УДК 547.775:547.816:535.37

СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ И ИОНОХРОМНЫЕ СВОЙСТВА АЗОМЕТИНИМИН-КУМАРИНОВЫХ КОНЪЮГАТОВ

© 2022 г. О. Г. Николаева^{*a*}, О. С. Попова^{*a*}, И. В. Дубоносова^{*a*}, О. Ю. Карлутова^{*a*}, А. Д. Дубоносов^{*b*,*}, В. А. Брень^{*a*}, В. И. Минкин^{*a*}

^а Научно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону, 344090 Россия

^b Федеральный исследовательский центр Южный научный центр Российской академии наук, np. Чехова 41, Ростов-на-Дону, 344006 Россия *e-mail: aled@ipoc.sfedu.ru

> Поступило в редакцию 27 января 2022 г. После доработки 27 января 2022 г. Принято к печати 17 февраля 2022 г.

Впервые синтезированы азометинимин-кумариновые моно- и бисконъюгаты – полифункциональные хромогенные и флуорогенные системы для детектирования фторид-, ацетат-, дигидрофосфат- и цианид-анионов, а также катионов *d*-металлов (Zn^{2+} , Pb^{2+} , Hg^{2+} и Cu^{2+}) за счет проявления ионохромных эффектов (naked-eye effects) и разгорания/тушения исходной ESIPT-эмиссии с аномальным сдвигом Стокса. Моноконъюгат на основе 6,7-дигидрокси-4-метил-2-оксо-2*H*-хромен-8-карбальдегида может быть использован для селективного обнаружения анионов CN^- в присутствии ионов-конкурентов (F^- , AcO^- , $H_2PO_4^-$, Cl^- , NO_3^- и HSO_4^-). Он проявляет селективную активность по отношению к катионам Hg^{2+} в присутствии ионов Na^+ , K^+ , Ca^{2+} , Ba^{2+} , Cu^{2+} , Cd^{2+} , Ni^{2+} , Co^{2+} и Pb^{2+} .

Ключевые слова: азометинимины, кумарины, ионохромный эффект (naked-eye effect), флуоресценция **DOI:** 10.31857/S0044460X22050134, **EDN:** CKLCHP

Высокая реакционная способность азометиниминов благодаря присутствию в молекулах полярного фрагмента $N^--N^+=C$ играет важную роль в получении различных конденсированных гетероциклов [1–5]. Продукты циклоприсоединения с аннелированным пиразолидиновым циклом применяются в качестве полифункциональных биологически активных соединений, анти-ВИЧ агентов, ингибиторов NO-синтазы, антидиабетических препаратов [6–8]. Азометинимины на основе пиразолидин-3-она при облучении УФ светом демонстрируют отрицательный фотохромизм вследствие внутримолекулярной фотоциклизации в диазиридины, а также способны к проявлению ионохромных хемосенсорных свойств [9–11]. Кумарин (2*H*-хромен-2-он) представляет собой один из наиболее универсальных каркасов для создания флуоресцентных, ионохромных и сенсорных систем [12–14]. На основе замещенных кумаринов получены противогрибковые, противовоспалительные и противовирусные лекарственные препараты [15, 16]. Проявление флуоресценции в видимой области спектра обусловливает применение производных кумаринов в лазерных красителях, светоизлучающих устройствах и фотоэлементах [17–20]. Сведения о системах, включающих одновременно азометиниминовый и кумариновый фрагменты, отсутствуют.

С целью получения новых полифункциональных хромогенных и флуорогенных хемосенсоров

 $R^{1} = R^{3} = H, R^{2} = Me(4a), R^{1} + R^{2} = C_{4}H_{4}, R^{3} = H(46), R^{1} = H, R^{2} = Me, R^{3} = OH(4B), R^{1} = H, R^{2} = Me(5a), R^{1} + R^{2} = C_{4}H_{4}(56).$

для детектирования катионов и анионов мы синтезировали азометинимин-кумариновые конъюгаты 4 и 5 (схема 1). Соединения 4а–в и 5а, б получаются с умеренными выходами при конденсации 5-фенилпиразолидин-3-она 1 с формил- или диформилкумаринами 2 и 3 в пропан-2-оле.

Структура полученных соединений подтверждена данными ИК, ЯМР ¹Н спектроскопии и масс-спектрометрии. В ИК спектрах конъюгатов **4**, **5** присутствуют полосы валентных колебаний карбонильных групп пиранонового фрагмента при 1724–1759 см⁻¹ и 5-фенилпиразолидин-3-онового фрагмента при 1673–1703 см⁻¹. Полосы колебаний групп С=N наблюдаются в области 1603– 1620 см⁻¹.

