УДК 54-386;546.492;546.593;543.442.3;543.429.23;544.016.2

ПОЛУЧЕНИЕ, СУПРАМОЛЕКУЛЯРНАЯ САМООРГАНИЗАЦИЯ (ПОСТРОЕНИЕ 2D-ПСЕВДОПОЛИМЕРНОЙ АРХИТЕКТУРЫ), СР/МАЅ ЯМР (13 С, 15 N) И ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ ДВОЙНОГО Au(III)–Hg(II) КОМПЛЕКСА [Au(S₂CNBu^j₂)₂]₂[Hg₂Cl₆]

© 2022 г. О. В. Лосева^{*a*}, Т. А. Родина^{*b*}, М. А. Иванов^{*a*}, О. А. Бредюк^{*a*}, А. И. Смоленцев^{*c*}, А. В. Иванов^{*a*,*}

^а Институт геологии и природопользования Дальневосточного отделения Российской академии наук, пер. Релочный 1, Благовещенск, 675000 Россия ^b Амурский государственный университет, Благовещенск, 675029 Россия

^с Институт неорганической химии имени А.В. Николаева Сибирского отделения Российской академии наук, Новосибирск, 630090 Россия *e-mail: alexander.v.ivanov@chemist.com

> Поступило в редакцию 2 марта 2022 г. После доработки 2 марта 2022 г. Принято к печати 24 марта 2022 г.

Хемосорбционное связывание золота(III) N,N-диизобутилдитиокарбаматом ртути(II) из раствора $H[AuCl_4]$ в 2 М. HCl сопровождается полным перераспределением лигандов между координационными сферами металлов, что приводит к формированию соединения $[Au(S_2CNBu^i_2)_2]_2[Hg_2Cl_6]$, относящегося к двойным комплексным солям. По данным PCA, взаимное связывание ионных структурных единиц за счет вторичных взаимодействий невалентного типа (Au···S, S···Cl) способствует образованию супрамолекулярной 2D-псевдополимерной структуры комплекса. Термолиз полученного комплекса изучен методом синхронного термического анализа (CTA).

Ключевые слова: двойные комплексные соли, дитиокарбаматно-хлоридный комплекс золота(III)– ртути(II), супрамолекулярная самоорганизация, вторичные связи Au…S и S…Cl, твердотельный CP/MAS ЯМР (¹³C, ¹⁵N), термолиз

DOI: 10.31857/S0044460X22060154, EDN: CNSATG

Координационные соединения ртути(II), включающие атом серы, проявляют ряд важных в практическом отношении свойств. Они привлекают внимание исследователей [1–12] в связи с возможностью их применения в медицине в качестве перспективных антибактериальных и противоопухолевых агентов, благодаря цитотоксической и антибиотической активности по отношению к патогенным микроорганизмам и микробным биопленкам [1]. Комплексы ртути(II) с тиолигандами обнаруживают свойства эффективных ингибиторов ферментов ряда сериновых эстераз, что определяет возможность их использования в лечении болезни Альцгеймера [2, 3]. Люминесцентные и оптические свойства дитиокарбаматных комплексов ртути(II) указывают на потенциал применения в производстве элементов солнечных батарей и светодиодных материалов [4, 5]. Дитиокарбаматы ртути(II) – удобные прекурсоры при получении нанокристаллических сульфидов и сульфидных пленок (методами термохимии) для полупроводниковой промышленности (фотоэлектрические и ультразвуковые преобразователи, датчики изображения, катализаторы и др.) [6–9]. Образование хелатных комплексов ртути(II) с дитиокарбаматными лигандами используется при количественном определении ионов Hg²⁺ (включая следовые концентрации [10]), а также лежит в основе работы сенсорных систем для обнаружения ртути(II) [11]. Дитиореагенты, эффективно связывающие ртуть, могут использоваться при детоксикации ртутных загрязнений [12].

Ранее было установлено, что N,N-диалкил(алкилен)дитиокарбаматы ртути(II) моэффективно концентрировать гут золото(III) из растворов с образованием ионных комплексов Au(III)-Hg(II) нескольких структурных ти-[13-17]. Для всех полученных соединепов ний характерна сложная супрамолекулярная организация, возникающая за счет объединения структурных субъединиц вторичными связями невалентного типа. В продолжение этих исследований нами установлена способность бис(N,N-диизобутилдитиокарбамато)ртути(II) к хемосорбционному связыванию золота(III) из кислых растворов, препаративно выделена формаего связывания, которая была химически идентифицирована (CP/MAS MMP ^{13}C , ^{15}N), а также охарактеризована структурно (РСА) и термически (СТА).

