УДК 548.736

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ ДИОКСОМОЛИБДЕНА(VI) С ГИДРАЗОНАМИ β-ДИКАРБОНИЛЬНЫХ СОЕДИНЕНИЙ. КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ НИКОТИНОИЛГИДРАЗОНА БЕНЗОИЛАЦЕТОНА (H₂L¹), БЕНЗОИЛГИДРАЗОНА АЦЕТОАЦЕТАНИЛИДА (H₂L²) И СОЛЬВАТОКОМПЛЕКСА M₀O₂L¹·MeOH

© 2022 г. В. С. Сергиенко^{*a*}, В. Л. Абраменко^{*b*,*}, А. В. Чураков^{*a*}, М. Д. Суражская^{*a*}

^а Институт общей и неорганической химии имени Н. С. Курнакова Российской академии наук, Москва, 119991 Россия ^b Луганский государственный университет имени Владимира Даля, ул. кв. Молодежный 20-А, Луганск, 91034 Луганская народная республика *e-mail: abramenko@lds.net.ua

e-mail. abramenko@ias.nei.ua

Поступило в редакцию 8 февраля 2022 г. После доработки 14 февраля 2022 г. Принято к печати 17 февраля 2022 г.

Проведены синтез и исследование строения методом рентгеноструктурного анализа и ИК спектроскопии двух ацетилгидразонов – никотиноилгидразона бензоилацетона, бензоилгидразона ацетоацетанилида, а также сольватокомплекса MoO_2L^1 ·MeOH. Молекулы гидразонов кристаллизуются в разных таутомерных формах: енгидразинной (H_2L^1) и гидразонной (H_2L^2) . В каждой из двух органических молекул два плоских шестичленных ароматических цикла соединены зигзагообразными шести- и семизвенными цепями С–С–С–N–N(H)–С и N–С–С–С–N–N–С. Обе органические молекулы стабилизированы межмолекулярными водородными связями N–H···O (а также внутримолекулярной водородной связью N–H···O в структуре H_2L^2). Атом молибдена в комплексе имеет октаэдрическую координацию двумя лигандами μuc -O₂(оксо), тридентатным (ONO) бис(хелатным) лигандом (L^1)²⁻ и молекулой метанола. Атомы N(L^1), O(MeOH) находятся в *транс*-позициях к O(оксо), два атома O(L^1) – в *цис*-положениях к O(оксо) и в *транс*-позициях друг к другу.

Ключевые слова: ацилгидразоны, β-дикарбонильные соединения, таутомерия, сольватокомплекс, рентгеноструктурный анализ, ИК спектроскопия

DOI: 10.31857/S0044460X22060142, EDN: CNPDAN

Продукты конденсации гидразидов кислот с альдегидами и кетонами – ацилгидразоны – классический пример таутомерных лигандных систем, на их основе получены многочисленные комплексные соединения переходных металлов различного состава и строения [1–17], многие из которых перспективны для практического использования в качестве катализаторов [18–22], присадок к горюче-смазочным материалам [23, 24], модельных объектов для изучения механизма биохимических процессов [25–27] и т. д. Ацилгидразоны β-дикарбонильных соединений (H₂L) теоретически могут существовать в таутомерных формах **A**–**E** (схема 1) [28, 29].

Методами ИК и ЯМР спектроскопии было показано, что в инертных растворителях ацилгидра-

зоны β -дикарбонильных соединений существуют исключительно в циклической 5-гидроксипиразолиновой таутомерной форме **B**, тогда как в ДМСО устанавливается равновесие таутомеров **Б** \leftrightarrow **B** [28]. Позже циклическое строение ряда кристаллических ацилгидразонов было доказано методом РСА [29–31]. Наряду с циклическим изомером **B** выделен и охарактеризован кристаллический бензоилгидразон бензоилацетона ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{C}_6 \mathbb{H}_5$) в нециклической енгидразинной таутомерной форме **Б** [29].

Существенное значение для стабилизации таутомерных форм ацилгидразонов β -дикарбонильных соединений имеет природа заместителей R¹ и R². Результаты проведенных ЯМР ¹Н и ¹³С исследований свидетельствуют о том, что в (CD₃)₂SO бензоилгидразон ацетоацетанилида (R¹ = C₆H₅, R² = C₆H₅NH) существует в виде смеси нециклических таутомерных форм имин-*цис*енамин-*транс*-енамин в соотношении 1:0.24:0.05 [32]. Плохая растворимость гидразона в (CD₃)₂SO позволила проанализировать только сигналы ядер ¹H и ¹³С, отнесенные к основным формам имина, и сигналы ¹H, отнесенные к основным формам енамина; другие таутомерные формы не были установлены.

При образовании внутрикомплексных хелатных соединений происходит перегруппировка связей гидразонов с последующим их депротонированием и образованием двух металлоциклов [28, 29]. Лиганд координирован центральным атомом в дважды депротонированной енгидразин-α-гидроксиазинной таутомерной форме Д, не существующей в некоординированной молекуле H₂L [28].

