УДК 546.185;547.53.024;548.312.5

НОВЫЙ СПОСОБ СИНТЕЗА АРЕНСУЛЬФОНАТОВ ТЕТРАОРГАНИЛФОСФОНИЯ [Ph₃PR¹][OSO₂R²]

© 2022 г. В. В. Шарутин^{*a*,*}, О. К. Шарутина^{*a*}, Е. С. Механошина^{*a*}

^а Национальный исследовательский Южно-Уральский государственный университет, пр. Ленина 76, Челябинск, 454080 Россия *e-mail: sharutin50@mail.ru

> Поступило в редакцию 22 февраля 2022 г. После доработки 18 марта 2022 г. Принято к печати 24 марта 2022 г.

Взаимодействие эквимолярных количеств хлоридов тетраорганилфосфония с нафталин-1-сульфоновой, 2,5-дихлорбензолсульфоновой, 2,4-динитробензолсульфоновой и 1-гидрокси-2,4-динитронафталин-7-сульфоновой кислотами в воде приводит к аренсульфонатам тетраорганилфосфония [Ph₃PR¹][OSO₂R²], особенности строения которых установлены методом PCA. В катионах атомы фосфора имеют искаженную тетраэдрическую координацию, аренсульфонатные анионы имеют обычную геометрию с тетраэдрическим атомом серы.

Ключевые слова: аренсульфонат тетраорганилфосфония, рентгеноструктурные исследования

DOI: 10.31857/S0044460X22060087, EDN: CMOWNN

Органические соединения фосфора примененяются в самых разнообразных областях практической деятельности: в качестве инсектицидов, фунгицидов, дефолиантов, гербицидов, пластификаторов, ионитов, присадок к бензинам и смазочным маслам [1]. Они нашли также применение в синтетической органической химии, например, при получении олефинов по Виттигу [2] или в синтезе элементоорганических соединений [3]. Сообщалось о перспективах практического применения некоторых фосфорорганических соединений в качестве катализаторов гидрофункционализации непредельных субстратов [4], реагентов для *транс*-металлирования [5] и метатезиса σ-связей [6]. Из производных пятивалентного фосфора наиболее изучены соли тетраорганилфосфония, которые обычно получают окислительным присоединением к трифенилфосфину галогенарена в присутствии хлористого алюминия [1] либо при взаимодействии пентафенилфосфора с кислотами [7-9]. Описан синтез и структурно охарактеризованы некоторые органосульфонаты тетрафенилфосфония [10–16]. Кристаллические соединения получали при выдерживании смеси галогенидов тетрафенилфосфония и аренсульфоновой кислоты в различных растворителях (метаноле, ацетонитриле, ацетоне, бензоле, диэтиловом эфире, ДМФА, ТГФ). Большинство реакций проводили при нагревании, выходы не превышали 78%. Однако примеры получения аренсульфонатов органилтрифенилфосфония отсутствуют.

Нами получены и структурно охарактеризованы аренсульфонаты органилтрифенилфосфония $[Ph_3PR^1][OSO_2R^2]$ **1–5**. Соединения **1–5** получены по реакции (1) при смешивании водных растворов хлоридов органилтрифенилфосфония и соответствующей аренсульфоновой кислоты. При медленном испарении воды происходило образование устойчивых на воздухе прозрачных кристаллов, хорошо растворимых в хлороформе, аренах, тетрагидрофуране, ацетонитриле, этаноле, четыреххлористом углероде и плохо – в воде при комнатной температуре. Соединение **1** получено также с выходом 93% из пентафенилфосфора

ШАРУТИН и др.

$$[Ph_3PR^1]Cl + HOSO_2R^2 \longrightarrow [Ph_3PR^1][OSO_2R^2]$$
(1)
1-5

 $R^{1} = Ph, R^{2} = 1-Naphth (1); R^{1} = Me, R^{2} = 2,5-Cl_{2}-C_{6}H_{3} (2), 1-OH-2,4-(NO_{2})_{2}-C_{10}H_{5} (3); R^{1} = c-C_{3}H_{5}, R^{2} = 2,5-Cl_{2}-C_{6}H_{3} (4); R^{1} = 2-OH-CH_{2}C_{6}H_{4}, R^{2} = 2,4-(NO_{2})_{2}-C_{6}H_{3} (5).$

$$Ph_{5}P + HOSO_{2}Naphth-1 \xrightarrow{C_{6}H_{6}} [Ph_{4}P][OSO_{2}Naphth-1]$$
(2)

и нафталин-1-сульфоновой кислоты в бензоле по реакции (2) [8].