В спектрах ЯМР ¹Н соединений **4**, **5** проявляются сигналы протонов исходных кумаринов и синглетные сигналы групп СН и ОН при 7.77–7.92 и 13.28–16.78 м. д. соответственно.

В электронных спектрах поглощения коньюгатов **4a**, **б** и **5a** в ацетонитриле присутствуют длинноволновые максимумы при 324-360 нм с широким плечом при 389-420 нм (табл. 1). В спектрах бензо[*c*]аннелированных соединений **4b** и **5б** длинноволновое плечо отсутствует.

Азометинимин-кумариновые конъюгаты 4, 5 проявляют характерную ESIPT-флуоресценцию (Excited-State Intramolecular Proton Transfer) [21–23] в области 469–540 нм с аномальной величиной сдвига Стокса (АСС), достигающей 7750 см⁻¹ (табл. 1, рис. 1, кривая I'). АСС-Эмиссия обусловлена быстрым внутримолекулярным О \rightarrow N переносом протона в синглетном возбужденном состоянии [11], однако в данном случае

СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ И ИОНОХРОМНЫЕ СВОЙСТВА

N⁰	λ_{\max} , нм (є, л·моль ⁻¹ ·см ⁻¹)	λ _{фл} , нм (<i>I</i> , отн. ед.)	Сдвиг Стокса, $\Delta v_{\phi \pi}$ (см ⁻¹)
4 a	266 (9200), 324 (24000), 389 пл (5600)	540 (400)	7200
4 6	289 (26400), 336 (26000), 400 пл (5000)	538 (350)	6400
4в	274 (25200), 344 (26400)	469 (95)	7750
5a	290 (15300), 340 (38100), 420 пл (21200)	530 (40)	5950
56	276 (32000), 360 (29200)	480 (50)	4950

Таблица 1. Поглощение и флуоресценция конъюгатов **4а–в** и **5а**, **б** в ацетонитриле ($c 2.5 \times 10^{-5}$ моль/л)

внутримолекулярная водородная связь OH…N реализуется в необычном семичленном квазицикле, хотя большинство известных ESIPT-систем имеют шестичленные или пятичленные циклы с водородной связью. Перекрывание полос поглощения и эмиссия практически отсутствует, а спектры возбуждения флуоресценции хорошо совпадают с их спектрами поглощения.

Хромогенная и флуорогенная активность моно-(4) и бисконъюгатов (5) с одной или двумя пиразолидиновыми группами исследовалась по отношению к анионам и катионам d-металлов по данным спектров поглощения и флуоресценции [24–27]. Моноконъюгаты 4а, б в ацетонитриле практически индифферентны к добавлению перхлоратов Na⁺, K⁺, Ca²⁺, Ba²⁺, Zn²⁺, Hg²⁺, Cu²⁺, Cd²⁺, Ni²⁺, Co²⁺, Pb²⁺, однако в присутствии тетрабутиламмониевых солей (Bu₄N⁺X⁻: X = F, Cl, Br, I, CN, SCN, AcO, NO₃, HSO₄, H₂PO₄) наблюдается naked-eye эффект с изменением бесцветной окраски раствора на желтую, вызванный появлением новых длинноволновых максимумов поглощения в видимой области спектра в присутствии анионов F⁻, AcO⁻, H₂PO₄⁻ и CN⁻ (рис. 1).

Фторид- и ацетат-анионы образуют координационные связи с атомами водорода группы ОН (вплоть до полного отрыва протона фторид-анионом) [28–30]. Появление новых длинноволновых максимумов (рис. 1, кривые 2, 3) сопровождается значительным уменьшением интенсивности эмиссии (рис. 1, кривые 2', 3') вследствие существенного ингибирования ESIPT-процесса. По данным спектрофотометрического титрования и метода изомолярных серий, соединения **4a**, **б** образуют с ани-

Рис. 1. Спектры поглощения и флуоресценции конъюгата **4a** в ацетонитриле (*c* 2.5×10⁻⁵ моль/л) до (*1*,*1*', λ_{B036} 325 нм) и после прибавления анионов F⁻ (*2*,*2*', λ_{B036} 460 нм), AcO⁻ (*3*,*3*', λ_{B036} 460 нм) и CN⁻ (*4*,*4*', λ_{B036} 375 нм) (*c*_{MeCN} 5.0×10⁻⁵ моль/л).

онами F⁻ и AcO⁻ комплексы состава 1:1 (рис. 2а), а с цианид-анионами – комплексы состава 1:2 (рис. 2б).