Хемосорбционное связывание золота(III) из раствора осадком бис[(N,N-диизобутилдитиокарбамато)ртути(II) сопровождается полным перераспределением лигандов между координационными сферами ртути(II) и золота(III) без выделения каких-либо побочных продуктов в раствор, в результате чего образуется двойной комплекс Au(III)– Hg(II) ионного типа.

$$2[Hg(S_2CNBu_2^i)_2] + 2H[AuCl_4]$$

= [Au(S_2CNBu_2^i)_2]_2[Hg_2Cl_6] + 2HCl.
1

Двойной псевдополимерный комплекс 1 препаративно выделен из хемосорбционной системы [Hg(S₂CNBuⁱ₂)₂]–H[AuCl₄]/2 М. HCl в качестве основной формы связывания золота из раствора в твердую фазу. В спектре СР/MAS ЯМР ¹³С комплекса 1 лиганды Bu^{*i*}Dtc представлены резонансными сигналами групп >NC(S)S-, -CH₂-, >CH- и -СН₃. Наиболее информативные в структурном отношении дитиокарбаматные группы обнаруживают два (1:1) сигнала ¹³С при 197.9 и 191.3 м. д., что указывает на присутствие двух неэквивалентных лигандов в структуре комплекса. Важно отметить, что приведенные значения лежат в диапазоне химических сдвигов ¹³С (200.4–190.5 м. д.), характеризующих лиганды Bu^{*i*}Dtc. связанные с золотом(III). Это согласуется с данными СР/МАЅ ЯМР ¹³С двойных комплексов Au(III)-М (М - Zn [18], Ag(I) [19]). В спектре CP/MAS ЯМР ¹⁵N также присутствуют два (~1:1) резонансных сигнала групп >NC(S)S- при 158.4 и 146.7 м. д., которые независимым образом подтверждают отмеченную неэквивалентность. Приведенные данные указывают на реализацию одной из двух альтернативных структурных ситуаций: формирование нецентросимметричного катиона $[Au(S_2CNBu_2^i)_2]^+$, включающего два неравноценных лиганда, или образование двух неэквивалентных центросимметричных катионов золота(III).

В исследуемом поликристаллическом образце комплекса **1** гетероядерный CP/MAS ЯМР (¹³C, ¹⁵N) позволил выявить присутствие примеси по двум (1:1) слабоинтенсивным сигналам ядер ¹³C при 197.3 и 194.8 м. д. от лигандов Buⁱ₂Dtc в составе внутренней сферы золота(III), которым в спектре ЯМР ¹⁵N также соответствуют два резонансных сигнала при 152.0 и 145.2 м. д. Кроме того, отмечены также сигналы ¹⁵N при 5.3 и 4.7 м. д. от неэквивалентных катионов диалкиламмония $[Buⁱ_2NH_2]^+$. Это позволяет предположить ддля соединения примеси состав $[Buⁱ_2NH_2][Au(S_2CNBuⁱ_2)_2]$ $[Hg_2Cl_6]$. Ранее установлено, что подобные ионные комплексы характерны не только для ртути(II) [17], но также для кадмия [20] и цинка [21].

Структурная организация комплекса 1 установлена прямым методом РСА. Элементарная ячейка включает 4 формульные единицы (рис. 1, табл. 1). Как и ожидалось из данных СР/МАЅ ЯМР (13 С и 15 N), катионная часть исследуемого соединения представлена двумя структурно-неэквивалентными центросимметричными комплексными ионами золота(III) [Au(S₂CNBuⁱ₂)₂]⁺ с атомом Au¹ (**A**) и с атомом Au² (**B**); противоион – биядерный

Рис. 1. Упаковка структурных единиц в кристалле $[Au(S_2CNBu^i_2)_2]_2[Hg_2Cl_6]$ **1** (проекция на плоскость *ac*). Атомы водорода в лигандах Bu_2^i Dtc не приведены.

анион $[Hg_2Cl_6]^{2-}$ (рис. 2). Неэквивалентные катионы **A** и **B**, демонстрирующие высокую степень структурного подобия, различаются длинами связей, а также валентными и торсионными углами (табл. 2), что позволяет отнести их к конформационным изомерам.

В изомерных катионах золота(III) координация дитиокарбаматных лигандов близка к изобидентатной: длина связей Au–S лежит в узком интервале 2.3240–2.3352 Å (табл. 2). В составе неэквивалентных лигандов Bu_2^i Dtc группировки C_2NCS_2 обнаруживают особенности строения, обусловленные близким к *sp*²-гибридному состоянию атомов азота и углерода в группе Dtc: расположение атомов практически копланарно (значимое отклонение от плоскости обнаруживает только атом C² в катионе **A**; см. величины торсионных углов SCNC

Параметр	Значение	
Брутто-формула	$C_{36}H_{72}Au_2Cl_6Hg_2N_4S_8$	
M	1825.26	
Сингония	Моноклинная	
Пространственная группа	C2/c	
a, Å	31.4939(14)	
b, Å	7.9715(3)	
c, Å	24.5370(10)	
град 90.00		
β, град 109.635(2)		
у, град 90.00		
$V, Å^3$	5801.9(4)	
Ζ	4	
$d_{\rm выч},$ г/см 3	2.090	
μ, мм ⁻¹	10.911	
<i>F</i> (000)	3456	
Размер кристалла, мм	mm $0.45 \times 0.12 \times 0.05$	
Область сбора данных по θ, град	3.90–27.53	
Интервалы индексов отражений $-40 \le h \le 40, -6 \le k \le 10, -31 \le l \le 3$		
Лзмерено отражений 16853		
Независимых отражений	6629 (<i>R</i> _{int} 0.0327)	
Отражений с $I > 2\sigma(I)$	5121	
Переменных уточнения	274	
GOOF	1.008	
R -Факторы по $F^2 > 2\sigma(F^2)$	$R_1 0.0286, wR_2 0.0510$	
<i>R</i> -Факторы по всем отражениям	$R_1 0.0454, wR_2 0.0542$	
Остаточная электронная плотность (min/max), e/Å ³	-1.232/1.334	

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры [Au(S₂CNBuⁱ₂)₂]₂[Hg₂Cl₆] 1

Рис. 2. Структура двух центросимметричных катионов [Au(S₂CN^{*i*}Bu₂)₂]⁺ **A** (a), **B** (б) и биядерного аниона [Hg₂Cl₆]²⁻ (в). Эллипсоиды 50%-ной вероятности. Симметрические преобразования: a) 1/2 - x, 1/2 - y, -z; b) 1/2 - x, 3/2 - y, -z; c) 1 - x, y, 1/2 - z.

