболеваний) и др. Трехмерная визуализация результатов докинга реализована средствами программного комплекса UCSF Chimera [76, 77] и представлена на рис. 4.

Таким образом, взаимодействием 5-амино-3-(цианометил)-1*H*-пиразол-4-карбонитрила с рядом 1,3-диэлектрофильных реагентов были получены новые производные пиразоло[1,5-*a*]пиримидина и пиразоло[1,5-*a*][1,3,5]триазина. Реакция 5-амино-3-(цианометил)-1*H*-пиразол-4-карбонитрила с бензоилтрифторацетоном протекает региоселективно с образованием только одного региоизомера, для которого данными спектроскопии ЯМР в совокупности со сравнительным анализом литературы и квантово-химическими расчетами подтверждено строение 7-(трифторметил)-5-фенил-2-(цианометил)пиразоло[1,5-а]пиримидин-3-карбонитрила. Результаты молекулярного докинга и экспериментов по оценке параметров ADMET и биодоступности in silico позволяют рассматривать полученные производные пиразола как перспективные объекты для дальнейшего скрининга с целью поиска антитромботических и противоопухолевых агентов. Взаимодействие 5-амино-3-(цианометил)-1Н-пиразол-4-карбонитрила с другими 1,3-диэлектрофильными реагентами и оптимизация описанных способов получения конденсированных пиразолов составят предмет дальнейших исследований.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на спектрофотометре Bruker Vertex 70 с приставкой НПВО методом нарушенного полного внутреннего отражения на Таблица 4. Результаты прогнозирования протеин-лигандного взаимодействия для соединений 10–13 с использованием протокола молекулярного докинга GalaxyWeb Sagittarius

Иденти- фикатор протеина PDB ID		Идентификатор протеина UniProt ID	Пре-докинговая оценка протеин- лигандного взаимодействия (predock score)	Свободная энергия связывания ΔG_{bind} , ккал/моль (docking score)	Общая оценка протеин- лигандного взаимо- действия	
	4hge	O60674	0.199	-21.184	0.358	
	2c3k	O14757	0.197	-20.155	0.348	
	4mbl	P11309	0.185	-21.397	0.345	
	4gj3	P29597	0.191	-20.303	0.343	
	4hvh	P52333	0.173	-20.981	0.330	
	5up3	Q99683	0.157	-21.116	0.315	
	5wrz	P09874	0.148	-21.794	0.312	
NC	3wze	P35968	0.162	-19.627	0.309	
	3zbx	P08581	0.154	-20.590	0.308	
NC N-N	6cmm	Q99986	0.138	-22.133	0.304	
 Ph	5gjf	O43318	0.139	-21.926	0.304	
10	3itz	Q16539	0.147	-20.725	0.302	
	407c	O60885	0.150	-20.229	0.302	
	6hzu	P23458	0.144	-20.856	0.301	
	6mom	Q9NWZ3	0.142	-21.150	0.300	
	4kwp	P68400	0.150	-19.824	0.299	
	6npu	P00519, P00519	0.110	-24.626	0.295	
	1 unl	Q00535	0.140	-19.873	0.289	
	2c5n	P20248, P24941	0.132	-20.879	0.289	
	3tku	Q9Y5S2	0.119	-21.596	0.281	
	4hge	O60674	0.117	-17.821	0.251	
	5wrz	P09874	0.106	-18.881	0.247	
	4kao	Q05397	0.110	-17.450	0.241	
	3zc5	P08581	0.097	-18.925	0.239	
	4li7	095271, 095271	0.078	-21.168	0.237	
	2a06	P10275, Q15596	0.074	-20.670	0.229	
NC	6npu	P00519, P00519	0.075	-20.351	0.227	
N Ph	4ft7	O14757	0.096	-17.553	0.227	
	3q4u	Q04771	0.081	-19.343	0.226	
NC N	4idv	Q99558	0.078	-19.499	0.224	
CF ₃	6glb	P52333	0.081	-18.848	0.222	
11	5hcl	O60885	0.094	-16.997	0.222	
	5c87	P55201	0.081	-18.770	0.222	
	3sxs	P51813	0.067	-20.636	0.222	
	3piy	Q06187	0.079	-18.944	0.221	
	4170	Q9Y6F1	0.080	-18.791	0.221	
	5n4v	P11309	0.089	-17.388	0.219	
	3wze	P35968	0.076	-19.098	0.219	
	1q5k	P49841, P49841	0.085	-17.803	0.219	
	5flz	P29597	0.081	-18.190	0.217	