В развитие представлений о существовании таутомерных форм гидразонов β-дикарбониль-

ных соединений и их стабилизации в комплексах *d*-металлов мы синтезировали и определили кристаллическую структуру двух ацилгидразонов производных гидразида никотиновой кислоты и бензоилацетона ($R^1 = 3-C_5H_4N$, $R^2 = C_6H_5$) (H_2L^1) и бензоилгидразона ацетоацетанилида ($R^1 = C_6 H_5$, $R^2 = C_6 H_5 NH$) (H₂L²). Гидразоны H₂L¹ и H₂L² легко образуются при конденсации соответствующих β-дикарбонильных соединений с гидразидами никотиновой или бензойной кислот в спирте при непродолжительном нагревании с последующим выдерживанием при комнатной температуре до образования бесцветных кристаллов. Комплекс МоО₂L¹·MeOH 1 синтезировали методом лигандного обмена между ацетилацетонатом молибденила $MoO_2(Acac)_2$ и ацилгидразоном H_2L^1 в кипящем метаноле. Поскольку в комплексе 1 и комплексах аналогичного состава сольватные молекулы координированы атомом молибдена в качестве лигандов, структурные формулы комплексов будем изображать формулой [MoO₂(L¹)(MeOH)]).

Данные ИК спектроскопии свидетельствуют о нециклическом строении молекул H_2L^1 и H_2L^2 . В высокочастотной области полосы поглощения при 3115 (H_2L^1) и 3282, 3250 см⁻¹ (H_2L^2) относятся к валентным колебаниям групп NH. В области более низких частот (~1610–1680 см⁻¹) проявляются полосы «амид I» (в основном $v_{C=O}$), «амид II» при ~1510–1570 см⁻¹ ($v_{C-N} + \delta_{N-H}$), «амид III» при 1340, 1307 см⁻¹ ($v_{C-N} + \delta_{N-H}$) и 1026, 904 см⁻¹ (v_{N-N}) [32].

В ИК спектре комплекса 1 исчезают полосы колебаний v_{N-H} и $v_{C=O}$, но отмечается интенсивная полоса при 1593 см⁻¹, которую следует отнести к валентным и деформационным колебаниям системы сопряженных связей двух металлоциклов дважды депротонированной молекулы лиганда H_2L^1 [28]. Сильный дублет при 931 и 900 см⁻¹ обусловлен антисимметричными и симметричными

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

СЕРГИЕНКО и др.

Параметр	1	H_2L^1	H_2L^1	
Цвет	Темно-красный	Бесцветный	Бесцветный	
Брутто-формула	C ₁₇ H ₁₇ Mo N ₃ O ₅	$C_{16}H_{16}N_{3}O_{2}$	C ₁₇ H ₁₇ N ₃ O ₂	
M	439.27	281.31	295.33	
Размер кристалла, мм	0.22×0.01×0.01	0.22×0.01×0.01 0.38×0.13×0.10		
Сингония	Ромбическая Моноклинная		Моноклинная	
Пространственная группа	$P2_{1}2_{1}2_{1}$ $P2_{1}/c$		$P2_{1}/c$	
<i>a</i> , Å	8.1347(7)	15.628(3)	12.444(4)	
b, Å	13.281(1)	9.576(2)	11.0829(4)	
<i>c</i> , Å	16.242(2)	9.707(2)	11.9094(4)	
β, град	90	91.11(3)	108.572(1)	
<i>V</i> , Å ³	1754.7(3)	1452.4(5)	1519.4(9)	
Ζ	2	4	4	
$d_{\rm выч}, \Gamma/{\rm cm}^3$	1.663	1.286	1.291	
μ_{Mo} , MM^{-1}	0.781	0.709	0.870	
<i>F</i> (000)	888	592	624	
Т, К	150	393	393	
Область θ, град	1.98-26.99	5.42-69.96	2.55-29.00	
Интервалы индексов	$-9 \ge h \ge 10,$	$-18 \ge h \ge 18,$	$-18 \ge h \ge 14,$	
	$-16 \ge k \ge 16,$	$-11 \ge k \ge 11,$	$-9 \ge k \ge 9,$	
	$-15 \ge l \ge 20$	$-11 \ge l \ge 11$	$-1 \ge l \ge 12$	
Общее число отражений/	10862/3780 [0.0563]	10024/2744 [0.2293]	1906/850 [0.0525]	
независимых [R _{int}]				
Полнота по θ, %	98.7	99.6	100.0	
Число уточняемых параметров	241	195	110	
GOOF по F^2	0.989	0.800	1.104	
$R_1 \left[I \ge 2\sigma(I) \right]$	0.0420	0.0516	0.0991	
wR_2 (все данные)	0.0929	0.1726	$R_1 0.1148, wR_2 0.2285$	
Остаточная электронная плотность	0.612/-0.924	0.332/-0.315	2.430/-2.576	
(max/min), $e/Å^3$				

Таблица 1. Кристаллографические данные и основные характеристики эксперимента для комплекса 1 и лигандов H₂L¹, H₂L²

валентными колебаниями группы *цис*-MoO₂-группы. В низкочастотной области в ИК спектре комплекса появляются новые полосы при 680 и 575 см⁻¹, отнесенные к валентным колебаниям связей Мо–N_L и Мо–O_L соответственно.