в табл. 2), связи N–C(S)S (1.312, 1.292 Å) существенно короче связей N–CH₂ (1.463–1.480 Å).

Координация дитиокарбаматных лигандов приводит к образованию двух четырехчленных металлоциклов [AuS₂C], объединяемых в бициклическую систему общим атомом золота. Величины торсионных углов AuSSC и SAuCS, близкие к 180° (табл. 2), указывают на копланарное расположение атомов в обсуждаемых металлоциклах. В небольших по размерам циклических фрагментах [AuS₂C] катионов **A/B** межатомные расстояния между диагонально ориентированными атомами [Au…C (2.817/2.844 Å) и S…S (2.854/2.849 Å)] существенно меньше сумм ван-дер-ваальсовых радиусов соответствующих пар атомов (3.36 и 3.60 Å [22]). Позиции противолежащих атомов золота и углерода в гетероциклических фрагментах сближены, что указывает на вклад в структурную стабилизацию циклов двух факторов: прямого транс-аннулярного взаимодействия Аи…С и высокой концентрации делокализованной π-электронной плотности. В обоих катионах А/В атомы золота, находящиеся в центре бициклической системы [CS₂AuS₂C], вместе с ближайшим окружением образуют плоские полигоны [AuS₄] (диагональные углы SAuS 180.0°), что указывает на низкоспиновое внутриорбитальное *dsp*²-гибридное состояние золота(III). Полигоны представляют собой прямоугольники (отклонения углов S…S…S от прямого не превышают 0.28°), длинные стороны которых определяются межлигандными расстояниями S…S (3.688/3.687 Å), тогда как короткие стороны задаются внутрилигандными расстояниями S…S (см. выше).

Анионная часть комплекса 1 представлена биядерным ионом $[Hg_2Cl_6]^{2-}$ (рис. 2в), хотя известны также двойные комплексы Au(III)-Hg(II), включающие моноядерные [HgCl₄]²⁻[13, 15] и полимерные $([HgCl_3]^-)_n$ [15] анионы. Структурно-эквивалентные атомы ртути объединяются двумя мостиковыми атомами хлора и имеют искаженно-тетраэдрическое окружение [HgCl₄] (sp^3 -гибридизация). Центральная часть аниона представляет собой плоский четырехчленный металлоцикл [Hg₂Cl₂] с торсионными углами HgClClHg и ClHgHgCl 180°. Связи комплексообразователя с терминальными атомами хлора заметно короче (2.3872 и 2.4089 Å), чем с мостиковыми атомами (2.6120 и 2.6211 Å) (табл. 2). Валентные углы ClHgCl (в диапазоне 87.71-126.12°) разнонаправленно отклоняются от тетраэдрических, что характерно для галогеномеркурат(II)-ионов [23-25].

Для количественной характеристики геометрии комплексов с координацией металла (М), равной 4, удобно использовать параметр $\tau_4 = [360^\circ - (\alpha + \beta)]/141^\circ$ (где α и β – два наибольших угла LML) [26]. Для тетраэдрических и плоско-тетрагональных полиэдров параметр τ_4 характеризуется двумя предельными значениями: 1 ($\alpha = \beta = 109.5^\circ$) и 0 ($\alpha = \beta = 180^\circ$) соответственно. Из данных