Таблица 4. (Продолжение)

Структура	Иденти- фикатор протеина PDB ID	Идентификатор протеина UniProt ID	Пре-докинговая оценка протеин- лигандного взаимодействия (predock score)	Свободная энергия связывания ΔG_{bind} , ккал/моль (docking score)	Общая оценка протеин- лигандного взаимо- действия	
	3bgq	P11309	0.301	-21.402	0.461	
	3itz	Q16539	0.217	-22.891	0.388	
	4ft7	O14757	0.228	-20.194	0.380	
	4hvh	P52333	0.208	-21.860	0.371	
	4c61	O60674	0.205	-20.899	0.361	
Ph	4twp	P00519	0.211	-19.459	0.357	
NC	4gii	P29597	0.195	-20.985	0.352	
	407c	O60885	0.171	-23.919	0.350	
N Dh	5gjf	O43318	0.172	-23.679	0.349	
CN FII	6gqo	P35968	0.192	-20.664	0.347	
	6mom	Q9NWZ3	0.172	-22.486	0.341	
	5hcx	P00533	0.181	-21.201	0.340	
	6e2n	Q99683, Q99683	0.171	-20.908	0.328	
	5jzn	O15075, O15075	0.172	-20.608	0.326	
	3piy	Q06187	0.147	-23.196	0.321	
	5d7v	Q13882	0.174	-19.462	0.320	
	1uwj	P15056, P15056	0.146	-23.061	0.319	
	3f88	P49841	0.149	-22.289	0.316	
	3tku	Q9Y5S2	0.153	-21.424	0.314	
	4fr4	Q8WU08	0.144	-22.466	0.313	
	1gj7	P00749	0.160	-15.147	0.274	
	5nor	P62937	0.137	-14.208	0.244	
	4ear	P00491, P00491	0.111	-14.180	0.217	
	2j0f	P19971, P19971	0.081	-15.592	0.198	
NC	4mtl	Q5VZV1, Q5VZV1	0.066	-16.812	0.192	
N NH ₂	2obf	P11086	0.074	-15.713	0.192	
	602y	075874, 075874	0.084	-14.351	0.191	
	3fvo	P39086, P39086	0.079	-14.211	0.185	
ΝΠ ₂	3bn9	P01764, Q9Y5Y6	0.063	-15.526	0.179	
15	2bzn	Q9P2T1, Q9P2T1	0.067	-14.962	0.179	
	4n7m	P55212, P55212	0.069	-14.536	0.178	
	4a61	P20231	0.068	-14.708	0.178	
	5i9j	Q14849	0.080	-13.005	0.178	
	3euf	Q16831, Q16831	0.073	-13.977	0.178	
	3hme	Q9H8M2	0.072	-14.026	0.178	
	5w5o	043353, 043353	0.066	-14.565	0.175	
	5qqz	P22557, P22557	0.073	-13.562	0.175	
	6qh9	Q92876, Q92876	0.057	-15.602	0.174	
	5ou0	P15121	0.063	-14.736	0.173	
	2a1u	P13804, P38117	0.075	-13.087	0.173	

Рис. 4. Прогнозируемые структуры протеин-лигандных комплексов соединения **10** и киназы JAK2 (PDB ID 4hge) (a), соединения 12 и протеинкиназы Pim-1 (PDB ID 3bgq) (б), соединения 11 и бактериальной α-N-ацетилгалактозаминидазы (PDB ID 5wzr) (в), соединения **13** и пептидил-пролил-*цис-транс*-изомеразы A (PDB ID 5nor) (г).

кристалле алмаза, погрешность ± 4 см⁻¹. Спектры ЯМР регистрировали на приборе Bruker Avance III HD 400MHz (400.17 МГц на ядрах ¹H, 100.63 МГц – ¹³С) в растворе ДМСО- d_6 , в качестве стандарта использовали остаточные сигналы растворителя. Элементный анализ проводили на приборе Elementar Vario Microcube. Индивидуальность полученных образцов контролировали методом TCX на пластинах Сорбфил-А (ООО Имид, Краснодар), элюент – ацетон или этилацетат, проявитель – пары иода, УФ детектор.

5-Амино-3-(цианометил)-1*Н*-пиразол-4-карбонитрил **1** получали реакцией димера малононитрила с гидразингидратом [10].