В ИК спектрах соединений 1-5 наблюдаются характерные полосы валентных колебаний углеродного скелета ароматических фрагментов в области 1587–1481 см⁻¹. Валентным колебаниям связей САг-Н соответствуют полосы поглощения средней интенсивности при 3082-3051 см⁻¹, внеплоскостным деформационным колебаниям этих связей – полосы при 866-804 см⁻¹, плоскостным деформационным колебаниям – полосы при 1117-1107 см⁻¹. Характерные полосы поглощения при 1265-1225 см⁻¹ (высокой интенсивности) и при 1082-1043 см⁻¹ (средней интенсивности) относятся к асимметричным и симметричным валентным колебаниям сульфонатной группы SO₃. Полосы поглощения, относящиеся к валентным колебаниям связей S-O, расположены при 691-681 см⁻¹. Интенсивные полосы поглощения в области 534-522 см⁻¹ соответствуют валентным колебаниям связей C_{Ar}-S, полосы высокой интенсивности при 746-721 см⁻¹ - к валентным колебаниям связей С_{дг}-Р. В ИК спектрах комплексов 3, 5 асимметричным колебаниям группы NO₂ соответствуют интенсивные полосы поглощения при 1528, 1514 см⁻¹, симметричным колебаниям – полосы при 1348 и 1341 см⁻¹. Колебания связей С_{Аг}-СІ в спектрах соединений 2, 4 проявляются полосами сильной интенсивности при 750 и 748 см⁻¹.

В ИК спектрах соединений **2**, **3** присутствуют полосы поглощения валентных колебаний метильных групп при 2995, 2980 см⁻¹ (асимметричные колебания) и 2911, 2910 см⁻¹ (симметричные колебания). Деформационным колебаниям метильных групп Р–СН₃ соответствуют полосы при 1310 и 1315 см⁻¹. В спектрах комплексов **3**, **5** валентным

колебаниям гидроксильных групп соответствуют широкие полосы при 3213 и 3211 см⁻¹ [17].

По данным РСА (табл. 1, 2), кристаллы соединений 1–5 образованы катионами органилтрифенилфосфония и аренсульфонат-анионами (рис. 1–5). Комплексы 1 и 4 кристаллизуются в виде гидратов [Ph₄P][OSO₂Naphth-1]·2H₂O и [Ph₃P-c-C₃H₅][OSO₂C₆H₃Cl₂-2,5]·1/2H₂O. В кристалле соединения 4 присутствуют по два типа кристаллографически независимых катионов и анионов.

Катионы органилтрифенилфосфония в структурах 1–5 имеют незначительно искаженную тетраэдрическую конфигурацию. Длины связей P–C находятся в диапазоне 1.766(3)–1.817(3) Å: 1.759(5)–1.793(5) Å (1), 1.789(3)–1.796(3) Å (2), 1.785(5)–1.807(6) Å (3), 1.766(3)–1.796(3) Å (4), 1.794(3)–1.817(3) Å (5), – что меньше суммы ковалентных радиусов атомов-партнеров (1.83 Å) [18]. Валентные углы СРС принимают значения: 106.3(2)–111.4(2)° (1), 108.49(14)–110.56(15)° (2), 108.3(2)–110.2(2)° (3), 107.55(14)–110.86(15)° (4), 107.02(15)–111.64(15)° (5).