Катион А		Катис	Катион В	
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	
Au ¹ -S ¹	2.3306(12)	Au ² –S ³	2.3240(12)	
Au ¹ –S ²	2.3330(12)	Au^2-S^4	2.3352(11)	
$Au^{1}\cdots S^{3b}$	3.6410(11)	$Au^2 \cdots S^1$	3.8113(12)	
$S^{1}-C^{1}$	1.730(5)	$S^{3}-C^{10}$	1.740(4)	
S ² –C ¹	1.725(5)	$S^4 - C^{10}$	1.742(4)	
$N^{1}-C^{1}$	1.312(5)	N ² -C ¹⁰	1.292(5)	
$N^{1}-C^{2}$	1.463(6)	$N^2 - C^{11}$	1.479(5)	
N ¹ -C ⁶	1.475(5)	N ² -C ¹⁵	1.480(5)	
Угол	ω, град	Угол	ω, град	
S ¹ Au ¹ S ²	75.47(4)	S ³ Au ² S ⁴	75.40(4)	
$S^1Au^1S^{2a}$	104.53(4)	S ³ Au ² S ^{4b}	104.60(4)	
Au ¹ S ¹ C ¹	86.52(17)	$Au^2S^3C^{10}$	87.58(15)	
$Au^1S^2C^1$	86.55(16)	$Au^2S^4C^{10}$	87.19(15)	
$S^1C^1S^2$	111.4(3)	$S^{3}C^{10}S^{4}$	109.8(2)	
Угол	ф, град	Угол	ф, град	
Au ¹ S ¹ S ² C ¹	-179.1(3)	$Au^2S^3S^4C^{10}$	-178.8(3)	
$S^1Au^1C^1S^2$	-179.2(3)	$S^3Au^2C^{10}S^4$	-178.9(2)	
$S^1C^1N^1C^2$	10.2(6)	$S^{3}C^{10}N^{2}C^{11}$	2.0(6)	
$S^1C^1N^1C^6$	-176.6(3)	$S^{3}C^{10}N^{2}C^{15}$	-176.5(3)	
$S^2C^1N^1C^2$	-169.3(4)	$S^4C^{10}N^2C^{11}$	-178.0(3)	
$S^2C^1N^1C^6$	3.9(7)	$S^4C^{10}N^2C^{15}$	3.5(6)	
		Анион		
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	
Hg ¹ –Cl ¹	2.6211(9)	Hg ¹ –Cl ³	2.4089(12)	
Hg ¹ –Cl ²	2.6120(10)	Hg^1-Cl^4	2.3872(13)	
Угол	ω, град	Угол	ω, град	
Cl ¹ Hg ¹ Cl ²	87.71(3)	Cl ² Hg ¹ Cl ⁴	109.26(4)	
Cl ¹ Hg ¹ Cl ³	108.47(3)	Cl ³ Hg ¹ Cl ⁴	126.12(5)	
Cl ¹ Hg ¹ Cl ⁴	109.84(4)	Hg ¹ Cl ¹ Hg ¹ c	92.08(4)	

Hg¹Cl²Hg¹c

Таблица 2. Основные длины связей (d), валентные (ω) и торсионные (ϕ) углы в структуре [Au(S₂CNBuⁱ₂)₂]₂[Hg₂Cl₆] 1^a

^а Симметрические преобразования: a) 1/2 - x, 1/2 - y, -z; b) 1/2 - x, 3/2 - y, -z; c) 1 - x, y, 1/2 - z.

108.69(3)

табл. 2 установлено, что для полиэдров ртути в биядерном анионе $[Hg_2Cl_6]^{2-}$ $\tau_4 = 0.879$, что указывает на преобладающий (87.9%-ный) вклад тетраэдрической составляющей в их геометрию; тогда как в изомерных катионах золота(III) $\tau_4 = 0$.

Cl²Hg¹Cl³

Ионные структурные единицы комплекса 1 связаны множественными вторичными взаимодействиями Au…S и S…Cl, что обеспечивает его супрамолекулярную самоорганизацию. Концепция вторичных связей ("secondary bonds") предложена [27] для описания взаимодействий между атомами на расстояниях, сопоставимых с суммами их ван-дер-ваальсовых радиусов.

92.50(5)

Каждый из изомерных катионов золота(III) А и В участвует в парных вторичных взаимодействиях Au…S с двумя ближайшими соседями между атомом металла и двумя диагонально ориентированными атомами серы: Au1...S^{3b/3f} 3.6410 Å и Au²…S^{1/1b} 3.8113 Å (сумма ван-дер-ваальсовых радиусов атомов золота и серы 3.46 Å [22]). Взаимное связывание катионов приводит к их структурному упорядочению в форме линейных

Рис. 3. Фрагмент 2D-супрамолекулярного катион-анионного слоя в структуре $[Au(S_2CNBu_2^i)_2]_2[Hg_2Cl_6]$ 1. *Пунктиром* показаны вторичные связи Au···S между комплексными катионами. Штриховыми линиями показаны вторичные связи S···Cl между комплексными катионами. Алкильные заместители не приведены. Симметрические преобразования: a) 1/2 - x, 1/2 - y, -z; b) 1/2 - x, 3/2 - y, -z; c) 1 - x, y, 1/2 - z; d) x, 1 + y, z; e) 1 - x, 1 + y, 1/2 - z; f) x, y - 1, z.

псевдополимерных цепей $(\cdots A \cdots B \cdots)_n$, ориентированных вдоль кристаллографической оси *b* (рис. 1, 3). Чередующиеся в цепи изомерные катионы **A** и **B** ориентированы таким образом, что их биссекторальные плоскости, проходящие через металлоциклы, образуют угол 66.5° (расстояние Au¹...Au² 3.9857(2) Å, углы Au^{1/2}...Au^{2/1}...Au^{1d/2f} 180°). Участвуя во вторичных взаимодействиях, каждый из атомов золота достраивает свой полигон до искаженного вытянутого октаэдра [AuS₄₊₂].