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 3 2022

5,7-Дифенил-2-(цианометил)пиразоло[**1,5-***a*]**пиримидин-3-карбонитрил** (**10**). Смесь 0.5 г (3.4 ммоль) пиразола **1** и 0.76 г (3.4 ммоль) дибензоилметана в 4 мл ледяной АсОН кипятили 6 ч, затем охлаждали. Реакционную массу выдерживали 72 ч при 20°С, осадок отфильтровывали, промывали ЕtOH, петролейным эфиром и сушили при 60°С. Выход 63%, светло-коричневый мелкокристаллический порошок. Соединение **10** растворимо в ДМФА, ДМСО и умеренно – в горячем хлороформе. ИК спектр, v, см⁻¹: 2260 сл, 2222 с (2С \equiv N), 1614 с, 1599 с, 1551 с (C=C, C=N). Спектр ЯМР ¹H, δ, м. д.: 4.55 с (2H, CH₂CN), 7.59–7.66 м (6H, H-Ph), 8.11 с (1H, H⁶), 8.15–8.17 м (2H, H-Ph), 8.38–8.40 м (2H, H-Ph). Спектр ЯМР ¹³С DEPTQ, $\delta_{\rm C}$, м. д.: 17.2 (CH₂), 80.6 (C³), 108.2* (C⁶H), 112.7 (C=N), 116.2 (C=N), 127.8* (2C, Ph), 128.6* (2C, Ph), 129.2* (2C, Ph), 129.6 (C¹, Ph), 130.1* (2C, Ph), 131.75* (C⁴, Ph), 131.83* (C⁴, Ph), 135.4 (C¹, Ph), 147.9 (C⁷), 150.8 (C² или C^{3a}), 151.8 (C^{3a} или C²), 159.5 (C⁵). Здесь и далее *звездочкой* отмечены сигналы в противофазе. Найдено, %: С 75.15; H 4.08; N 20.76. C₂₁H₁₃N₅. Вычислено, %: С 75.21; H 3.91; N 20.88. *M* 335.36.

7-(Трифторметил)-5-фенил-2-(цианометил)пиразоло[1,5-а]пиримидин-3-карбонитрил (11). Смесь 0.6 г (4.1 ммоль) пиразола 1 и 0.89 г (4.1 ммоль) бензоилтрифторацетона в 5 мл ледяной АсОН кипятили 10 ч, затем охлаждали. Реакционную массу выдерживали 72 ч при 20°С, осадок отфильтровывали, промывали EtOH, петролейным эфиром и сушили при 60°С. Получали соединение 11 в аналитически чистом виде, коричневый мелкокристаллический порошок, растворимый в ДМФА. Выход 66%. ИК спектр, v, см⁻¹: 2262 сл, 2241 с (2 С≡N), 1632 с, 1576 с (С=С, С=N). Спектр ЯМР ¹Н, б, м. д.: 4.66 с (2Н, CH₂CN), 7.61–7.67 м (3H, H³–H⁵, Ph), 8.40 д. д (1H, H², H⁶, Ph, ³J 7.8, ⁴J 1.7 Гц), 8.47 с (1Н, Н⁶). Спектр ЯМР ¹³С DEPTQ, δ_C, м. д.: 17.2 (CH₂), 82.2 (C³), 108.0* к (C⁶H, ³J_{CF} 3.9 Гц), 111.9 (C≡N), 116.0 (C≡N), 119.1 к (CF₃, ¹*J*_{CF} 275.0 Гц), 128.3* (2C, Ph), 129.4* (2C, Ph), 132.7* (C⁴, Ph), 134.3 к (C⁷, ${}^{2}J_{CF}$ 38.0 Гц), 134.5 (C¹, Ph), 151.6 (С² или С^{3а}), 151.8 (С^{3а} или С²), 160.0 (С⁵). Найдено, %: С 58.65; Н 2.56; N 20.34. С₁₆Н₈F₃N₅. Вычислено, %: С 58.72; Н 2.46; N 21.40. М 327.26.