Эти данные в сочетании с более коротковолновым поглощением комплексов соединений **4a**, **б** с ионами CN^- и существенным разгоранием исходной эмиссии (рис. 1, кривые 4, 4') позволяют предположить иной механизм детектирования цианид-анионов, включающий, вероятно, ковалентное присоединение цианогруппы по связи C=N [31, 32] (схема 2).

Для подтверждения предполагаемого механизма связывания анионов было проведено более детальное исследование взаимодействия конъюгата 4a с анионами F⁻ и CN⁻ методом ЯМР ¹H в CD₃CN. В присутствии фторид-аниона наблюдается почти полное исчезновение сигнала протона группы ОН при 13.74 м. д., однако сигналы протонов кумаринового фрагмента практически не изменяются. Напротив, цианид-анион вызывает не только исчезновение сигнала ОН, но и значительный сдвиг дублетных сигналов кумариновых протонов H^5 и H^6 в сильное поле, что подтверждает образование ковалентной связи между ионом CN^- и атомом углерода двойной связи $C=N^+$ (схема 2) [31, 32].

Азометинимин-кумариновый конъюгат **4**в на основе 6,7-дигидрокси-4-метил-2-оксо-2*H*-хромен-8-карбальдегида в отличие от соединений **4**а, **б** способен к селективному детектированию анионов CN^- даже в присутствии целого ряда конкурирующих ионов (F⁻, AcO⁻, H₂PO₄⁻, Cl⁻, NO₃⁻ и HSO₄⁻). Кроме того, он проявляет селективную активность по отношению к катионам Hg²⁺ (рис. 3).

Рис. 2. Графики Джоба в ацетонитриле на длинах волн поглощения 390 нм (а) и 370 нм (б), отражающие взаимодействие конъюгата **46** с ионами F⁻ и CN⁻ соответственно. Суммарные концентрации [**46**]+[F⁻] и [**46**]+[CN⁻] равны 2.5×10⁻⁵ моль/л.

Образование комплекса соединения **4**в с цианид-анионами вызывает отчетливый ионохромный эффект (naked-eye effect [26]), сопровождающийся изменением бесцветной окраски в ацетонитриле на желтую и появлением нового длинноволнового максимума поглощения при 487 нм. По данным метода изомолярных серий, образуется комплекс состава 1:2, однако в данном случае ион CN^- образует координационную связь с группой OH, не вовлеченной во внутримолекулярную водородную связь (схема 3).

Это подтверждается как данными квантово-химических расчетов методом DFT B3LYP/6-311++G(d,p) с учетом сольватации (CH₃CN) близкого по структуре соединения [33], так и малым по сравнению с конъюгатами **4a**, **б** гипсофлорным смещением полосы исходной ACC-эмиссии [$\Delta \lambda = 24$ нм (**B**) и ~ 110 нм (**a**, **б**)] с одновременным значительным увеличением ее интенсивности (рис. 3, кривая 2').

Катионы Hg^{2+} в присутствии ионов Na^+ , K^+ , Ca^{2+} , Ba^{2+} , Zn^{2+} , Cu^{2+} , Cd^{2+} , Ni^{2+} , Co^{2+} , Pb^{2+} (в виде перхлоратов/ацетатов) селективно взаимодействуют с конъюгатом **4**в в ацетонитриле и проявляют различимый невооруженным глазом ионохромный эффект, связанный с желтым окрашиванием бесцветного раствора. При этом происходит замещение атома водорода гидроксильной группы с полным ингибированием исходной АСС-флуоресценции (рис. 3, кривые 3 и 3', схема 3). Катионы

Рис. 3. Спектры поглощения и флуоресценции конъюгата **4**в в ацетонитриле ($c 2.5 \times 10^{-5}$ моль/л) до (1, 1', λ_{B036} 325 нм) и после прибавления анионов CN⁻ (2, 2', λ_{B036} 390 нм) и катионов Hg²⁺ (3, 3', λ_{B036} 380 нм) ($c 5.0 \times 10^{-5}$ моль/л).

Рис. 4. Спектры поглощения бисконъюгата 5а в ацетонитриле (c 1.7×10⁻⁵ моль/л) до (l) и после прибавления катионов Zn²⁺ (2), Pb²⁺ (3), Hg²⁺ (4) и Cu²⁺ (5) ($c_{\text{кат}}$ 3.5×10⁻⁵ моль/л).

прочих металлов оказывают незначительное влияние на характер абсорбции и эмиссии.

Бисконъюгаты **5а**, **б** с двумя пиразолидиновыми группами не проявляют селективных ионохромных свойств и реагируют на группу катионов *d*-металлов Zn^{2+} , Pb^{2+} , Hg^{2+} и Cu^{2+} (рис. 4), а также на анионы F^- , CN^- , AcO^- и $H_2PO_4^-$ (рис. 5).