В аренсульфонат-анионах соединений **1**–**5** связи S–O практически одинаковы, что свидетельствует о равномерном распределении электронной плотности в группах SO₃⁻. Расстояния S–O изменяются в интервале 1.390(3)–1.472(3) Å: 1.418(4)–1.438(3) Å (**1**), 1.427(3)–1.447(3) Å (**2**), 1.436(4)–1.472(3) Å (**3**), 1.421(3)–1.459(3) Å (**4**), 1.390(3)–1.440(3) Å (**5**). Расстояния S–C близки между собой и лежат в пределах 1.762(4)–1.793(3) Å.

Валентные углы OSC в сульфонатных группах [103.1(2)–106.83(15)°] меньше углов OSO [110.8(2)–117.7(2)°], что согласуется с теорией отталкивания электронных пар валентных оболочек [19].

Параметр	1	2	3	4	5
<u>M</u>	582.62	503.35	590.52	1076.78	616.56
Сингония	Триклинная	Моноклинная	Триклинная	Моноклинная	Ромбическая
Пространственная	<i>P</i> -1	$P2_1/n$	P-1	$P2_1/c$	Phca
группа		1		1, -	
a, Å	10.67(3)	9.040(5)	9.65(2)	19.066(13)	8.294(8)
b, Å	11.45(3)	12.836(8)	11.47(2)	13.625(10)	25.23(3)
<i>c</i> , Å	13.10(3)	21.075(13)	13.46(3)	22.042(15)	27.41(2)
α, град	65.87(10)	90.00	111.29(13)	90.00	90.00
β, град	83.98(13)	90.32(3)	97.6(2)	114.87(2)	90.00
ү, град	77.42(15)	90.00	94.08(14)	90.00	90.00
$V, Å^3$	1425(6)	2446(3)	1365(5)	5195(6)	5734(9)
Ζ	2	4	2	4	8
$d_{\rm выч},$ г/см ³	1.357	1.367	1.437	1.377	1.426
μ, мм ⁻¹	0.213	0.441	0.233	0.422	0.225
F(000)	612.0	1040.0	612.0	2232.0	2552.0
Размер кристалла,	$0.31 \times 0.3 \times 0.13$	0.5 imes 0.21 imes 0.2	0.5 imes 0.19 imes 0.09	0.5 imes 0.12 imes 0.08	0.4 imes 0.3 imes 0.05
MM					
Область сбора	6.38 - 58.54	5.84 - 56.72	5.94 - 57.4	6.26 - 56.58	5.96 - 56.88
данных по 20, град					
Интервалы	$-14 \le h \le 14$	$-12 \le h \le 12$	$-12 \le h \le 12$	$-25 \le h \le 25$	$-11 \le h \le 11$
индексов					
отражений	$-15 \le k \le 15$	$-17 \le k \le 17$	$-15 \le k \le 15$	$-18 \le k \le 18$	$-33 \le k \le 33$
	$-17 \le l \le 17$	$-27 \le l \le 28$	$-18 \le l \le 17$	$-28 \le l \le 29$	$-36 \le l \le 34$
Измерено	39086	89320	41453	106282	99286
отражений					
Независимых	7378 (<i>R</i> _{int} 0.1755)	$6055 (R_{int} 0.0552)$	6811 (<i>R</i> _{int} 0.0976)	$12804 (R_{int} 0.1090)$	7172 (<i>R</i> _{int} 0.1359)
отражений					
Переменных	376	290	372	625	388
уточнения					
GOOF	1.003	1.049	1.017	1.007	1.037
<i>R</i> -Факторы по	$R_1 0.0511,$	$R_1 0.0623,$	$R_1 0.0578,$	$R_1 0.0533,$	$R_1 0.0637,$
$F^2 > 2\sigma(F^2)$	$wR_2 0.1226$	$wR_2 0.1846$	$wR_2 0.1267$	$wR_2 0.1196$	$wR_2 0.1375$
<i>R</i> -Факторы по всем	$R_1 0.1615,$	$R_1 0.0803,$	$R_1 0.1183,$	$R_1 0.1158,$	$R_1 0.1341,$
отражениям	$wR_2 0.1504$	$wR_2 0.2011$	$wR_2 0.1500$	$wR_2 0.1449$	$wR_2 0.1686$
Остаточная	0.33/-0.55	2.32/-0.56	0.33/-0.35	0.78/-0.35	0,67/-0.44
электронная					
плотность					
$(max/min), e/A^3$					