7-(Е)-Стирил-5-фенил-2-(цианометил)-4,5-дигидропиразоло[1,5-а]пиримидин-3-карбонитрил (12). Смесь 0.5 г (3.4 ммоль) пиразола 1 и 0.80 г (3.4 ммоль) дибензальацетона в 5 мл ледяной АсОН кипятили 15 ч. При этом наблюдалось образование осадка из кипящего раствора. Реакционную массу охлаждали и выдерживали 48 ч при 20°С. Осадок отфильтровывали, промывали EtOH, петролейным эфиром и сушили при 60°С. Выход 39%, темно-оранжевый порошок. ИК спектр, у, см⁻¹: 3230 ср (N–H), 2260 сл, 2208 с (С≡N), 1650 сл, 1603 с, 1591 с (С=С, С=N). Спектр ЯМР ¹Н, б, м. д.: 4.16 с (2H, CH₂CN), 6.92–6.93 м (1H, H⁵), 7.22 д (1H, Ph-C<u>H</u>=CH, ³*J* 16.1 Гц), 7.33–7.37 м (1H, H⁴, Ph), 7.40–7.43 м (2H, H³, H⁵, Ph), 7.50–7.58 м (7H, H⁶, NH, H-Ph), 7.63 д (2H, H², H⁶, Ph, ³J 7.3 Гц), 7.72 д (1H, Ph–CH=C<u>H</u>, ³*J* 16.1 Гц). Спектр ЯМР ¹³С DEPTQ, $\delta_{\rm C}$, м. д.: 23.2 (CH₂), 71.9 (C⁵), 80.1 (C³), 112.3* (C⁶H), 113.0 (C=N), 117.1 (C=N), 127.9* (2C, Ph), 128.8* (C⁴H Ph), 129.0* (2C, Ph), 129.1* (2C, Ph), 129.4* (2C, Ph), 129.5* (C⁴H Ph), 129.6* (CH=), 129.9* (CH=), 133.7 (C¹ Ph), 134.2 (C¹ Ph), 136.4 (C⁷), 149.4 (C² или C^{3a}), 154.3 (C^{3a} или C²). Найдено, %: С 76.06; H 4.90; N 19.15. C₂₃H₁₇N₅. Вычислено, %: С 76.01; H 4.71; N 19.27. *M* 363.41.

2,4-Диамино-7-(цианометил)пиразоло[1,5-а]-[1,3,5]триазин-8-карбонитрил (13). Смесь 0.5 г (3.4 ммоль) пиразола **1** и 0.29 г (3.4 ммоль) дицианлиамила в 5 мл волы кипятили 8.5 ч в присутствии 0.1 мл конц. раствора HCl. Смесь охлаждали, через 48 ч осадок отфильтровывали, промывали водой, перемешивали с водным раствором соды, отфильтровывали, промывали водой и сушили при 60°С. Выход 17%, коричневый порошок. ИК спектр. у. см⁻¹: 3435, 3331, 3146 уш. с (N–H), 2264 сл, 2226 с (2 C≡N), 1602 уш. с, 1573 уш. с (C=C, C=N). Спектр ЯМР ¹Н, б, м. д.: 4.25 с (2H, CH₂CN), 7.12 и 7.29 уш. с (2Н, NH₂), 8.05 и 8.43 уш. с (2Н, NH₂). Спектр ЯМР ¹³С DEPTQ, *б*_С, м. д.: 16.8 (СН₂), 74.1 (C^3) , 113.4 (C=N), 116.3 (C=N), 149.1 (C⁵), 150.0 (C²), 155.8 (C^{3a}), 161.1 (C⁷). Найдено, %: С 44.70; Н 3.04; N 52.17. С₈Н₆N₈. Вычислено, %: С 44.86; Н 2.82; N 52.32. M 214.19.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Семенова Аминат Манафовна, ORCID: https:// orcid.org/0000-0003-0639-9916

Гаджиахмедова Ядигар Рамидиновна, ORCID: https://orcid.org/0000-0001-8671-7608

Беспалов Александр Валерьевич, ORCID: https://orcid.org/0000-0002-9829-9674

Доценко Виктор Викторович, ORCID: http:// orcid.org/0000-0001-7163-0497

Аксенов Николай Александрович, ORCID: http://orcid.org/0000-0002-7125-9066

Аксенова Инна Валерьевна, ORCID: http:// orcid.org/0000-0002-8083-1407

БЛАГОДАРНОСТЬ

Аналитические исследования выполнены с использованием научного оборудования Центра коллективного пользования Национального иссле-

довательского центра «Курчатовский институт» – ИРЕА при финансовой поддержке Министерства образования и науки России (соглашение № 075-11-2021-070 от 19.08.2021).