Характер ионохромных и флуоресцентных изменений в спектрах бисконъюгатов **5а**, **б** при образовании комплексов с ионами принципиально не отличается от описанного выше для моноконъюгатов. Катионы *d*-металлов вызывают желтое окрашивание бесцветных растворов соединений **5**а, **б** в ацетонитриле (рис. 4). Одновременно происходит полное тушение исходной ACC-флуоресценции, что свидетельствует о замещении атома водорода группы OH. Анионы F⁻, AcO⁻ и H₂PO₄⁻ образуют ярко-желтые комплексы по механизму образования координационных связей с гидроксильными группами, а ион CN⁻, по-видимому, дополнительно образует ковалентные связи с группой C=N⁺. В последнем случае наблюдается разгорание новой интенсивной флуоресценции в области 480 нм (рис. 5, кривая 5').

Таким образом, синтезированы новые азометинимин-кумариновые моно- и бисконъюгаты, представляющие собой полифункциональные ионохромные флуоресцентные системы, пригодные для детектирования фторид-, ацетат-, дигидрофосфати цианид-анионов, а также катионов *d*-металлов – Zn^{2+} , Pb²⁺, Hg²⁺ и Cu²⁺. Моноконъюгат на основе 6,7-дигидрокси-4-метил-2-оксо-2*H*-хромен-8-карбальдегида способен к селективному обнаружению анионов CN⁻ в присутствии ионов-конкурентов F⁻, AcO⁻, H₂PO⁻₄, Cl⁻, NO⁻₃ и HSO⁻₄. Кроме того, он проявляет селективную активность по отношению к катионам Hg²⁺ в присутствии катионов Na⁺, K⁺, Ca²⁺, Ba²⁺, Zn²⁺, Cu²⁺, Cd²⁺, Ni²⁺, Co²⁺ и Pb²⁺.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на спектрометре Unity-300 (Varian, 300 МГц) в ДМСО- d_6 .

Рис. 5. Спектры поглощения и флуоресценции бисконъюгата **5a** в ацетонитриле ($c \ 1.7 \times 10^{-5} \text{ моль/л}$) до ($l, l', \lambda_{возб} 415 \text{ нм}$) и после прибавления анионов F⁻ ($2, 2', \lambda_{возб} 480 \text{ нм}$), AcO⁻ ($3, 3', \lambda_{возб} 480 \text{ нм}$), H₂PO₄⁻ ($4, 4', \lambda_{возб} 480 \text{ нм}$) и CN⁻ ($5, 5', \lambda_{возб} 385 \text{ нм}$) ($c_{MeCN} 3.5 \times 10^{-5} \text{ моль/л}$).

В качестве внутреннего стандарта использовали остаточные сигналы протонов дейтерорастворителя. Колебательные спектры записывали на приборе Excalibur 3100 FT-IR. Электронные спектры поглощения снимали на спектрофотометре Varian Carv 100. Спектры люминесценции измеряли на спектрофлуориметре Varian Cary Eclipse. Для приготовления растворов использовали ацетонитрил спектральной чистоты, перхлораты или ацетаты *d*-металлов и тетрабутиламмониевые соли (Aldrich). Температуру плавления измеряли в стеклянных капиллярах на приборе ПТП-М. Элементный анализ выполняли классическим методом [34]. Экспериментальные данные получены с использованием оборудования Центра коллективного пользования Южного федерального университета «Молекулярная спектроскопия».

Азометинимин-кумариновые конъюгаты (4а–в, 5а, б). К раствору 1 ммоль формилкумарина 2а–в или диформилкумарина 3а, б в *i*-PrOH, ДМФА или в смеси *i*-PrOH–ДМФА добавляли раствор 1 ммоль (0.16 г) 5-фенилпиразолидин-3-она 1 в 5 мл *i*-PrOH (2а–в) или 2 ммоль (0.32 г) 5-фенилпиразолидин-3-она 1 в 10 мл *i*-PrOH (3а, б) и кипятили 2 ч. Осадок отфильтровывали и перекристаллизовывали.