Таким образом, на основании результатов элементного анализа, спектроскопических исследований и с учетом литературных данных [33] можно предположить, что полученный комплекс имеет мономерное октаэдрическое строение с двумя кратно-связанными оксоатомами в *цис*-положении. Остальные вершины октаэдра занимают два атома кислорода и атом азота дважды депротонированной молекулы гидразона и атом кислорода координированной молекулы метанола. Данные ИК спектроскопии находятся в соответствии с результатами рентгеноструктурного анализа соединений 1, H_2L^1 и H_2L^2 (табл. 1). Двухосновный лиганд $(L^1)^{2-}$ координирован центральным атомом молибдена тридентатным бис(хелатным) способом (ONO). Атом N_L^1 расположен в *транс*-положении к кратно-связанному оксолиганду, два атома O_L^1 находятся в *цис*-позициях к лигандам $O_{\text{оксо}}$ и в *транс*-положении друг к другу. Шестую позицию в координационном октаэдре MoO_5N комплекса 1 в *транс*-положении к оксолиганду группы $MoO_2^{2^+}$ занимает атом O сольватной молекулы метанола.

Средняя длина связи Мо– O_{occo} 1.708(5) Å. Расстояния Мо– N_L^1 и Мо– O_{MeOH} [2.221(5) и

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

Рис. 1. Общий вид молекулы комплекса MoO₂(L¹)(MeOH) 1 в кристалле. Тепловые эллипсоиды показаны с 50%-ной вероятностью.

2.324(5) Å соответственно] сильно увеличены вследствие структурного проявления *транс*-влияния кратно-связанного лиганда O_{okco} . Ординарные связи Мо– O_L^1 в *цис*-положениях к лигандам O_{okco} и в *транс*-положении друг к другу [средняя длина 1.983(4) Å] заметно короче, чем связь Мо– O_{MeOH} (в среднем на 0.341 Å). Лиганд (L^1)^{2–} в структуре комплекса **1** при координации атомом металла замыкает два хелатных кольца, сочлененных по связи Мо–N: шестичленное MoNC₃O и пятичленное MoN₂CO.

Валентные углы при атоме металла в координационном полиэдре MoO_5N в данной структуре существенно (и закономерно) отклоняются от идеальных значений 90 и 180°. Наибольший угол $O_{okco}MoO_{okco}$ 105.4(2)°. Четыре угла $O_{okco}MoO_L^1$ 96.9(2)–103.0(2)° также превышают 90°. Углы в металлоциклах $O_L^1MoN_L^1$ 71.9(2) и 81.8(3)° значительно меньше 90°, как и угол $N_L^1MoO_{MeOH}$ [78.2(2)°]. Угол *транс*- $O_L^1MoO_L^{-1}149.2(3)°$ более чем на 30° отклоняется от 180°. Заметно меньше отклонены от 180° углы $O_{okco}MoN_L^{-1}$ 160.3(3)° и $O_{okco}MoO_{MeOH}$ 170.4(3)°. Общий вид молекулы комплекса **1** в кристалле приведен на рис. 1. В

Рис. 2. Общий вид молекулы H_2L^1 в кристалле. Тепловые эллипсоиды показаны с 50%-ной вероятностью.

структуре нет коротких внутри- и межмолекулярных контактов.

Кристаллическая структура комплекса 1 была исследована ранее при комнатной температуре 296 К (1') [34]. Наши исследования структуры комплекса 1 проведены при низкой температуре (150 К). Параметры и объемы элементарной ячейки в комплексах 1 и 1' существенно расходятся: *а* 7.1752(9) и 7.3211(5), *b* 10.1375(12) и 10.1465(5), *c* 10.0374(12) и 10.1294(7) Å, β 98.574(4) и 98.242(6)°, *V* 721.95(15) и 744.68(8) Å³ соответственно.