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (тема 0795-2020-0031).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Elnagdi M.H., Abdel-Galil F.M., Riad B.Y., Elgemeie G.E.H. // Heterocycles. 1983. Vol. 20. N 12. P. 2437. doi 10.3987/R-1983-12-2437
- Abu Elmaati T.M., El□Taweel F.M. // J. Heterocycl. Chem. 2004. Vol. 41. N 2. P. 109. doi 10.1002/ jhet.5570410201.
- Fichez J., Busca P., Prestat G. In: Targets in Heterocyclic Systems / Eds O.A. Attanasi, P. Merino, D. Spinelli. Roma: Italian Society of Chemistry, 2017. Vol. 21. P. 322. doi 10.17374/targets.2018.21.322
- Anwar H.F., Elnagdi M.H. // Arkivoc. 2009. Vol. i. P. 198. doi 10.3998/ark.5550190.0010.107
- Aggarwal R., Kumar V., Kumar R., Singh S.P. // Beilstein J. Org. Chem. 2011. Vol. 7. N 1. P. 179. doi 10.3762/bjoc.7.25
- Aggarwal R., Kumar S. // Beilstein J. Org. Chem. 2018. Vol. 14. N 1. P. 203. doi 10.3762/bjoc.14.15
- Shaabani A., Nazeri M.T., Afshari R. // Mol. Divers. 2019. Vol. 23. N 3. P. 751. doi 10.1007/s11030-018-9902-8
- Chebanov V.A., Gura K.A., Desenko S.M. In: Synthesis of Heterocycles via Multicomponent Reactions I. Topics in Heterocyclic Chemistry book series / Eds R.V.A. Orru, E. Ruijter . Heidelberg: Springer, 2010. Vol. 23. P. 41. doi 10.1007/7081_2009_21
- Marinozzi M., Marcelli G., Carotti A. // Mini Rev. Med. Chem. 2015. Vol. 15. N 4. P. 272. doi 10.2174/1389557 515666150312154536
- Taylor E.C., Hartke K.S. // J. Am. Chem. Soc. 1959. Vol. 81. N 10. P. 2452. doi 10.1021/ja01519a044
- Доценко В.В., Кривоколыско С.Г., Семенова А.М. // XГС. 2018. Т. 54. № 11. С. 989; Dotsenko V.V., Krivokolysko S.G., Semenova А.М. // Chem. Heterocycl. Compd. 2018. Vol. 54. N. 11. Р. 989. doi 10.1007/ s10593-018-2383-y

- 12. *Elkholy A., Al-Qalaf F., Elnagdi M.H.* // Arkivoc. 2008. Vol. xiv. P. 124. doi 10.3998/ark.5550190.0009.e14
- Kankanala J., Marchand C., Abdelmalak M., Aihara H., Pommier Y., Wang Z. // J. Med. Chem. 2016. Vol. 59. N 6. P. 2734. doi 10.1021/acs.jmedchem.5b01973
- Metwally N.H., Deeb E.A. // Synth. Commun. 2018. Vol. 48. N 13. P. 1614. doi 10.1080/00397911.2018.1457162
- Metwally N.H., Abdallah M.A., Almabrook S.A. // J. Heterocycl. Chem. 2017. Vol. 54. N 1. P. 347. doi 10.1002/jhet.2590
- Hassan M.I., Hassane A.M.A. // Egypt. J. Chem. 2019. Vol. 62, Part 1. P. 103. doi 10.21608/ EJCHEM.2019.14725.1907
- Golubev P., Karpova E.A., Pankova A.S., Sorokina M., Kuznetsov M.A. // J. Org. Chem. 2016. Vol. 81. N 22. P. 11268. doi 10.1021/acs.joc.6b02217
- Ragab E.A., Metwally N.H., Mohamed M.S. // Synth. Commun. 2017. Vol. 47. N 2. P. 148. doi 10.1080/00397911.2016.1257722
- Elghandour A.H.H., Elmoghayar M.R.H., Ramiz M.M.M. // J. Prakt. Chem. 1988. Vol. 330. N 4. P. 657. doi 10.1002/prac.19883300424
- Naik N.S., Shastri L.A., Shastri S.L., Chougala B.M., Shaikh F., Madar J.M., Kulkarni R.C., Dodamani S., Jalalpure S., Joshi S.D., Sunagar V. // ChemistrySelect. 2019. Vol. 4. N 1. P. 285. doi 10.1002/slct.201802927
- Abdelmoniem A.M., Ghozlan S.A., Abdelmoniem D.M., Elwahy A.H., Abdelhamid I.A. // J. Heterocycl. Chem. 2018. Vol. 55. N 12. P. 2792. doi 10.1002/jhet.3346
- Elnagdi M.H., El-Moghayar M.R., Fleita D.H., Hafez E.A., Fahmy S.M. // J. Org. Chem. 1976. Vol. 41. N 24. P. 3781. doi 10.1021/jo00886a002
- Bulychev Y.N., Korbukh I.A., Preobrazhenskaya M.N. // Chem. Heterocycl. Compd. 1981. Vol. 17. N 4. P. 392. doi 10.1007/BF00503346
- 24. Elnagdi M.H., Erian A.W. // Lieb. Ann. Chem. 1990. Vol. 1990. N 12. P. 1215. doi 10.1002/ jlac.1990199001219
- Al-Azmi A. // Curr. Org. Chem. 2019. Vol. 23. N 6. P. 721. doi 10.2174/1385272823666190410145238
- Castillo J.C., Portilla J. In: Targets in Heterocyclic Systems / Eds O.A. Attanasi, P. Merino, D. Spinelli. Roma: Italian Society of Chemistry, 2018. Vol. 22. P. 194. doi 10.17374/targets.2019.22.194
- Salem M.A., Helal M.H., Gouda M.A., Abd El-Gawad H.H., Shehab M.A.M., El-Khalafawy A. // Synth. Commun. 2019. Vol. 49. N 14. P. 1750. doi 10.1080/00397911.2019.1604967
- Cherukupalli S., Karpoormath R., Chandrasekaran B., Hampannavar G.A., Thapliyal N., Palakollu V.N. // Eur. J. Med. Chem. 2017. Vol. 126. P. 298. doi 10.1016/j. ejmech.2016.11.019