(2Z)-2-[(7-Гидрокси-4-метил-2-оксо-2H-хромен-8-ил)метилиден]-5-оксо-3-фенилпиразолидин-2-ий-1-ид (4а). Использовали раствор 1 ммоль 7-гидрокси-4-метил-2-оксо-2Н-хро-(0.204)г) мен-8-карбальдегида 2а в 15 мл *i*-PrOH. Выход 0.16 г (47%), желто-оранжевый порошок, т. пл. 255-257°С (*i*-PrOH). ИК спектр, v, см⁻¹: 3090, 3059, 2954, 2923, 2854, 1732, 1673, 1620, 1590, 1574. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 2.34 д (3H, Me, J 0.7 Гц), 2.76 д. д (1H, H⁴, J 16.7, 4.9 Гц), 3.39 д. д (1Н, Н⁴, J 16.7, 9.7 Гц), 6.16 д (1Н, Н³_{кумарин}, *J* 1.0 Гц), 6.19) д. д (1Н, Н⁵, *J* 4.7, 5.1 Гц), 6.83 д (1H, H⁶_{кумарин}, J 8.9 Гц), 7.42–7.52 м (5H_{Ar}), 7.77 с (1H, CH), 7.78 д (1H, Н⁵кумарин, J 8.9 Гц), 13.74 уш. с (1H, OH). Спектр ЯМР ¹³С (ДМСО-*d*₆), $\delta_{\rm C}$, м. д.: 181.85 (C³), 153.19 (C^{2'}), 147.60 (C^{3'}), 139.13 (C⁷), 138.75 (C⁵), 129.38 (C⁸H, C¹²H), 129.08 (C¹⁰H), 126.76 (C⁹H, C¹¹H), 126.69 (C⁶), 119.10 (C^{6'}), 116.01 (C^{1'}), 108.79 (C^{4'}), 72.90 (C⁵), 56.59 (CH₃), 38.28 (C⁴). Спектр ЯМР ¹⁵N (ДМСО-*d*₆), δ, м. д.: 252.7 (N¹), 266.3 (N²). Найдено, %: С 69.05; Н 4.56; N 8.12. С₂₀Н₁₆N₂O₄. Вычислено, %: С 68.96; H 4.63; N 8.04.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 5 2022

(2Z)-2-[(3-Гидрокси-6-оксо-6H-бензо[c]хромен-4-ил)метилиден]-5-оксо-3-фенилпиразолидин-2-ий-1-ид (46). Использовали раствор ммоль (0.228 г) 3-гидрокси-6-оксо-6Н-бен-1 зо[с]хромен-4-карбальдегида 26 в 25 мл смеси *i*-PrOH-ДМФА, 1:1. Выход 0.15 г (38%), светложелтый порошок, т. пл. 265-267°С (*i*-PrOH-ДМФА, 1:1). ИК спектр, v, см⁻¹: 3090, 3042, 2956, 2924, 2853, 1739, 1693, 1682, 1614, 1569. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д.: 2.76 д. д (1Н, Н⁴, *J* 16.5, 4.8 Гц), 3.39 д. д (1Н, Н⁴', *J* 16.8, 6.9 Гц), 6.23 д. д (1Н, Н⁵, *J* 4.8, 4.8 Гц), 6.92 д (1Н, Н⁸_{кумарин}, *J* 9.0 Гц), 7.42–7.52 м (5Н_{Ar}), 7.58 т (1Н, Н²_{кумарин}, J 7.8, 8.4 Гц), 7.85 с (1Н, CH), 7.89 т (1Н, Н¹ кумарин, J 7.8, 7.5 Гц), 8.15 д (1Н, Н³_{кумарин}, J 8.1 Гц), 8.29 д (1H, H¹⁰_{кумарин}, J 7.8 Гц), 8.42 д (1H, H⁹_{кумарин}, J 9.0 Гц), 13.74 уш. с (1Н, ОН). Найдено, %: С 71.95; Н 4.26; N 7.32. С₂₃Н₁₆N₂O₄. Вычислено, %: С 71.87; H 4.20: N 7.29.

(2Z)-2-[(6,7-Дигидрокси-4-метил-2-оксо-2Н-хромен-8-ил)метилиден]-5-оксо-3-фенилпиразолидин-2-ий-1-ид (4в). Использовали раствор 1 ммоль (0.220 г) 6,7-дигидрокси-4-метил-2-оксо-2*H*-хромен-8-карбальдегида 2в в 30 мл *i*-PrOH. Выход 0.13 г (37%), желтый порошок, т. пл. 298–300°С (ДМФА). ИК спектр, v, см⁻¹: 3350, 3090, 3066, 2953, 2925, 2854, 1724, 1676, 1624, 1566. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д.: 2.32 д (3H, Me, J 0.7 Гц), 2.79 д. д (1H, H⁴, J 16.9, 4.8 Гц), 3.42 д. д (1Н, Н⁴', J 16.8, 9.6 Гц), 6.16 д (1Н, Н³_{кумарин}, *J* 1.2 Гц), 6.19 д. д (1Н, Н⁵, *J* 4.7, 4.7 Гц), 7.23 с (1Н, СН), 7.43–7.53 м (5Н_{Аг}), 7.56 д (1Н, Н⁵_{кумарин}, J 1.2 Гц), 9.27 уш. с (1Н, ОН), 14.36 уш. с (1H, OH). Найдено, %: С 65.89; Н 4.38; N 7.63. С₂₀Н₁₆N₂O₅. Вычислено, %: С 65.93; Н 4.43; N 7.69.