Сходное с комплексом 1 строение имеют еще 9 сольватных комплексов MoO₂Lⁿ.Solv с основаниями Шиффа $(L^n)^{2-}$ – тридентатными (O,N,O) бис(хелатными) гидразоновыми лигандами: $[MoO_2(L^3)(MeOH)]$ {исследован методом PCA при 150 (**2a**) [35] и 293 К (**2б**) [36]}, [MoO₂(L⁴)(Me₂SO)] $[MoO_2(L^5)(MeOH)]$ (3) [35], (4) [37], $[MoO_2(L^6)(OPPh_3)]$ (5) [37], $[MoO_2(L^7)(MeOH)]$ $[MoO_2(L^8)(MeOH)]$ [36], (7) (6) [36], $[MoO_2(L^9)(MeOH)]$ (8) [38], $[MoO_2(L^{10})(MeOH)]$ (9) [38] и [MoO₂(L¹¹)(EtOH)] (**10**) [39]; H₂L³ – изоникотиноилгидразон ацетилацетона; H_2L^4 – бензоил-

Комплекс	Мо=Ооксо	Mo– $O_L^n_{\mu uc}$	Mo-N _L ⁿ _{mpaнc}	Mo–O _{Solv mpanc}	$\Delta (=O)^a$	Ссылка
$[MoO_2(L^1)(MeOH)]$ (1)	1.708(5)	1.983(4)	2.221(5)	2.324(5)	0.341	Данная
						работа
[MoO ₂ (L ³)(MeOH)], 150 K (2a)	1.698(2)	1.985(2)	2.216(2)	2.333(2)	0.348	[35
[MoO ₂ (L ³)(MeOH)], 293 K (26)	1.695(2)	1.988(2)	2.219(2)	2.351(2)	0.363	[36]
$[MoO_2(L^4)(Me_2SO)]$ (3)	1.695(3)	1.969(3)	2.217(3)	2.316(3)	0.347	[35]
$[MoO_2(L^5)(MeOH)]$ (4)	1.694(3)	1.961(3)	2.243(3)	2.356(3)	0.395	[37]
$[MoO_2(L^6)(OPPh_3)](5)$	1.694(2)	1.960(2)	2.226(4)	2.239(2)	0.279	[37]
$[MoO_2(L^7)(MeOH)]$ (6)	1.697(2)	1.958(1)	2.245(2)	2.367(2)	0.409	[36]
$[MoO_2(L^8)(MeOH)]$ (7)	1.693(3)	1.964(2)	2.245(2)	2.359(3)	0.395	[36]
$[MoO_2(L^9)(MeOH)]$ (8)	1.696(3)	1.965(2)	2.250(2)	2.333(2)	0.368	[38]
$[MoO_2(L^{10})(MeOH)]$ (9)	1.690(3)	1.956(3)	2.224(4)	2.392(4)	0.436	[38]
$[MoO_2(L^{11})(EtOH)]$ (10)	1.684(4)	1.977(4)	2.254(4)	2.290(4)	0.313	[39]

Таблица 2. Средние межатомные расстояния (Å) в мономерных октаэдрических комплексах $MoO_2(L^n)$ ·Solv

^а Δ (=O) – разность длин связей [Мо–O_{Solv}] и [Мо–O_L].

гидразон бензоилацетона; H_2L^5 – бензоилгидразон салицилового альдегида; H_2L^6 – бензоилгидразон бензоилацетона; H_2L^7 – (4-оксо-4-фенилбутан-2-илиден)изоникотиноилгидразид; H_2L^8 – (2,3-дигидроксибензилиден)бензогидразид; H_2L^9 – изоникотиноилгидразон салицилового альдегида; H_2L^{10} – α -нафтилацетилгидразон салицилового альдегида; H_2L^{11} – никотиноилгидразон 5-нитросалицилового альдегида.

Геометрические параметры комплексов 2–10 сопоставимы с большинством аналогичных величин в исследованном нами соединении 1 (табл. 2): интервал средних значений связей $Mo=O_{okco}$ 1.684–1.698, $Mo-N_{Lmpahc}^n$ 2.216–2.254, $Mo-O_{Luuc}^n$ 1.956–1.988 Å. Исключение составляют длины связей $Mo-O_{Solv\ mpahc}$, разброс значений для которых достаточно велик (2.239–2.392 Å): минимальное расстояние $Mo-O(Solv)_{mpahc}$ в сольватной молекуле трифенилфосфиноксида в структуре 5 (2.239 Å), а связи $Mo-O_{MeOH\ mpahc}$ в структурах 2a, 6, 4, 6–9 – самые длинные (2.333–2.392 Å). Расстояния $Mo-O_{EtOH\ mpahc}$ в структуре 10 (2.290 Å) и $Mo-O_{Me2SO\ mpahc}$ в структуре 3 (2.316 Å) имеют промежуточные значения.

Общий вид молекулы H_2L^1 приведен на рис. 2. В структуре два плоских цикла – бензольный, C^1-C^6 , и пиридиновый, $C^{12}-C^{16}$, N^3 , – связаны зигзагообразной шестизвенной цепью, $C^7-C^8H-C^9 N^1-N^2H-C^{11}$. При координации атомом молибдена дважды депротонированного (по атомам N^1 и N^2) лиганда $(L^{1})^{2-}$ ряд геометрических параметров изменяется мало [например, длины связей N¹–N² 1.377(3) и 1.402(7) Å соответственно в молекуле H₂L¹ и в комплексе 1]. Наиболее существенно изменяются расстояния С–О: при координации кислорода молибденом в комплексе 1 эта связь удлиняется в среднем на 0.103 Å (от 1.233 Å в молекуле H₂L¹ до 1.336 Å в комплексе 1). В кристалле молекулы H₂L¹ объединены посредством водородных связей N²–H^{2B}…O² (*x*, *-y*, *z*+1/2) [N–H 0.86(2), H…O 1.98(2), N…O 2.822(2) Å, угол NHO 166(2)°] в бесконечные 2D-цепи вдоль оси *с* кристалла.