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур 1-5

В аренсульфонатном анионе соединения 5 плоскость *n*-нитрогруппы практически совпадает со средней плоскостью ароматического кольца (соответствующий двугранный угол 4.05°), нитрогруппа в *орто*-положении развернута относительно плоскости кольца на 34.42°. Расстояния N–O [1.170(5), 1.212(4) Å] в *о*-нитрогруппе более ко-ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022 роткие, чем в *n*-нитрогруппе [1.223(5), 1.226(4) Å], что, возможно, связано с сопряжением при малом отклонении *n*-нитрогруппы от плоскости аренового цикла. В сульфонат-анионе соединения **3** плоскости нитрогрупп незначительно отклоняются от плоскости нафталинового цикла [14.96° (2-NO₂), 8.67° (4-NO₂)].

887

Связь	Длина, Å	Угол	ω, град	Связь	Длина, Å	Угол	ω, град				
1											
S^1-O^1	1.438(4)	$O^1S^1O^2$	113.47(19)	$P^1 - C^{21}$	1.783(4)	$C^{1}P^{1}C^{11}$	106.3(2)				
S^1-O^2	1.436(4)	$O^1S^1O^3$	111.8(2)	$P^1 - C^{31}$	1.793(5)	$C^{1}P^{1}C^{21}$	109.85(18)				
S^1-O^3	1.418(4)	$O^2S^1O^3$	111.88(19)	$C^{31}-C^{32}$	1.382(5)	$C^{1}P^{1}C^{31}$	110.69(19)				
$S^{1}-C^{41}$	1.762(4)	$O^{1}S^{1}C^{41}$	106.3(2)	C^{41} - C^{42}	1.354(4)	$C^{11}P^1C^{21}$	111.4(2)				
P^1-C^1	1.759(5)	$O^{2}S^{1}C^{41}$	106.47(19)	$C^{49}-C^{50}$	1.399(4)	$C^{21}P^1C^{31}$	108.3(2)				
$P^{1}-C^{11}$	1.770(5)	$O^{3}S^{1}C^{41}$	106.43(17)								
2											
S^1-O^1	1.429(2)	$O^1S^1O^2$	112.52(19)	P ¹ -C ¹¹	1.789(3)	$C^{1}P^{1}C^{7}$	108.49(14)				
S^1-O^2	1.447(3)	$O^1S^1O^3$	113.63(19)	$P^1 - C^{21}$	1.796(3)	$C^{1}P^{1}C^{11}$	108.83(13)				
S^1-O^3	1.427(3)	$O^2S^1O^3$	113.6(2)	C^4-C^5	1.374(5)	$C^{1}P^{1}C^{21}$	109.63(13)				
$S^{1}-C^{31}$	1.803(3)	$O^{1}S^{1}C^{31}$	105.35(14)	C^{11} - C^{32}	1.736(4)	$C^{7}P^{1}C^{11}$	109.95(14)				
$P^{1}-C^{1}$	1.790(3)	$O^{2}S^{1}C^{31}$	103.85(15)	$C^{12}-C^{35}$	1.755(4)	$C^{11}P^1C^{21}$	109.36(12)				
$P^{1}-C^{7}$	1.789(3)	$O^{3}S^{1}C^{31}$	106.83(15)								
		I	3	, ,	I	1	I				
S^1-O^1	1.472(3)	$O^1S^1O^2$	112.0(2)	$P^1 - C^{11}$	1.807(6)	$C^1P^1C^7$	109.2(2)				
S^1-O^2	1.437(5)	$O^1S^1O^3$	111.5(2)	$P^1 - C^{21}$	1.785(5)	$C^{1}P^{1}C^{11}$	110.0(2)				
S^1-O^3	1.436(4)	$O^2S^1O^3$	116.4(2)	N^1-O^5	1.200(4)	$C^{1}P^{1}C^{21}$	108.3(2)				