(2Z,2'Z)-2,2'-[(5,7-Дигидрокси-4-метил-2-оксо-2*H*-хромен-6,8-диил)диметилиден]бис(5-оксо-3-фенилпиразолидин-2-ий-1-ид) (5а). Использовали раствор 1 ммоль (0.248 г) 5,7-дигидрокси-4-метил-2-оксо-2*H*-хромен-6,8-дикарбальдегида **3a** в 10 мл *i*-PrOH. Выход 0.25 г (47%), зеленовато-желтый порошок, т. пл. 300–302°С (ДМФА). ИК спектр, v, см⁻¹: 3488, 3070, 3034, 2954, 2925, 2854, 1748, 1703, 1605, 1538. Спектр ЯМР ¹H (ДМСО-*d*₆), δ, м. д.: 2.48 с (3H, Me), 2.87 д. д (2H, H⁴, H⁴', *J* 17.1, 5.3 Гц), 3.44 д. д (2H, H⁴, H⁴', *J* 17.1, 9.8 Гц), 5.84 д (1H, H³_{кумарин}, *J* 1.2 Гц), 6.07 д. д (2H, H⁵, H⁵', *J* 5.3, 5.3 Гц), 7.43–7.56 м (10H_{Ar}), 7.67 д (1H, CH, *J* 1.0 Гц), 7.86 с (1H, CH, *J* 1.0 Гц), 16.58 уш. с (1H, OH), 16.66 уш. с (1H, OH). Найдено, %: С 67.23; Н 4.60; N 10.51. С₃₇H₂₄N₄O₆. Вычислено, %: С 67.16; Н 4.51; N 10.44.

(2Z,2'Z)-2,2'-[(1,3-Дигидрокси-6-оксо-6Hбензо[с]хромен-2,4-диил)диметилиден]бис-(5-оксо-3-фенилпиразолидин-2-ий-1-ид) (56). Использовали раствор 1 ммоль (0.284 г) 1.3-дигидрокси-6-оксо-6*H*-бензо[*c*]хромен-2,4-дикарбальдегида в 25 мл смеси *i*-PrOH–ДМФА, 1:2. Выход 0.27 г (47%), желтый порошок, т. пл. 298-300°С (ДМФА). ИК спектр, v, см⁻¹: 3444, 2954, 2923. 2854, 1759, 1698, 1603, 1587. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 2.48 с (3H, Me), 2.76 д. д (2H, Н⁴, Н^{4'}, *J* 17.0, 5.1 Гц), 3.49 д. д (2Н, Н⁴, Н^{4'}, *J* 17.1, 9.6 Гц), 6.10 д. д (2Н, Н⁵, Н⁵', Ј4.8, 5.3 Гц), 7.44–7.60 м (11H, 10H_{AF}, H²_{кумарин}), 7.73 с (1H, CH), 7.77 т (1H, H¹_{кумарин}, J 8.4, 8.7 Гц), 7.92 с (1H, CH), 8.07 д (1H, H³_{кумарин}, J 7.8 Гц), 9.26 д (1H, H¹⁰_{кумарин}, J 8.7 Гц), 16.43 уш. с (1H, OH), 16.78 уш. с (1H, OH). Найдено, %: С 69.31; Н 4.28; N 9.76. С₃₃Н₂₄N₄O₆. Вычислено, %: С 69.22; Н 4.22; N 9.79.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Николаева Ольга Геннадьевна, ORCID: https:// orcid.org/0000-0003-1032-7237

Попова Оксана Станиславовна, ORCID: https:// orcid.org/0000-0001-5481-6572

Дубоносова Ирина Владимировна, ORCID: https://orcid.org/0000-0002-3368-5259

Карлутова Ольга Юрьевна, ORCID: https:// orcid.org/0000-0002-3290-101X

Дубоносов Александр Дмитриевич, ORCID: https://orcid.org/0000-0003-4701-2271

Брень Владимир Александрович, ORCID: https://orcid.org/0000-0003-3192-6204

Минкин Владимир Исаакович, ORCID: https:// orcid.org/0000-0001-6096-503X

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания в сфере научной деятельности № 0852-2020-0019), а также в рамках реализации государственного задания Южного научного центра РАН № 122020100282-6, А.Д. Дубоносов).