В молекуле H_2L^2 (рис. 3а) два плоских бензольных кольца C^5-C^{10} и $C^{12}-C^{17}$ соединены зигзагообразной семизвенной цепью $N^3-C^1-C^2-C^3-N^1-N^2-C^{11}$. Молекула стабилизирована внутримолекулярной водородной связью $N^2-H^2\cdots O^1$ [N-H 0.90(2), O…H 2.00(1), N…O 2.816(1) Å, угол NHO 150(1)°], замыкающей семичленный H-цикл OC₃N₂H. Молекулы H_2L^2 соединены межмолекулярными водородными связями $N^3-H^3\cdots O^2$ (1-*x*, -*y*-1/2, *z*+1/2) [N-H 0.88(2), O…H 2.03(2),N…O 2.877(1) Å, угол NHO 166(1)°], формирующими зигзагообразные 1D-цепи вдоль оси *b* кристалла (рис. 36).

Различия таутомерных форм двух органических молекул состоят в том, что соединение H_2L^1 кристаллизуется в енгидразинной форме **Б** с двумя протонированными атомами азота; в молекуле H_2L^2 реализуется гидразонная форма **A** с одним СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ ДИОКСОМОЛИБДЕНА(VI)

Рис. 3. Общий вид молекулы H_2L^2 в кристалле (а) и объединенные водородными связями (показаны *пунктирными* линиями) 1D-цепи вдоль оси *b* в кристалле соединения H_2L^2 (б). Тепловые эллипсоиды показаны с 50%-ной вероятностью.

протонированным атомом азота N^2 (протонирован также атом N^3 заместителя R^1 , схема 1).

Таким образом, представленные результаты исследований подтверждают, что кристаллические ацилгидразоны β-дикарбонильных соединений могут существовать как в циклической 5-гидроксипиразолиновой таутомерной форме В, так и в виде нециклических таутомеров. В органических растворителях, по литературным данным, ацилгидразоны β-дикарбонилов существуют в виде равновесной смеси различных форм, соотношение между которыми определяется природой растворителя и ацилгидразонов. Образование сольватокомплексов диоксомолибдена(VI), как и в случае комплексообразования других *d*-металлов [1–5], сопровождается депротонированием двухосновных тридентатных ацилгидразонов с замыканием пяти- и шестичленных металлоциклов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Элементный анализ проводили с помощью анализатора Carlo Erba 1106 (Elemental Analyzer C, H, N). Количество молибдена в комплексах определяли весовым методом после прокаливания навески до образования окисла MoO₃. ИК спектры регистрировали на спектрофотометре с Фурье-преобразованием PerkinElmer Spectrum 65 методом нарушенного полного внутреннего отражения

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

(НПВО) на кристалле алмаза в интервале частот 400–4000 ${\rm сm}^{-1}$.

РСА соединений 1 и H₂L² выполнен на автоматическом дифрактометре Bruker D8 Venture при температуре 150 К (МоК_α-излучение, λ 0.71073 Å, графитовый монохроматор). РСА соединения H_2L^1 проведен на автоматическом дифрактометре Enraf-Nonius CAD-4 при 298 К (СиКа-излучение, λ 1.54178 Å, графитовый монохроматор). Поправка на поглощение введена на основании измерений интенсивностей эквивалентных отражений [40]. Все три структуры расшифрованы прямым методом; все не водородные атомы уточнены полноматричным анизотропным МНК по F^2 (SHELXTL [41]). Все атомы водорода (кроме гидроксильного H^1 в структуре 1 и протонов при атомах N, O в структуре соединений H₂L¹ и H₂L², найденных из разностного ряда Фурье и уточненных изотропно), помещены в рассчитанные позиции и уточнены с использованием схемы наездника. Основные кристаллографические данные и параметры определения всех трех структур см. в табл. 1. Структурные характеристики соединений депонированы в Кембриджский банк структурных данных (CCDC 2113228, 2119528, 2113229 для соединений 1, H_2L^1 , H_2L^2 соответственно).

Гидразоны H_2L^1 и H_2L^2 получали конденсацией гидразида никотиновой кислоты с бензоилацетоном (H_2L^1) или бензоилгидразида с ацетоацетанилидом (H_2L^2) в спирте [36]. К раствору 1.62 г (0.01 моль) бензоилацетона или 1.77 г (0.01 моль) ацетоацетанилида в 20 мл метанола добавляли раствор 1.37 г (0.01 моль) никотиноилгидразида или с 1.36 г гидразида бензойной кислоты, смесь кипятили 10 мин и оставляли для кристаллизации при комнатной температуре на сутки. Выпавшие бесцветные кристаллы отфильтровывали на фильтре Шотта, промывали холодным метанолом и сушили в вакуум-эксикаторе над CaCl₂.