$S^{1}-C^{31}$	1.765(5)	$O^{1}S^{1}C^{31}$	103.1(2)	N ¹ -C ³⁷	1.464(5)	$C^{7}P^{1}C^{11}$	109.4(2)				
P^1-C^1	1.796(5)	$O^{2}S^{1}C^{31}$	106.7(2)	$C^{34}-O^{8}$	1.316(4)	$C^{11}P^1C^{21}$	110.2(2)				
$P^{1}-C^{7}$	1.786(4)	$O^{3}S^{1}C^{31}$	105.99(19)	$C^{31}-C^{40}$	1.393(4)	$O^4 N^1 C^{37}$	119.6(3)				
4											
S^1-O^1	1.451(3)	$O^1S^1O^2$	111.40(18)	S^2-O^6	1.421(3)	$O^4S^2O^5$	111.56(17)				
S^1-O^2	1.434(3)	$O^1S^1O^3$	117.7(2)	$S^2 - C^{71}$	1.805(3)	$O^4S^2O^6$	113.59(19)				
S^1-O^3	1.429(3)	$O^2S^1O^3$	115.40(19)	P^2-C^{31}	1.792(3)	$O^5S^2O^6$	115.11(18)				
$S^{1}-C^{61}$	1.793(3)	$O^{1}S^{1}C^{61}$	103.54(15)	$P^2 - C^{37}$	1.776(3)	$O^4S^2C^{71}$	104.36(15)				
P^1-C^1	1.796(3)	$O^{2}S^{1}C^{61}$	105.82(16)	$P^2 - C^{41}$	1.794(3)	$O^{5}S^{2}C^{71}$	105.61(13)				
$P^{1}-C^{7}$	1.766(3)	$O^{3}S^{1}C^{61}$	105.76(14)	P^2-C^{51}	1.795(3)	$O^{6}S^{2}C^{71}$	105.46(14)				
$P^{1}-C^{11}$	1.794(3)	$C^1P^1C^7$	109.01(14)	Cl ¹ –C ⁶²	1.733(3)	$C^{31}P^2C^{37}$	110.86(15)				
$P^{1}-C^{21}$	1.795(3)	$C^{1}P^{1}C^{11}$	110.57(13)	Cl ² –C ⁶⁵	1.736(3)	$C^{31}P^2C^{41}$	108.86(13)				
S^2-O^4	1.459(2)	$C^{1}P^{1}C^{21}$	110.25(13)	C^4-C^5	1.348(6)	$C^{31}P^2C^{51}$	109.95(12)				
$S^2 - O^5$	1.442(3)	$C^{7}P^{1}C^{11}$	109.36(14)	$C^7 - C^8$	1.503(5)	$C^{37}P^2C^{41}$	109.80(14)				
5											
S^1-O^2	1.440(3)	$O^2S^1O^3$	114.6(3)	$P^{1}-C^{37}$	1.817(3)	$C^{1}P^{1}C^{21}$	110.00(14)				
S^1-O^3	1.390(3)	$O^2S^1O^4$	110.8(2)	O ¹ –C ³²	1.358(4)	$C^{1}P^{1}C^{37}$	108.38(15)				
$S^1 - O^4$	1.415(3)	$O^3S^1O^4$	115.7(3)	N^1-O^5	1.170(5)	$C^{11}P^1C^{21}$	107.02(15)				
$S^{1}-C^{41}$	1.786(3)	$O^{2}S^{1}C^{41}$	105.01(18)	N ¹ -C ⁴²	1.472(4)	$C^{21}P^1C^{37}$	110.80(15)				
P^1-C^1	1.796(3)	$O^{3}S^{1}C^{41}$	106.11(16)	$C^{31}-C^{37}$	1.503(4)	$O^5N^1O^6$	124.3(4)				
$P^{1}-C^{11}$	1.794(3)	$O^4S^1C^{41}$	103.26(17)	C ⁴¹ –C ⁴²	1.391(4)	$O^5N^1C^{42}$	118.3(4)				
$P^1 - C^{21}$	1.795(3)	$C^{1}P^{1}C^{11}$	108.97(15)	_							

Таблица 2. Основные длины связей и валентные углы в молекулах соединений 1-5

Катионы и анионы в молекулах 1, 4, 5 связаны слабыми водородными связями S=O···H(Ph) (2.33–2.62 Å). В соединениях 2, 4 также присутствуют короткие контакты S=O···Cl(Ph) [3.110 Å (2), 3.190 Å (4)]. В кристалле соединения 3 образуются водородные связи N=O···H (2.69 Å).