Между катионными супрамолекулярными цепями (… **A**… **B**…)_n локализованы биядерные анионы $[Hg_2Cl_6]^{2-}$, терминальные атомы Cl^3 и Cl^{3c} которых образуют с атомами S¹ и S^{1c} катионов **A**, принадлежащих соседним псевдополимерным цепям, вторичные связи S…Cl [28] с межатомным расстоянием 3.5091(16) Å, несколько меньшим суммы ван-дер-ваальсовых радиусов серы и хлора 3.55 Å [22], и углом C¹S¹Cl³ 165.4(3)°. Это позволяет идентифицировать обсуждаемые взаимодействия как халькогенные (халькоген-галогенные) связи [29, 30]. Таким образом, биядерные анионы [Hg₂Cl₆]²⁻ объединяют супрамолекулярные катионные цепи в 2D-псевдополимерный слой (рис. 3). Термолиз кристаллического комплекса 1 изучен методом СТА с одновременной регистрацией кривых ТГ и ДСК. Анализ кривой ТГ показывает, что основная потеря массы комплекса, термически устойчивого до 190°С, протекает в температурном интервале 190–373°С. Дифференцирование обсуждаемого участка кривой ТГ позволило выявить две точки перегиба при 257 и 295°С, что свидетельствует о сложном характере термолиза комплекса 1, протекающего с восстановлением Au(III) до элементного состояния, высвобождением HgCl₂ и частичным его преобразованием в HgS (рис. 4, I).

Первый круто ниспадающий участок кривой (190–257°С) отражает наиболее существенную потерю массы в 55.29%, которая заметно превышает величину (44.79%), ожидаемую при термолизе катионной части комплекса с восстановлением золота до металла. Для понимания этого несоответствия рассмотрим участок кривой ТГ после второй точки перегиба (295–373°С), который характерен для термолиза дитиокарбаматно-хлоридных комплексов Au(III)–Hg(II) [14] и обусловлен термической диссоциацией образующегося HgS [31, 32]. Потеря массы на обсуждаемом участке

Рис. 4. Кривые ТГ (*1*) и ДСК (*2*) гексахлородимеркурата(II) бис(N,N-диизобутилдитокарбамато-S,S')золота(III) **1**.

составляет 5.86% и соответствует преобразованию 23% ртути, присутствующей в исследуемом образце, в HgS. Следовательно, 77% ртути высвобождается в форме HgCl₂ (что составляет 22.91% от общей массы комплекса). Таким образом, большая часть хлорида ртути(II) (14.44%) испаряется в температурном интервале 257-295°С (между первой и второй точками перегиба). Недостающее количество HgCl₂ (8.47%) полностью компенсируется избыточной потерей массы на первом круто ниспадающем участке кривой ТГ. Таким образом, испарение HgCl₂ начинается уже на первой стадии термолиза задолго до достижения температур плавления (280.0°С [33]) и кипения (301.8°С [33]). При исследовании термолиза компактного хлорида ртути(II) начало сублимации установлено при 170.0°С с полным его завершением к 270.0°С [13]. Пологий участок кривой ТГ (373-722°С) связан с полным испарением (2.90%) продуктов термолиза. Остаточная масса (21.70%, при 1100°С) хорошо согласуется с расчетной долей восстановленного золота (21.58%), мелкие шарики которого обнаружены на дне тигля.

Кривая ДСК комплекса **1** включает ряд эндоэффектов (рис. 4, 2). Первый эндоэффект с экстремумом при 182.4°С регистрируется до начала термодеструкции (плавление образца, экстраполированная т.пл. 181.1°С). Независимым образом температура плавления комплекса **1** (в стеклянном капилляре) установлена в диапазоне 178–180°С. Второй эндоэффект с экстремумом при 241.8°С

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 6 2022

обусловлен интенсивным термолизом соединения. Уширенный эндоэффект с экстремумом при 325.1°С (экстраполированная температура процесса 299.0°С) проецируется на участок кривой ТГ, связанный с термической диссоциацией HgS. И наконец, в высокотемпературной области на кривой ДСК фиксируется эндоэффект плавления восстановленного золота (экстраполированная т. пл. 1062.8°С).

Таким образом, показана способность бис(N,N-диизобутилдитиокарбамато)ртути(II) к хемосорбционному связыванию золота(III) из растворов H[AuCl₄] в 2 М. HCl с полным перераспределением лигандов (Bu^{*i*}Dtc, Cl⁻) между координационными сферами металлов. В качестве основной формы связывания [AuCl₄]⁻ препаративно выделен и по данным СР/MAS ЯМР (¹³C, ¹⁵N) и РСА охарактеризован двойной кристаллический комплекс $[Au(S_2CNBu_2^i)_2]_2[Hg_2Cl_6]$. В результате его супрамолекулярной самоорганизации формируется 2D-псевдополимерная структура, в которой ионные структурные единицы объединены вторичными связями Au…S и S…Cl. В относительно мягких условиях (до 257°) термолиз исследуемого соединения сопровождается количественной регенерацией связанного золота с высвобождением HgCl₂ и частичным его преобразованием в HgS.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры СР/MAS ЯМР ¹³С/¹⁵N регистрировали на спектрометре Ascend Aeon (Bruker) с рабочими частотами 100.64/40.56 МГц при использовании сверхпроводящего магнита (Во 9.4 Тл) с замкнутым циклом конденсации гелия через внешний компрессор и Фурье-преобразования. Для возбуждения исследуемых ядер применяли кросс-поляризацию (СР) с протонов, контактное время ¹H-¹³C/¹H-¹⁵N 3.0/5.0 мс, а для подавления взаимодействий ¹³С-¹Н и ¹⁵N-¹Н – эффект декаплинга при использовании радиочастотного поля на резонансной частоте протонов 400.21 МГц [34]. Поликристаллический образец комплекса массой ~43 мг помещали в 4.0 мм керамический ротор из ZrO₂. Измерения ЯМР ¹³C/¹⁵N проводили, вращая образец под магическим углом (MAS) на частоте 10000(1) Гц; число накоплений 1272/14582; длительность протонных π/2 импульсов 2.7/2.5 мкс; интервал между импульсами 3.0/3.0 с. Изотропные химические сдвиги ядер 13 C/ 15 N (м. д.) даны относительно одной из компонент внешнего стандарта – кристаллического адамантана [35] (δ 38.48 м. д. [36] относительно TMC)/кристаллического NH₄Cl (δ 0.0 м. д., –341 м. д. в абсолютной шкале [37]) с поправкой на дрейф напряженности магнитного поля, частотный эквивалент которого составил 0.025/0.010 Гц/ч. Элементный анализ (C, H, N, S) выполнен на автоматизированном элементном анализаторе Euro EA-3000.