- Arias-Gómez A., Godoy A., Portilla J. // Molecules.
 2021. Vol. 26. N 9. P. 2708. doi 10.3390/ molecules26092708
- Metwally N.H., Mohamed M.S., Deeb, E.A. // Res. Chem. Intermed. 2021. Vol. 47. P. 5027. doi 10.1007/ s11164-021-04564-x
- Radini I.A.M., Ibrahim D.A., Khidre R.E. // Acta Pol. Pharm. Drug Res. 2019. Vol. 76. N 3. P. 453. doi 10.32383/appdr/102651
- Bondock S., Khalifa W., Fadda A.A. // Synth. Commun. 2006. Vol. 36. N 11. P. 1601. doi 10.1080/00397910600591763
- Danagulyan G.G., Mkrtchyan A.D., Panosyan G.A. // Chem. Heterocycl. Compd. 2005. Vol. 41. N 4. P. 485. doi 10.1007/s10593-005-0176-6
- Metwally N.H., Mohamed M.S., Ragb E.A. // Bioorg. Chem. 2019. Vol. 88. Paper N 102929. doi 10.1016/j. bioorg.2019.102929
- Kolosov M.A., Beloborodov D.A., Orlov V.D., Dotsenko V.V. // New J. Chem. 2016. Vol. 40. N 9. P. 7573. doi 10.1039/c6nj00336b
- 36. Семенова А.М., Оганесян Р.В., Доценко В.В., Чигорина Е.А., Аксенов Н.А., Аксенова И.В., Нетреба Е.Е. // ЖОХ. 2019. Т. 89. № 1. С. 25; Semenova A.M., Oganesyan R.V., Dotsenko V.V., Chigorina E.A., Aksenov N.A., Aksenova I.V., Netreba E.E. // Russ. J. Gen. Chem. 2019. Vol. 89. N 1. P. 19. doi 10.1134/S1070363219010043
- Ledenyova I.V., Didenko V.V., Dotsenko V.V., Shikhaliev K.S. // Tetrahedron Lett. 2014. Vol. 55. N 6. P. 1239. doi 10.1016/j.tetlet.2014.01.010
- Dolzhenko A.V., Dolzhenko A.V., Chu W.-K. // Heterocycles. 2008. Vol. 75. P. 1575. doi 10.3987/REV-08-629
- Singh S., Mandal M.K., Masih A., Saha A., Ghosh S.K., Bhat H.R., Singh U.P. // Arch. Pharm. 2021. Vol. 354. N 6. Paper N e2000363. doi 10.1002/ardp.202000363
- 40. Wichmann J., Woltering T.J. Pat. WO 2005040171 (2005).
- Cohen C. Pat. DE 2900288 (1979). Germany // C. A. 1979. Vol. 91. 157770.
- 42. *Liu J., Ge H.-G., Lu J.-F.* // J. Chem. Res. 2015. Vol. 39. N 1. P. 4. doi 10.3184/174751915X14206280982837
- Aggarwal R., Masan E., Kaushik P., Kaushik D., Sharma C., Aneja K.R. // J. Fluor. Chem. 2014. Vol. 168. P. 16. doi 10.1016/j.jfluchem.2014.08.017
- Kokorekin V.A., Neverov S.V., Kuzina V.N., Petrosyan V.A. // Molecules. 2020. Vol. 25. N 18. Paper N 4169. doi 10.3390/molecules25184169
- Кокорекин В.А., Ходонов В.М., Неверов С.В., Грамматикова Н.Э., Петросян В.А. // Изв. АН. Сер. хим. 2021. № 3. С. 600; Kokorekin V.A., Khodonov V.M., Neverov S.V., Grammatikova N.É., Petrosyan V.A. //