N'-[(1*Z***)-1-Метил-3-оксо-3-фенилпроп-1-ен-1-ил]никотиногидразид (H₂L¹).** Выход ~75%, т. пл. 137–139°С. ИК спектр, v, см⁻¹: 3112, 3054, 2934, 1681, 1569, 1496,1419, 1338, 1288, 1249, 1171, 130, 1093, 1066, 1019, 922, 876, 841, 818, 770, 709, 663, 612, 557, 517, 482. Найдено, %: С 68.26; Н 5.45; N 14.88. С₁₆H₁₅N₃O₂. Вычислено, %: С 68.31; Н 5.37; N14.94. *M* 281.32.

(*3E*)-**3**-(Бензоилгидразоно)-N-фенилбутанамид (H₂L²). Выход 82%, т. пл. 210–212°С. ИК спектр, v, см⁻¹: 3282, 3250, 3197, 3140, 3090, 3050, 2996, 1744 сл, 1647, 1614, 1557, 1516, 1487, 1442, 1340, 1307, 1146, 1068, 1026, 933, 904, 830, 797, 763, 686, 567, 509, 418, 404. Найдено, %: С 69.05; H 5.74; N 14.28. С₁₇H₁₇N₃O₂. Вычислено %: С 69.13; H 5.80; N 14.23. *M* 295.346.

Комплекс 1. К кипящему раствору 0.326 г (0.001 моль) МоО₂(Асас)₂ в 10 мл МеОН добавляли при перемешивании горячий раствор 0.281 г (0.001 моль) соединения H₂L¹ в том же растворителе. Смесь кипятили 10 мин (при этом смесь упаривалась) и оставляли при комнатной температуре для кристаллизации. Из образовавшегося темно-красного раствора выпадали хорошо сформированные красные кристаллы комплекса 1, которые после отделения на фильтре сушили в эксикаторе над CaCl₂. При нагревании выше 150°С комплекс десольватируется, при температуре выше 250°С плавится с разложением. ИК спектр, v, см⁻¹: 3004, 2724, 2541, 1593, 1553, 1481, 1418, 1373, 1334, 1233, 1286, 1139, 1102, 1024, 931, 900, 814, 768, 703, 680, 605, 575, 493, 446, 423. Найдено, %: Mo 21.87; C 46.43; H 3.97; N 9.52. C₁₇H₁₇MoN₃O₅. Вычислено, %: Mo 21.84; C 46.48; H 3.90; N 9.57. M 439.28.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Абраменко Виктор Леонидович, ORCID: https:// orcid.org/0000-0003-3377-4697

Сергиенко Владимир Семенович, ORCID: https://orcid.org/0000-0002-2743-8921

Чураков Андрей Викторович, ORCID: https:// orcid.org/0000-0003-3336-4022

Суражская Марина Даниловна, ORCID: https:// orcid.org/0000-0001-5686-5407

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственного задания Института общей и неорганической химии им. Н.С. Курнакова РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Abdu A.M., Al-Fakeh M.S., Alhagri I.A., Alhakimi A.N., Saeed S.E.-S., Shakdofa A.M.E., Shakdofa M.M.E. // J. Korean Chem. Soc. 2021. Vol. 65. N 2. P. 93. doi 10.5012/jkcs.2021.65.2.93
- Busch R., Carter A.B., Konidaris K.F., Kühne I.A., González R., Anson Ch.E., Powell A.K. // Chemistry Eur. J. 2020. Vol. 26. N 51. P. 11835. doi 10.1002/ chem.202001668
- Kuriakose D., Kurup M.R.P. // Polyhedron. 2019. Vol. 170. P. 749. doi 10.1016/j.poly.2019.06.041
- 4. Liang M., Zou D.-H. // Inorg. Nano-Met. Chem. 2017. Vol. 47. N 1. P. 110. doi 10.1080/15533174.2016.1149730
- Majumder S., Pasayat S., Roy S., Dash S.P., Dhaka S., Maurya M.R., Reichelt M., Reuter H., Brzezinski K., Dinda R. // Inorg. Chim. Acta. 2018. Vol. 469. P. 366. doi 10.1016/j.ica.2017.09.043
- Kargar H., Fallah-Mehrjardi M., Behjatmanesh-Ardakani R., Munawar K.S., Ashfaq M., Tahir M.N. // Trans. Met. Chem. 2021. Vol. 46. N 6. P. 437. doi 10.1007/s11243-021-00460-w
- Гамов Г.А., Завалишин М.Н. // ЖНХ. 2021. Т. 66. № 10. С. 1474. doi 10.31857/S0044457X21100056; Gamov G.A., Zavalishin M.N. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 10. P. 1561.
- Завалишин М.Н., Гамов Г.А., Хохлова А.Ю., Гашникова А.В., Шарнин В.А. // ЖНХ. 2020. Т. 65. № 1. С. 117. doi 10.31857/S0044457X20010201; Zavali-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

shin M.N., Gamov G.A., Khokhlova A.Yu., Gashnikova A.V., Sharnin V.A. // Russ. J. Inorg. Chem. 2020. Vol. 65. N 1. P. 119. doi 10.1134/S0036023620010209