Рентгеноструктурный анализ монокристаллов комплекса 1 выполнен на дифрактометре Bruker-Nonius X8 Apex CCD (Мо K_{α} -излучение, λ 0.71073 Å, графитовый монохроматор) при 150(2) К. Сбор данных проведен по стандартной методике: φ и ω сканирование узких фреймов. Поглощение учтено эмпирически с использованием программы SADABS [38]. Структура определена прямым методом и уточнена методом наименьших квадратов (по F^2) в полноматричном анизотропном приближении не водородных атомов. Положения атомов водорода рассчитаны геометрически и включены в уточнение в модели наездника. Расчеты и уточнение структуры выполнены по программе SHELXL 2018/3 [39]. Координаты атомов, длины связей и углы депонированы в Кембриджском банке структурных данных (ССДС 2155556). Основные кристаллографические данные и результаты уточнения структуры 1 приведены в табл. 1, длины связей и углы – в табл. 2.

Термолиз комплекса 1 изучали методом синхронного термического анализа на приборе STA 449C Jupiter (NETZSCH) в корундовых тиглях под крышкой с отверстием, обеспечивающим давление паров при термическом разложении образца в 1 атм. Нагрев до 1100°C в атмосфере аргона со скоростью 5 град/мин. Масса навесок 2.691– 6.549 мг. Точность измерения температуры ± 0.7 °C, изменения массы $\pm 1 \times 10^{-4}$ мг. При съемке кривых ТГ и ДСК использовали файл коррекции, а также калибровку температуры и чувствительности для заданной температурной программы и скорости нагрева. Независимое определение температур плавления проводили на приборе ПТП(М) (ОАО «Химлаборприбор»).

Диизобутилдитиокарбамат натрия получен при взаимодействии сероуглерода (Merck) с диизобутиламином (Aldrich) в щелочной среде, а исходный N,N-диизобутилдитиокарбамат ртути(II) – осаждением ионов Hg^{2+} из водной фазы соответствующим карбамодитиоатом натрия [40]. По данным PCA бис(N,N-диизобутилдитиокарбамато) ртуть(II), [Hg(S₂CNBuⁱ₂)₂] имеет мономерное искаженно-тетраэдрическое строение [41].

Псевдополимерный гексахлородимеркубис(N,N-диизобутилдитиокарбамарат(II) то)-S,S']золота(III), $[Au(S_2CNBu_2^i)_2]_2[Hg_2Cl_6]$ (1). К 100 мг (0.1641 ммоль) свежеосажденного N,N-диизобутилдитиокарбаматного комплекса ртути(II) приливали 10 мл раствора AuCl₃ (в 2 М. HCl), содержащего 32 мг (0.1624 ммоль) золота, и перемешивали 30 мин. Степень связывания золота из раствора бис[(N,N-диизобутил)карбамодитиоатом] ртути(II) 71.66%. В хемосорбционной системе $[Hg(S_2CNBu_2^i)_2] - H[AuCl_4]/2 M.$ HCl образовался мелкий желтый осадок, который отфильтровали, промыли водой и высушили на фильтре. Выход 94.7%. Для проведения РСА прозрачные желтые игольчатые кристаллы комплекса 1 получали растворением порошка в ацетоне с последующим медленным испарением растворителя. Спектры CP-MAS ЯМР ¹³С и ¹⁵N, б, м. д.: 197.9, 191.3 (1:1, S₂<u>C</u>N); 60.2, 59.2 (1:1, N<u>C</u>H₂); 27.1, 25.7 (3:1, CH); 22.9, 21.9, 21.5, 20.5, 19.3 (1:2:2:2:1, CH₃); 158.4, 146.7 (1:1, S₂CN). Найдено, %: С 24.8; Н 4.2; N 3.3; S 14.0. С₃₆Н₇₂Аи₂Cl₆Hg₂N₄S₈. Вычислено, %: С 23.69; Н 3.98; N 3.07; S 14.05.