Russ. Chem. Bull. Int. Ed. 2021. Vol. 70. N 3. P. 600. doi 10.1007/s11172-021-3131-5

- Hauck S., Hiesinger K., Hosseini S.K., Achenbach J., Biondi R.M., Proschak E., Zörnig M., Odadzic D. // Bioorg. Med. Chem. 2016. Vol. 24. N 22. P. 5717. doi 10.1016/j.bmc.2016.09.015
- Yoshida M., Mori A., Inaba A., Oka M., Makino H., Yamaguchi M., Fujita H., Kawamoto T., Goto M., Kimura H., Baba A., Yasuma T. // Bioorg. Med. Chem. 2010. Vol. 18. N 24. P. 8501. doi 10.1016/j. bmc.2010.10.035
- Abe M., Seto M., Gogliotti R.G., Loch M.T., Bollinger K.A., Chang S., Engelberg E.M., Luscombe V.B., Harp J.M., Bubser M., Engers D.W., Jones C.K., Rodriguez A.L., Blobaum A.L., Conn P.J., Niswender C.M., Lindsley C.W. // ACS Med. Chem. Lett. 2017. Vol. 8. N 10. P. 1110. doi 10.1021/acsmedchemlett.7b00317
- Емелина Е.Е., Петров А.А., Фирсов А.В. // ЖОрХ. 2003. Т. 39. № 2. С. 299; Emelina E.E., Petrov А.А., Firsov A.V. // Russ. J. Org. Chem. 2003. Vol. 39. N 2. P. 277. doi 10.1023/A:1025512924673
- 50. Liu J., Zhao J., Lu J.-F. // J. Chem. Soc. Pak. 2020. Vol. 42. N 4. P. 591. doi 10.52568/000663/ JCSP/42.04.2020
- Ячевский Д.С., Чижов Д.Л., Чарушин В.Н. // ЖОрХ.
 2006. Т. 42. № 1. С. 148; Yachevskii D.S., Chizhov D.L., Charushin, V.N. // Russ. J. Org. Chem. 2006. Vol. 42.
 N 1. Р. 142. doi 10.1134/S1070428006010234
- 52. Balicki R. // Pol. J. Chem. 1981. Vol. 55. N. 10. P. 1995.
- Ho Y.-W., Yao C.-T. // J. Chin. Chem. Soc. 2003. Vol. 50. N 2. P. 283. doi 10.1002/jccs.200300043
- 54. Ho Y.-W. // J. Chin. Chem. Soc. 1999. Vol. 46. N 6. P. 955. doi 10.1002/jccs.199900131
- Емелина Е.Е., Петров А.А., Фирсов А.В. // ЖОрХ.
 2001. Т. 37. № 6. С. 899; Emelina E.E., Petrov А.А., Firsov A.V. // Russ. J. Org. Chem. 2001. Vol. 37. N 6.
 P. 852. doi 10.1023/A:1012417816375
- Neese F. // WIREs Comput. Mol. Sci. 2012. Vol. 2. N 1. P. 73. doi 10.1002/wcms.81
- 57. *Neese F.* // WIREs Comput. Mol. Sci. 2018. Vol. 8. N 1. Paper N e1327. doi 10.1002/wcms.1327
- Becke A.D. // Phys. Rev. (A). 1988. Vol. 38. P. 3098. doi 10.1103/PhysRevA.38.3098
- Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988.
 Vol. 37. P. 785. doi 10.1103/PhysRevB.37.785
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. N 7. P. 1456. doi 10.1002/jcc.21759
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi 10.1039/B508541A
- Allouche A.-R. // J. Comput. Chem. 2011. Vol. 32. N 1. P. 174. doi 10.1002/jcc.21600
- 63. *Tomasi J., Mennucci B., Cammi R.* // Chem. Rev. 2005. Vol. 105. N 8. P. 2999. doi 10.1021/cr9904009

- Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug. Delivery Rev. 1997. Vol. 23. N 1-3. P. 4. doi 10.1016/S0169-409X(96)00423-1
- Lipinski C.A. // Drug Discov. Today: Technologies. 2004.
 Vol. 1. N 4. P. 337. doi 10.1016/j.ddtec.2004.11.007
- Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug. Delivery Rev. 2012. Vol. 64. Suppl. P. 4. doi 10.1016/j.addr.2012.09.019
- 67. Sander T. OSIRIS Property Explorer. Idorsia Pharmaceuticals Ltd, Switzerland. http://www.organicchemistry.org/prog/peo/
- Daina A., Michielin O., Zoete V. // Sci. Rep. 2017. Vol. 7. Article N 42717. doi 10.1038/srep42717
- Cheng F., Li W., Zhou Y., Shen J., Wu Z., Liu G., Lee P.W., Tang Y. // J. Chem. Inf. Model. 2012. Vol. 52. N 11. P. 3099. doi 10.1021/ci300367a
- 70. Lagunin A., Zakharov A., Filimonov D., Poroikov V. // Mol. Informatics. 2011. Vol. 30. N 2–3. P. 241. doi 10.1002/minf.201000151
- GUSAR Online. Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://www.way2drug.com/ gusar/references.html
- 72. OECD Environment, Health and Safety Publications Series on Testing and Assessment No 24. Guidance

Document on Acute oral Toxicity Testing. ENV/JM/ MONO(2001)4. OECD, Paris. https://www.oecd.org/ officialdocuments/publicdisplaydocumentpdf/?cote=e nv/jm/mono(2001)4&doclanguage=en

- Yang J., Kwon S., Bae S.H., Park K.M., Yoon C., Lee J.H., Seok C. // J. Chem. Inf. Model. 2020. Vol. 60. N 6. P. 3246. doi 10.1021/acs.jcim.0c00104
- 74. GalaxyWEB. A web server for protein structure prediction, refinement, and related methods. Computational Biology Lab, Department of Chemistry, Seoul National University, S. Korea. http://galaxy. seoklab.org/index.html
- Ko J., Park H., Heo L., Seok C. // Nucleic Acids Res. 2012. Vol. 40. Iss. W1. P. W294. doi 10.1093/nar/gks493
- Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. // J. Comput. Chem. 2004. Vol. 25. N 13. P. 1605. doi 10.1002/ jcc.20084
- 77. UCSF Chimera. Visualization system for exploratory research and analysis developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, US. https:// www.rbvi.ucsf.edu/chimera/

New Heterocyclisation Reactions of 5-Amino-3-(cyanomethyl)-1*H*-pyrazole-4-carbonitrile with Some 1,3-Dielectrophilic Agents

A. M. Semenova^{*a*}, Ya. R. Gadzhiakhmedova^{*a*}, A. V. Bespalov^{*a*}, V. V. Dotsenko^{*a,b,**}, N. A. Aksenov^{*b*}, and I. V. Aksenova^{*b*}

^a Kuban State University, Krasnodar, 350040 Russia ^b North Caucasus Federal University, Stavropol, 355009 Russia *e-mail: victor dotsenko @mail.ru

Received December 7, 2021; revised January 27, 2022; accepted January 28, 2022

5-Amino-3-(cyanomethyl)-1*H*-pyrazole-4-carbonitrile enters into condensation reactions with β -diketones and dibenzalacetone to form 2-(cyanomethyl)pyrazolo[1,5-*a*]pyrimidine-3-carbonitrile derivatives. The reaction with cyanoguanidine in an acid medium leads to the formation of 2,4-diamino-7-(cyanomethyl)pyrazolo[1,5-*a*]-[1,3,5]triazine-8-carbonitrile. Structure of the obtained compounds was confirmed by spectral data, as well as the results of a quantum chemical study of possible reaction routes for the reaction of 5-amino-3-(cyanomethyl)-1*H*-pyrazole-4-carbonitrile with benzoyltrifluoroacetone. Bioavailability parameters were predicted for the obtained products *in silico*, and possible protein targets were predicted by protein-ligand docking.

Keywords: 3(5)-aminopyrazoles, dicyandiamide, pyrazolo[1,5-*a*]pyrimidines, calculated biological activity, quantum chemical studies