- 9. Sang Y.-L., Zhang X.-H., Lin X.-S., Liu Y.-H., Liu X.-Y. // J. Coord. Chem. 2020. Vol. 73. N 1. P.164. doi 10.1080/00958972.2019.1707192
- Cvijanović D., Pisk J., Pavlović G., Šišak-Jung D., Matković-Calogović D., Cindrić M., Agustin D., Vrdoljak V. // New J. Chem. 2019.Vol. 43. N 4. P. 1791. doi 10.1039/c8nj04074e
- Pisk J., Rubčić M., Kuzman D., Cindrić M., Agustin D., Vrdoljak V. // New J. Chem. 2019. Vol. 43. N 14. P. 5531. doi 10.1039/c9nj00229d
- Mohan B., Choudhary M., Bharti S., Jana A., Das N., Muhammad S., Al-Sehemi A.G., Kumar S. // J. Mol. Struct. 2019. Vol. 1190. P. 54. doi 10.1016/j. molstruc.2019.04.05
- Sahani A.J., Jayaram R.V., Burange A.S. // Mol. Catal. 2018. Vol. 450. P. 14. doi 10.1016/j.mcat.2018.02.028
- Lakma A., Hossain S. M., Van Leusen J., Kögerler P., Singh A. K. // Dalton Trans. 2019. Vol. 48. N 22. P. 7766. doi 10.1039/c9dt01041f
- Hossain S.M., Lakma A., Pradhan R.N., Demeshko S., Singh A.K. // Dalton Trans. 2017. Vol. 46. N 37. P. 12612. doi 10.1039/c7dt02433a
- Maurya M.R., Tomar R., Rana L., Avecilla F. // Eur. J. Inorg. Chem. 2018. Vol. 2018. N 25. P. 2952. doi 10.1002/ejic.201800440
- Maurya M.R., Dhaka S., Avecilla F. // Polyhedron. 2015. Vol. 96. P. 79. doi 10.1016/j.poly.2015.05.001
- Moradi-Shoeili Z., Boghae D.M., Amini M., Bagherzadeh M., Notas B. // Inorg. Chem. Commun. 2013. Vol. 27. P. 26. doi 10.1016/j.inoche.2012.10.016
- Pasayat S., Dash S.P., Roy S., Dinda R., Dhaka S., Maurya M.R., Kaminsky W., Patil Y.P., Nethaji M. // Polyhedron. 2014. Vol. 67. P. 1. doi 10.1016/j. poly.2013.08.055
- Kurbah S.D., Kumar A., Syiemlieh I., Asthana M., Lal R.A. // Inorg. Chem. Commun. 2017. Vol. 86. P. 1. doi 10.1016/j.inoche.2017.09.016
- Maurya M.R., Rana L., Avecilla F. // Polyhedron. 2017. Vol. 126. P. 60. doi 10.1016/j.poly.2017.01.006
- Hu X.-M., Xue L.-W., Zhang C.-X., Zhao G.-Q. // Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2014. Vol. 44. P. 713. doi 10.1080/15533174.2013.790435
- Jaiswal V., Gupta S.R., Rastogi R.B., Kumar R., Singh V.P. // J. Mater. Chem. (A). 2015. Vol. 3. N 9. P. 5092. doi 10.1039/c4ta05663a
- Rastogi R.B., Maurya J.L., Jaiswal V. // Tribol. Trans. 2013. N 56. P. 592. doi org/10.1080/10402004.2012.7 48115
- 25. Pisk J., Bilić L., Đaković M., Cvijanović D., Damjanović V., Lovrić J., Rubčić M., Vrdoljak V., Cindrić M. //