Количество золота в растворах определяли на атомно-абсорбционном спектрометре iCE 3000 (Thermo Electron Corporation, США). Степень связывания золота из растворов (*S*, %) рассчитывали по формуле: $S = [(c - c_0)/c] \times 100\%$, где *c* – исходное, а c_0 – остаточное количество золота в растворе.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Иванов Александр Васильевич, ORCID: https:// orcid.org/0000-0003-2146-0754

Родина Татьяна Андреевна, ORCID: https:// orcid.org/0000-0003-2676-8643

Лосева Ольга Викторовна, ORCID: https://orcid. org/0000-0001-5859-8031

БЛАГОДАРНОСТЬ

СР/MAS ЯМР ¹³С, ¹⁵N спектры получены в Университете технологий г. Лулео, Швеция в 2018 г.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Nayak M., Singh A.K., Prakash P., Kant R., Bhattacharya S. // Inorg. Chim. Acta. 2020. Vol. 501. 119263. doi 10.1016/j.ica.2019.119263
- Ur Rahman F., Bibi M., Altaf A.A., Tahir M.N., Ullah F., Zia-ur-Rehman, Khan E. // J. Mol. Struct. 2020. Vol. 1211. 128096. doi 10.1016/j.molstruc.2020.128096
- Jambi S.M. // J. Mol. Liq. 2018. Vol. 262. P. 237. doi 10.1016/j.molliq.2018.04.016
- Yadav M.K., Rajput G., Gupta A.N., Kumar V., Drew M.G.B., Singh N. // Inorg. Chim. Acta. 2014. Vol. 421. P. 210. doi 10.1016/j.ica.2014.05.031
- Singh V., Chauhan R., Kumar A., Bahadur L., Singh N. // Dalton Trans. 2010. Vol. 39. N 41. P. 9779. doi 10.1039/ c0dt00575d
- Singh R.P., Maurya V.K., Maiti B., Siddiqui K.A., Prasad L.B. // J. Mol. Struct. 2019. Vol. 198. 126912. doi 10.1016/j.molstruc.2019.126912
- Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2016. Vol. 118. P. 143. doi 10.1016/j. poly.2016.08.001
- Selvaganapathi P., Thirumaran S., Ciattini S. // J. Mol. Struct. 2017. Vol. 1148. P. 547. doi 10.1016/j. molstruc.2017.07.071
- Oladipo S.D., Omondi B. // Trans. Met. Chem. 2020.
 Vol. 45. N 6. P. 391. doi 10.1007/s11243-020-00391-y
- Topuz B. // Int. J. Environ. Anal. Chem. 2019. Vol. 99.
 P. 61. doi 10.1080/03067319.2018.1560434
- Singh S.K., Nandi R., Mishra K., Singh H.K., Singh R.K., Singh B. // Sens. Actuators (B). 2016. Vol. 226. P. 381. doi 10.1016/j.snb.2015.11.077
- Mercuri M.L., Serpe A., Marchiò L., Artizzu F., Espa D., Deplano P. // Inorg. Chem. Commun. 2014. Vol. 39. P. 47. doi 10.1016/j.inoche.2013.10.045
- Лосева О.В., Родина Т.А., Смоленцев А.И., Иванов А.В. // Коорд. хим. 2016. Т. 42. № 11. С. 683; Loseva O.V., Rodina T.A., Smolentsev A.I., Ivanov A.V. // Russ. J. Coord. Chem. 2016. Vol. 42. N 11. P. 719. doi 10.1134/S1070328416110063
- Loseva O.V., Rodina T.A., Smolentsev A.I., Ivanov A.V. // Polyhedron. 2017. Vol. 134. P. 238. doi 10.1016/j. poly.2017.06.021
- Лосева О.В., Родина Т.А., Иванов А.В. // ЖОХ. 2019.
 Т. 89. Вып. 11. С. 1766; Loseva O.V., Rodina T.A., Ivanov A.V. // Russ. J. Gen. Chem. 2019. Vol. 89. N 11.
 P. 2273. doi 10.1134/S1070363219110185