В кристалле соединения **1** кристаллизационная вода связывает анионы между собой, и образуются циклы из двух анионов и двух молекул воды с расстояниями О····O 2.907– 2.929 Å.

В структуре 4 одна молекула кристаллизационной воды связывает два сульфонат-аниона, длины

Рис. 1. Общий вид молекулы соединения 1 в кристалле.

водородных связей S=O···H(O) 1.99 и 2.05 Å. Подобное связывание наблюдается в кристаллах аренсульфонатов тетрафенилсурьмы и тетрафенилвисмута [Ph₄Sb][OSO₂R]·H₂O [20], [Ph₄Bi][OSO₂R]·H₂O [21].

Структурная организация в кристаллах соединений **1–5** обусловлена слабыми межмолекулярными контактами О^{···}H 2.08–2.70 Å (**1**), 2.22–2.58 Å (**2**), 1.84–2.69 Å (**3**), 1.99–2.58 Å (**4**), 2.41–2.72 Å (**5**) (сумма ван-дер-ваальсовых атомов-партнеров 2.62 Å [22]).

Таким образом, взаимодействие галогенидов органилтрифенилфосфония с аренсульфоновыми кислотами в воде приводит к образованию ионных аренсульфонатов органилтрифенилфосфония с тетраэдрическими катионами органилтрифенилфосфония и аренсульфонатных анионов с тетраэдрическим атомом серы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений записывали на ИК Фурье-спектрометре Shimadzu в таблетках КВг. Рентгеноструктурный анализ проводили на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Bruker (графитовый монохроматор) при 293 К. Сбор, редактирование данных, уточнение параметров элементарной ячейки, учет поглощения, определение и уточнение структур проведены по программам [23-25]. Структуры соединений 1-5 определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для не водородных атомов. Основные кристаллографические данные и результаты уточнения структур 1-5 приведены в табл. 1 и 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных [CCDC 2133545 (1), 2142927 (2), 2143405 (3), 2144369 (4), 2144041 (5)].

Нафталин-1-сульфонат тетрафенилфосфония дигидрат (1). Раствор хлорида тетрафенилфосфония (0.185 г, 0.500 ммоль) в 10 мл воды смешивали с 8 мл водного раствора нафталин-1-сульфоновой кислоты (0.104 г,

Рис. 2. Общий вид молекулы соединения 2 в кристалле.

Рис. 3. Общий вид молекулы соединения 3 в кристалле.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

Рис. 4. Общий вид молекулы соединения 4 в кристалле.

Рис. 5. Общий вид молекулы соединения 5 в кристалле.

0.500 ммоль). При медленном удалении растворителя выделялись бесцветные кристаллы, которые сушили на воздухе. Выход 0.260 г (95%), т. пл. 94°С. ИК спектр, v, см⁻¹: 3080, 3055, 3024, 1825, 1734, 1701, 1618, 1586, 1506, 1485, 1437, 1343, 1315, 1225, 1192, 1167, 1150, 1107, 1043, 997, 966,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

866, 804, 777, 759, 723, 691, 611, 563, 527, 420. Найдено, %: С 69.87; Н 5.41. С₃₄Н₃₁О₅PS. Вычислено, %: С 70.09; Н 5.36.

Соединения 2-5 синтезировали аналогично.

2,5-Дихлорбензолсульфонат трифенилметилфосфония (2). Выход 96%, бесцветные кристаллы, т. пл. 118°С. ИК спектр, v, см⁻¹: 3082, 3051, 3019, 2995, 2911, 1829, 1784, 1695, 1605, 1587, 1553, 1485, 1437, 1371, 1327, 1310, 1225, 1163, 1146, 1117, 1065, 1018, 995, 920, 897, 833, 810, 785, 748, 721, 681, 621, 590, 532, 492, 442. Найдено, %: С 59.54; H 4.37. C₂₅H₂₁Cl₂O₃PS. Вычислено, %: С 59.66; H 4.21.