КОНФЛИКТ ИНТЕРЕСОВ

В.И. Минкин является членом редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Deepthi A., Thomas N.V., Sruthi S.L. // New J. Chem. 2021. Vol. 45. N 20. P. 8847. doi 10.1039/D1NJ01090E
- Wu M.C., Xia P.J., Hu Y.Z., Ye Z.P., Chen K., Xiang H.Y., Yang H. // Tetrahedron. 2021. Vol. 83. Article 131992. doi 10.1016/j.tet.2021.131992
- Nájera C., Sansano J.M., Yus M. // Org. Biomol. Chem. 2015. Vol. 13. P. 8596. doi 10.1039/C5OB01086A
- Belskaya N.P., Bakulev V.A., Fan Z. // Chem. Heterocycl. Compd. 2016. Vol. 52. P. 627. doi 10.1007/s10593-016-1943-2
- Mei G.J., Zhu Z.Q., Zhao J.J., Bian C.Y., Chen J., Chen R.W., Shi F. // Chem. Commun. 2017. Vol. 53. P. 2768. doi 10.1039/C6CC09775H
- Panfil I., Urbacczyk-Lipkowska Z., Suwicska K., Solecka J., Chmielewski M. // Tetrahedron. 2002. Vol. 58. P. 1199. doi 10.1016/S0040-4020(01)01195-4
- Volpe C., Meninno S., Capobianco A., Vigliotta G., Lattanzi A. // Adv. Synth. Catal. 2019. Vol. 361. P. 1018. doi 10.1002/adsc.201801567
- Bugarinović J.P., Pešić M.S., Minić A., Katanić J., Ilić-Komatina D., Pejović A., Mihailović V., Stevanović D., Nastasijević B., Damljanovic I. // J. Inorg. Biochem. 2018. Vol. 189. P. 134. doi 10.1016/j. jinorgbio.2018.09.015
- Kuzmin M.G., Kozmenko M.V. Organic Photochromes / Ed. A.V. Eltsov. New-York; London: Plenum Press, 1990. P. 245.
- Брень В.А., Попова О.С., Толпыгин И.Е., Черноиванов В.А., Ревинский Ю.В., Дубоносов А.Д. // Изв. АН. Сер. хим. 2015. Т. 64. № 3. С. 668; Bren V.A., Popova O.S., Tolpygin I.E., Chernoivanov V.A., Revinskii Yu.V., Dubonosov A.D. // Russ. Chem. Bull. 2015. Vol. 64. N 3. P. 668. doi 10.1007/s11172-015-0916-4
- Bren V.A., Dubonosov A.D., Popova O.S., Revinskii Yu.V., Tikhomirova K.S., Minkin V.I. // Int. J. Photoenergy. 2018. Vol. 2018. Article 9746534. doi 10.1155/2018/9746534
- Dubonosov A.D., Bren V.A. In: Fluorescence Methods for Investigation of Living Cells and Microorganisms / Ed. N. Grigoryeva. London: IntechOpen, 2020. P. 353.
- 13. Nikolaeva O.G., Shepelenko E.N., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. //

Mendeleev Commun. 2016. Vol. 26. N 5. P. 402. doi 10.1016/j.mencom.2016.09.012

- Cao D., Liu Z., Verwilst P., Koo S., Jangjili P., Kim J.S., Lin W. // Chem. Rev. 2019. Vol. 119. N 18. P. 10403. doi 10.1021/acs.chemrev.9b00145
- Anamika U.D., Ekta J.N., Sharma S. // Curr. Org. Chem. 2019. Vol. 22. N 26. P. 2509. doi 10.2174/1385272822 666181029102140
- Calcio Gaudino E., Tagliapietra S., Martina K., Palmisano G., Cravotto G. // RSC Adv. 2016. Vol. 6. P. 46394. doi 10.1039/C6RA07071J
- Yamaji M., Hakoda Y., Okamoto H., Tani F. // Photochem. Photobiol. Sci. 2017. Vol. 12. N 4. P. 555. doi 10.1039/c6pp00399k
- Al-Masoudi N.A., Al-Salihi N.J., Marich Y.A., Markus T. // J. Fluoresc. 2015. Vol. 25. N 6. P. 1847. doi 10.1007/ s10895-015-1677-z
- Wang Z.S., Cui Y., Hara K., Dan-oh Y., Kasada C., Shinpo A. // Adv. Mater. 2007. Vol. 19. N 8. P. 1138–1141. doi 10.1002/adma.200601020
- Krzeszewski M., Vakuliuk O., Gryko D.T. // Eur. J. Org. Chem. 2013. Vol. 2013. N 25. P. 5631. doi 10.1002/ ejoc.201300374
- Kwon J.E., Park S.Y. // Adv. Mater. 2011. Vol. 23. N 32.
 P. 3615. doi 10.1002/adma. 201102046
- Zhao J., Ji S., Chen Y., Guo H., Yang P. // Phys. Chem. Chem. Phys. 2002. Vol. 14. P. 8803. doi 10.1039/ C2CP23144A
- Li Y., Bai X., Liang R., Zhang X., Nguyen Y.H., VanVeller B., Du L., Phillips D.L. // J. Phys. Chem. B. 2021. Vol. 125. N 47. P. 12981. doi 10.1021/acs.jpcb.1c05798