- Rodina T.A., Loseva O.V., Smolentsev A.I., Antzutkin O.N., Ivanov A.V. // Inorg. Chim. Acta. 2020. Vol. 508. 119630. doi 10.1016/j.ica.2020.119630
- Иванов А.В., Лосева О.В., Родина Т.А. // Коорд. хим. 2020. Т. 46. № 9. С. 562; *Ivanov A.V., Loseva O.V., Rodina T.A.* // Russ. J. Coord. Chem. 2020. Vol. 46. N 9. P. 639. doi 10.1134/S107032842009002X
- Родина Т.А., Лосева О.В., Иванов А.В. // ЖСХ. 2021. Т. 62. № 1. С. 126; Rodina T.A., Loseva O.V., Ivanov A.V. // J. Struct. Chem. 2021. Vol. 62. N 1. P. 123. doi 10.1134/S0022476621010157
- Korneeva E.V., Smolentsev A.I., Antzutkin O.N., Ivanov A.V. // Inorg. Chim. Acta. 2021. Vol. 525. P. 120383. doi 10.1016/j.ica.2021.120383
- Лосева О.В., Родина Т.А., Иванов А.В., Герасименко А.В., Анцуткин О.Н. // ЖСХ. 2013. Т. 54. № 3. С. 544; Loseva O.V., Rodina Т.А., Ivanov А.V., Gerasimenko A.V., Antzutkin O.N. // J. Struct. Chem. 2013. Vol. 54. N 3. P. 598. doi 10.1134/ S0022476613030207
- Родина Т.А., Лосева О.В., Смоленцев А.И., Иванов А.В. // ЖСХ. 2016. Т. 57. № 1. С. 151; Rodina T.A., Loseva O.V., Smolentsev A.I., Ivanov A.V. // J. Struct. Chem. 2016. Vol. 57. N 1. P. 146. doi 10.1134/ S0022476616010182
- Bondi A. // J. Phys. Chem. 1964. Vol. 68. N 3. P. 441. doi 10.1021/j100785a001
- Exarchos G., Robinson S.D., Steed J.W. // Polyhedron. 2001. Vol. 20. N 24–25. P. 2951. doi 10.1016/S0277-5387(01)00885-3
- Elwej R., Hannachi N., Chaabane I., Oueslati A., Hlel F. // Inorg. Chim. Acta. 2013. Vol. 406. P. 10. doi 10.1016/j.ica.2013.06.046
- Castiñeiras A., García-Santos I., Saa M. // Acta Crystallogr. (C). 2019. Vol. 75. N 7. P. 891. doi 10.1107/ S205322961900682X
- Yang L., Powel D.R., Houser R.P. // Dalton Trans. 2007. N 9. P. 955. doi 10.1039/B617136B
- Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972.
 Vol. 15. N 1. P. 1. doi 10.1016/S0065-2792(08)60016-3
- Haiduc I., Edelmann F.T. Supramolecular Organometallic Chemistry. Weinheim: Wiley-VCH, 1999. 471 p.
- 29. *Wang W., Ji B., Zhang Y. //* J. Phys. Chem. (A). 2009. Vol. 113. N 28. P. 8132. doi. 10.1021/jp904128b
- Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. Vol. 52. N 5. P. 1313. doi. 10.1021/acs. accounts.9b00037
- Leckey J.H., Nulf L.E. Thermal decomposition of mercuric sulfide, Y/DZ-1124. 1994. Oak Ridge Y-12 Plant, TN (United States).
- 32. Angeloski A., Rawal A., Bhadbhade M., Hook J.M., Schurko R.W., McDonagh A.M. // Cryst. Growth

Des. 2019. Vol. 19. N 2. P. 1125. doi 10.1021/acs. cgd.8b01619

- 33. *Лидин Р.А., Андреева Л.Л., Молочко В.А.* Справочник по неорганической химии. М.: Химия, 1987. 319 с.
- Pines A., Gibby M.G., Waugh J.S. // J. Chem. Phys. 1972. Vol. 56. N 4. P. 1776. doi 10.1063/1.1677439
- Earl W.L., VanderHart D.L. // J. Magn. Res. 1982.
 Vol. 48. N 1. P. 35. doi 10.1016/0022-2364(82)90236-0
- 36. Morcombe C.R., Zilm K.W. // J. Magn. Res. 2003. Vol. 162. N 2. P. 479. doi 10.1016/S1090-7807(03)00082-X

- Ratcliffe C.I., Ripmeester J.A., Tse J.S. // Chem. Phys. Lett. 1983. Vol. 99. N 2. P. 177. doi 10.1016/0009-2614(83)80554-5
- Bruker, APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11). Madison (WI, USA): Bruker AXS Inc., 2004.
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. N 1. P. 3. doi 10.1107/S2053229614024218
- 40. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
- Cox M.J., Tiekink E.R.T. // Z. Kristallogr. 1999.
 Vol. 214. N 9. P. 571. doi 10.1524/zkri.1999.214.9.571

Preparation, Supramolecular Self-Organization (Construction of 2D Pseudopolymer Architecture), CP/MAS NMR (¹³C, ¹⁵N), and Thermal Behavior of the Double Au(III)–Hg(II) Complex [Au(S₂CNBuⁱ₂)₂]₂[Hg₂Cl₆]

O. V. Loseva^{*a*}, T. A. Rodina^{*b*}, M. A. Ivanov^{*a*}, O. A. Bredyuk^{*a*}, A. I. Smolentsev^{*c*}, and A. V. Ivanov^{*a*,*}

 ^a Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences, Blagoveshchensk, 675000 Russia
 ^b Amur State University, Blagoveshchensk, 675029 Russia
 ^c A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
 *e-mail: alexander.v.ivanov@chemist.com

Received March 2, 2022; revised March 2, 2022; accepted March 24, 2022

Chemisorption binding of gold(III) by bis(N,N-diisobutyldithiocarbamato)mercury(II) from a solution of $H[AuCl_4]$ in 2 M. HCl is accompanied by a complete redistribution of ligands between the coordination spheres of the metals, which leads to the formation of $[Au(S_2CNBu_2^i)_2]_2[Hg_2Cl_6]$ related to double complex salts. According to X-ray diffraction data, the mutual binding of ionic structural units due to non-valent type secondary interactions (Au···S, S···Cl) promotes the formation of a supramolecular 2D pseudopolymer structure of the complex. Thermolysis of the obtained complex was studied by the simultaneous thermal analysis method.

Keywords: double complex salts, gold(III)-mercury(II) dithiocarbamato-chlorido complex, supramolecular self-organization, Au…S and S…Cl secondary bonds, solid-state CP/MAS NMR (¹³C, ¹⁵N), thermolysis