1-Гидрокси-2,4-динитронафталин-7-сульфонат трифенилметилфосфония (3). Выход 96%, светло-коричневые кристаллы, т. пл. 119°С. ИК спектр, v, см⁻¹: 3211, 3061, 2980, 2910, 1824, 1618, 1605, 1580, 1514, 1489, 1402, 1341, 1315, 1265, 1240, 1182, 1128, 1115, 1082, 1020, 997, 945, 905, 837, 814, 781, 743, 719, 691, 638, 619, 586, 563, 534, 505, 478. Найдено, %: С 58.83; Н 3.99. С₂₉H₂₃N₂O₈PS. Вычислено, %: С 58.99; Н 3.93.

Бис[2,5-дихлорбензолсульфонат трифенил-(циклопропил)фосфония] гидрат (4). Выход 96%, бесцветные кристаллы, т. пл. 85°С. ИК спектр, v, см⁻¹: 3082, 3057, 3005, 1830, 1780, 1645, 1586, 1557, 1483, 1439, 1373, 1315, 1300, 1236, 1215, 1167, 1146, 1115, 1063, 1017, 995, 895, 837, 812, 789, 750, 729, 690, 619, 590, 529, 498, 448. Найдено, %: C 59.96; H 4.57. C₅₄H₄₈Cl₄O₇P₂S₂. Вычислено, %: C 60.24; H 4.49.

2,4-Динитробензолсульфонат трифенил-(**2-гидроксибензил)фосфония** (**5**). Выход 99%, желто-коричневые кристаллы, т. пл. 196°С. ИК спектр, v, см⁻¹: 3213, 3070, 3022, 1826, 1781, 1603, 1545, 1528, 1481, 1456, 1435, 1396, 1348, 1261, 1211, 1177, 1155, 1130, 1111, 1065, 1028, 997, 900, 866, 833, 821, 781, 746, 716, 689, 665, 634, 596, 557, 522, 501, 490, 451, 432. Найдено, %: С 60.34; Н 4.08. С₃₁H₂₄O₈PSN₂. Вычислено, %: С 60.49; Н 3.93.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Шарутин Владимир Викторович, ORCID: https://orcid.org/0000-0003-2582-4893