- Udhayakumari D. // Spectrochim. Acta (A). 2020.
 Vol. 228. Article 117817. doi 10.1016/j.saa.2019.117817
- Wang F., Wang L., Chen X., Yoon J. // Chem. Soc. Rev. 2014. Vol. 43. N 13. P. 4312. doi 10.1039/c4cs00008k
- Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/j.ccr.2017.12.002
- Kaur N., Kaur G., Fegade U.A., Singh A., Sahoo S.K., Kuwar A.S., Singh N. // Trends Anal. Chem. 2017. Vol. 95. P. 86. doi 10.1016/j.trac.2017.08.00
- 28. Yeap G.Y., Hrishikesan T., Chan Y.H., Mahmood W.A.K. // J. Fluoresc. 2017. Vol. 27. N 1. P. 105. doi 10.1007/ s10895-016-1938-5
- Zhao L.Y., Wang G.K., Chen J.H., Zhang L.M., Liu B., Zhang J.F., Zhao Q.H., Zhou Y. // J. Fluorine Chem. 2014. Vol. 158. P. 53. doi 10.1016/j. jfluchem.2013.11.002
- Liu F., Fan C, Tu Y., Pu S. // RSC Adv. 2018. Vol. 8. P. 31113. doi 10.1039/c8ra05439h
- Aydiner B., Sahin O., Cakmaz D., Kaplan G., Kaya K., Ozmen Ozdemir U., Seferoglu N., Seferoglu Z. // New J. Chem. 2020. Vol. 44. P. 19155. doi 10.1039/d0nj03003a
- Lee H.J., Park S.J., Sin H.J., Na Y.J., Kim C. // New J. Chem. 2015. Vol. 39. P. 3900. doi 10.1039/c5nj00169b
- Popova O.S., Revinskii Yu.V., Tkachev V.V., Utenyshev A.N., Karlutova O.Yu., Starikov A.G., Dubonosov A.D., Bren V.A., Aldoshin S.M., Minkin V.I. // J. Mol. Struct. 2020. Vol. 1199. Article 127013. doi 10.1016/j. molstruc.2019.127013
- 34. Гельман Н.Э., Терентьева Н.А., Шанина Г.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.

Spectral-Luminescent and Ionochromic Properties of Azomethine Imine-Coumarin Conjugates

O. G. Nikolaeva^{*a*}, O. S. Popova^{*a*}, I. V. Dubonosova^{*a*}, O. Yu. Karlutova^{*a*}, A. D. Dubonosov^{*b*,*}, V. A. Bren^{*a*}, and V. I. Minkin^{*a*}

^a Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090 Russia ^b Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, 344006 Russia *e-mail: aled@ipoc.sfedu.ru

Received January 27, 2022; revised January 27, 2022; accepted February 17, 2022

Azomethine imine-coumarin mono- and bis-conjugates were synthesized for the first time. The compounds obtained represent multifunctional chromogenic and fluorescent compounds capable of detecting fluoride, acetate, dihydrophosphate and cyanide anions, as well as *d*-metal cations Zn^{2+} , Pb^{2+} , Hg^{2+} and Cu^{2+} due to naked eye effects) and enhancing/quenching of initial ESIPT emission with anomalous Stokes shift. A monoconjugate based on 6,7-dihydroxy-4-methyl-2-oxo-2*H*-chromen-8-carbaldehyde is capable of selective detection of CN^{-} anions in the presence of competing ions F⁻, AcO^{-} , $H_2PO_{4}^{-}$, Cl^{-} , NO_{3}^{-} and HSO_{4}^{-} . It exhibits selective sensor activity for Mg²⁺ cations in the presence of Na⁺, K⁺, Ca²⁺, Ba²⁺, Zn²⁺, Cu²⁺, Ni²⁺, Cu²⁺ and Pb²⁺ ions.

Keywords: azomethine imines, coumarins, ionochromism, naked-eye effect, fluorescence