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

Polyhedron. 2018. Vol. 145. P. 70. doi 10.1016/j. poly.2018.02.003

- Cordas C.M., Moura J.J.G. // Coord. Chem. Rev. 2019. Vol. 394. P. 53. doi 10.1016/j.ccr.2019.05.005
- Asha T.M., Kurup M.R.P. // Polyhedron. 2019. Vol. 169.
 P. 151. doi 10.1016/j.poly.2019.04.045
- 28. Юсупов В.Г., Насирдинов С.Д., Якимович С.И., Парпиев Н.Я. // Коорд. хим. 1984. Т. 10. № 3. С. 387.
- 29. Kraudelt H., Ludwig E., Schilde U., Uhlemann E. // Z. Naturforsch. 1995. Bd 51b. S. 95.
- Kargar H., Kia R., Froozandeh F., Sadr M.H., Tahir M.N. // Acta Crystallogr. (E). 2011. Vol. 67. P. o209. doi 10.1107/S160053681005275X
- Kargar H., Kia R., Moghadamm M., Tahir M.N. // Acta Crystallogr. (E). 2011. Vol. 67. P. o367. doi 10.1107/ S1600536811000948
- Paciorek P., Szklarzewicz J., Trzewik B., Cież D., Nitek W., Hodorowicz M., Jurowska A. // J. Org. Chem. 2021. Vol. 86. P. 1649. doi 10.1021/acs.joc.0c02451
- Abramenko V.L., Sergienko V.S. // Russ. J. Inorg. Chem. 2009. Vol. 54. N 13. P. 2031. doi 10.1134/ S0036028691.30014
- Vrdoljak V., Mandarić M., Hrenar T., Đilović I., Pisk J., Pavlović G., Cindrić M., Agustin D. // Cryst. Growth Design. 2019. Vol. 19. P. 3000. doi 10.1021/acs. cgd.9b00231
- 35. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // ЖНХ. 2021. Т. 66. № 12. С. 1732. doi 10.31857/S0044457X21120151; Sergienko V.S., Abramenko V.L., Churakov A.V., Surazhskaya M.D. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 12. P. 1854. doi 10.1134/S0036023621120159
- Nandy M., Shit S., Rizzoli C., Pilet G., Mitra S. // Polyhedron. 2015. Vol. 88. P.63. doi 10.1016/j. poly.2014.12.017
- Banße W., Ludwig E., Shilde U., Uhlemann E., Weller F., Lehmann A. // Z. anorg. allg. Chem. 1995. Bd 621. N 7. S. 1275. doi 10.1002/zaac.19956210730
- Сергиенко В.С., Абраменко В.Л., Миначева Л.Х., Порай-Кошиц М.А., Сахарова В.Г. // Коорд. хим. 1993. Т.19. № 1. С. 28.
- Kargar H., Porootan P., Fallah-Mehrjardi M., Behjatmanesh-Ardakani R., Rudbayi H.A., Munawar K.S., Ashfaq M., Tahir M.N. // Inorg. Chim. Acta. 2021. Vol. 523. P. 120414. doi 10.1016/j. ica.2021.120414
- 40. *Sheldrick G.M.* SADABS. Program for scaling and correction of area detector data. University of Göttingen. Germany, 1997.
- Sheldrick G.M. // Acta. Crystallogr. (C). 2015. Vol. 71. P. 3. doi 10.1107/S2053229614024218

СЕРГИЕНКО и др.

Synthesis and Structure of Dioxomolibdenum(VI) Complexes with β-Dicarbonyl Compounds Hydrazones. Crystal Structures of Benzoylacetone Nicotinoylhydrazone (H₂L¹), Acetoacetanilide Benzoylhydrazone (H₂L²), and MoO₂L¹·MeOH Solvate

V. S. Sergienko^a, V. L. Abramenko^{b,*}, A. V. Churakov^a, and M. D. Surashskaja^a

^a N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, 119991 Russia ^b V. Dahl Lugansk State University, Lugansk, 91034 Ukraine *e-mail: abramenko@lds.net.ua

Received February 8, 2022; revised February 14, 2022; accepted February 17, 2022

Synthesis and structural investigation of two acetylhydrazones, namely benzoylacetone nicotinoylhydrazone (H_2L^1) , acetoacetanilide benzoylhydrazone (H_2L^2) , and also MoO₂L¹·MeOH solvate, were performed by single crystal X-ray diffraction and IR-spectroscopy methods. Molecules of two hydrazones crystallize in different enehydrazonic tautomeric forms: hydrazonic for H_2L^1 and enehydrazine- α -oxyazine for H_2L^2 . Both organic molecules are formed by two planar six-membered cycles (Ph and Py in H_2L^1 , Ph and Ph in H_2L^2) combined by zigzag six- and seven-membered chains -C-C-C-N-N(H)-C- and -N-C-C-C-N-N-C-, respectively. Both organic molecules are stabilized by intermolecular hydrogen bonds $N-H\cdots O$ and also by intramolecular $N-H\cdots O$ hydrogen bond in the structure of H_2L^2 . In MoO₂L¹·MeOH solvate, molybdenum atom possesses octahedral coordination environment formed by two *cis*-O₂(oxo) ligands, tridentate (ONO), bis(chelate) (L²)²⁻ ligands and methanol molecule. Atoms N(L¹) and O(MeOH) are *trans*-positioned to O(oxo); two atoms O(L¹) *cis*-positioned to O(oxo) and *trans*-positioned to each other.

Keywords: acylhydrazones, β-dicarbonyl compounds, tautomerism, solvate complex, X-ray diffraction analysis, IR spectroscopy