Механошина Евгения Сергеевна, ORCID: https://orcid.org/0000-0003-1524-7949

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пурдела Д., Вылчану Р. Химия органических соединений фосфора. М.: Химия, 1972. 752 с.
- Бартон Д., Оллис У.Д. Общая органическая химия. М.: Химия, 1983. Т. 5. 720 с.
- Razuvaev G.A., Osanova N.A., Brilkina T.G., Zinovjeva T.I., Sharutin V.V. // J. Organomet. Chem. 1975. Vol. 99. N 1. P. 93. doi 10.1016/S0022-328X(00)86365-2
- Wang D., Astruc D. // Chem. Rev. 2015. Vol. 115. P. 6621. doi 10.1021/acs.chemrev.5b00203
- Cordovilla C., Bartolome C., Martinez-Ilarduya J.M., Espinet P. // ACS Catal. 2015. Vol. 5. P. 3040. doi 10.1021/acscatal.5b00448
- Chong C.C., Hirao H., Kinjo R. // Angew. Chem. Int. Ed. 2015. Vol. 127. P. 192. doi 10.1002/ange.201408760
- Шарутин В.В., Шарутина О.К., Рыбакова А.В., Губанова Ю.О. // ЖОХ. 2018. Т. 88. № 8. С. 1308. doi 10.1134/S0044460X18080139; Sharutin V.V., Sharutina O.K., Rybakova A.V., Gubanova Yu.O. // Russ. J. Gen. Chem. 2018. Vol. 88. N 8. P. 1308. doi 10.1134/ S0044460X18080139
- Sharutin V.V., Mukusheva N., Urzhumova A.V. // Bull. South Ural State Univ., Ser. Chem. 2018. Vol. 10. N 2. P. 48. doi 10.14529/chem180206
- Шарутин В.В., Шарутина О.К., Губанова Ю.О. // Изв. вузов. Сер. хим. и хим. технол. 2019. Т. 62. Вып. 2. С. 4. doi 10.6060/ivkkt.20196202.5823
- Akutsu H., Masaki K., Mori K., Yamada J., Nakatsuji S. // Polyhedron. 2005. Vol. 24. P. 2126. doi 10.1016/j.poly.2005.03.023
- Galpothdeniya W.I.S., Fronczek F.R., Cong M., Bhattarai N., Siraj N., Warner I.M. // J. Mater. Chem. (B). 2016. Vol. 4. P. 1414. doi 10.1039/C5TB02038G
- Akutsu H., Yamada J., Nakatsuji S., Turner S.S. // Cryst. Eng. Commun. 2009. Vol. 11. P. 2588. doi 10.1039/ b909519e
- Onoda A., Yamada Y., Doi M., Okamura T., Ueyama N. // Inorg. Chem. 2001. Vol. 40. N 3. P. 516. doi 10.1021/ ic0003067
- Akutsu H., Ishihara K., Ito S., Nishiyama F., Yamada J., Nakatsuji S., Turner S.S., Nakazawa Y. // Polyhedron. 2017. Vol. 136. P. 23. doi 10.1016/j.poly.2017.02.001
- Camerel F., Le Helloco G., Guizouarn T., Jeannin O., Fourmigue M., Frackowiak A., Olejniczak I., Swietlik R., Marino A., Collet E., Toupet L., Auban-Senzier P., Canadell E. // Cryst. Growth Des. 2013. Vol. 13. N 11. P. 5135. doi 10.1021/cg401416h

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

- Ferrer E.G., Williams P.A.M., Castellano E.E., Piro O.E. // Z. anorg. allg. Chem. 2002. Bd 628. S. 1979. doi 10.1002/1521-3749(200209)628:9/10<1979::AID-ZAAC1979>3.0.CO;2-V
- Тарасевич Б.Н. ИК-спектры основных классов органических соединений. М.: МГУ, 2012. 54 с.
- Cordero B., Gomez V., Platero-Prats A.E., Reves M., Echeverria J., Cremades E., Barragan F., Alvarez S. // Dalton Trans. 2008. N 21. P. 2832. doi 10.1039/ B801115J
- 19. Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992. 75 с.
- 20. *Ruther R., Huber F., Preut H.* // J. Organomet. Chem. 1985. Vol. 295. N 1. P. 21.

- Шарутин В.В., Егорова И.В., Иваненко Т.К., Шарутина О.К., Попов Д.Ю. // Коорд. хим. 2003. Т. 29. № 7. С. 502.
- Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (A). 2009. Vol. 113. P. 5806. doi 10.1021/jp8111556
- SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison: (WI, USA), 1998.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi 10.1107/S0021889808042726

A New Method for the Synthesis of Tetraorganylphosphonium Arenesulfonates [Ph₃PR¹][OSO₂R²]

V. V. Sharutin^{*a*,*}, O. K. Sharutina^{*a*}, and E. S. Mekhanoshina^{*a*}

^a National Research South Ural State University, Chelyabinsk, 454080 Russia *e-mail: sharutin50@mail.ru

Received February 22, 2022; revised March 18, 2022; accepted March 24, 2022

Reactions of equimolar amounts of tetraorganylphosphonium chlorides with naphthalene-1-sulfonic, 2,5-dichlorobenzenesulfonic, 2,4-dinitrobenzenesulfonic and 1-hydroxy-2,4-dinitronaphthalene-7-sulfonic acids in water lead to the formation of tetraorganylphosphonium arenesulfonates $[Ph_3PR^1][OSO_2R^2]$. In cations, phosphorus atoms have distorted tetrahedral coordination, arensulfonate anions have a regular geometry with a tetrahedral sulfur atom.

Keywords: tetraorganylphosphonium arenesulfonate, single crystal X-ray diffraction studies