УДК 547.241

КИНЕТИКА И МЕХАНИЗМ РЕАКЦИИ ТРИФЕНИЛФОСФИНА С МЕТИЛВИНИЛКЕТОНОМ

© 2022 г. А. В. Салин^{*a*,*}, А. А. Шабанов^{*a*}, Т. В. Карамаева^{*a*}

^а Казанский (Приволжский) федеральный университет, Химический институт имени А. М. Бутлерова, ул. Кремлевская 18, Казань, 420008 Россия *e-mail: salin555@mail.ru

> Поступило в редакцию 25 февраля 2022 г. После доработки 7 апреля 2022 г. Принято к печати 10 апреля 2022 г.

Методом остановленной струи изучена кинетика реакции трифенилфосфина с метилвинилкетоном в среде уксусной кислоты. Экспериментальные данные свидетельствуют, что реакции с алкенами, активированными различными электроноакцепторными группами, принадлежат к одной реакционной серии и протекают по одинаковому механизму с переносом протона на лимитирующей стадии. На количественном уровне проанализировано влияние электроноакцепторной группы на реакционную способность и установлено, что электрофильность кратной связи не является основным фактором, определяющим реакционную способность алкена.

Ключевые слова: третичный фосфин, органокатализ, цвиттер-ион, кинетика, механизм реакции

DOI: 10.31857/S0044460X22070022, EDN: CPMNBB

Метилвинилкетон, являясь высоко реакционноспособным электронодефицитным алкеном, находит широкое применение в качестве реагента в фосфин-катализируемых реакциях. Активированная углерод-углеродная кратная связь метилвинилкетона легко подвергается нуклеофильной атаке третичными фосфинами с образованием цвиттер-ионного интермедиата, который может быть вовлечен во многие каталитические превращения с электрофильными соединениями. В литературе описано множество примеров успешного использования метилвинилкетона в фосфин-катализируемых реакциях Михаэля [1-4], Мориты–Бейлиса–Хиллмана [5], Раухута–Курье [6-8], циклоприсоединения [9-14]. Зачастую метилвинилкетон вступает даже в такие реакции, в которых прочие электронодефицитные алкены (акрилаты, акриламиды и др.) оказываются недостаточно реакционноспособными. Поскольку эффективность фосфин-катализируемых реакций во многом определяется скоростью генерации ключевого цвиттер-ионного интермедиата, важно иметь количественное представление о реакционной способности активированных алкенов в реакции с третичными фосфинами. В предыдущих исследованиях нашей группы было показано, что удобной кинетической моделью для таких исследований является присоединение арилзамещенных третичных фосфинов к электронодефицитным алкенам в присутствии донора протонов, в качестве которого могут выступать кислотная группа самого алкена [15], либо протонный растворитель [16]. Указанные реакции протекают количественно с образованием соответствующих фосфониевых солей, и за ходом взаимодействия удобно наблюдать с помощью спектрофотометрии. Однако данные о реакционной способности метилвинилкетона ранее не были опубликованы, поскольку высокая скорость ограничивала точность определения кинетических параметров с использованием классической мето-

дики псевдопервого порядка, включающей ручное смешение реагентов. В настоящей работе для исследования кинетики реакции трифенилфосфина с метилвинилкетоном был использован метод остановленной струи, позволяющий изучать кинетику быстрых реакций с малым периодом полупревращения.

В среде ледяной уксусной кислоты трифенилфосфин быстро присоединяется к метилвинилкетону с образованием единственного фосфониевого продукта (схема 1), имеющего сигнал в спектре ЯМР ³¹Р при 25.9 м. д. Уксусная кислота необходима в реакции для протонирования цвиттер-ионного интермедиата, в отсутствие источника протонов присоединение не протекает, поскольку равновесие практически полностью сдвинуто в сторону исходных реагентов.

Ранее было показано, что для реакций третичных фосфинов с активированными алкенами характерен общий кислотный катализ, и скорость присоединения зависит от природы кислоты и ее концентрации [уравнение (1)] [15,16].

Скорость =
$$\frac{k_1}{k_{-1}} k_2$$
[PPh₃][алкен][AcOH]
= k_{III} [PPh₃][алкен][AcOH]. (1)

Такая зависимость является следствием высокой неустойчивости фосфониевых цвиттер-ионов, при которой скорость распада на исходные реагенты (k_{-1}) оказывается выше скорости переноса протона к енолятному центру возникающего интермедиата $(k_2[AcOH])$ [17]. Использование уксусной кислоты в качестве растворителя удобно также тем, что позволяет проводить кинетические измерения при постоянной концентрации протонодонора в реакционной смеси.

Присоединение трифенилфосфина сопровождается сильным гипсо- и гипохромным сдвигом полосы поглошения $n \rightarrow \pi^*$ -перехода, имеющей в УФ спектре максимум в области 260 нм, за счет участия неподеленной электронной пары атома фосфора в образовании новой о-связи с терминальным атомом углерода активированного алкена. Максимальное уменьшение оптической плотности в ходе реакции наблюдается при 290 нм. На рис. 1 представлен типичный вид экспоненциальных кинетических кривых, дублированных для заданной концентрации метилвинилкетона в условиях псевдопервого порядка по трифенилфосфину, из которых в полулогарифмических координатах рассчитывается константа скорости псевдопервого порядка к'. По угловому коэффициенту линейной зависимости константы скорости псевдопервого порядка от концентрации метилвинилкетона может быть найдена константа скорости второго порядка $k_{\rm II}$, не зависящая от концентрации избыточного реагента (k' = 7.85[метилвинилкетон] – $0.024, R^2 0.9978).$

Рис. 1. Изменение оптической плотности в ходе реакции трифенилфосфина с метилвинилкетоном (34.88 мМ.) в среде уксусной кислоты при 30.0±0.1°С (представлено пять последовательных экспериментов).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

Порядок по уксусной кислоте можно определить только в исключительных случаях, когда использование смесей с инертным (апротонным) растворителем дает возможность подобрать условия, позволяющие избежать мешающего влияния эффекта предпочтительной сольватации [18] на кинетику реакции. Ранее такие исследования были проведены для реакций трифенилфосфина с акриловой кислотой и метилакрилатом, выявившие прямую пропорциональность между скоростью и концентрацией уксусной кислоты в смеси растворителей. Это стало возможным благодаря близости констант скорости в уксусной кислоте и таких апротонных растворителях как ее эфиры (этил-, бутилацетат), а также схожести химической природы активированного алкена с одним из смешанных растворителей [19]. Для метилвинилкетона, сильно отличающегося по свойствам от этил- и бутилацетата, подобрать такие смеси становится невозможным. Поэтому мы воспользовались изокинетической зависимостью для подтверждения однотипности механизма реакций с участием различных активированных алкенов. Для этого кинетика реакции трифенилфосфина с метилвинилкетоном была изучена при семи температурах в интервале от 20 до 50°С. Используя критерий Экснера [20], в котором сравниваются логарифмы констант скорости при двух различных температурах (рис. 2), приходим к единой изокинетической зависимости для изученных реакций независимо от природы электроноакцепторной группы и наличия других заместителей в алкене.

Отсюда можно сделать вывод об общем механизме для данных реакций, в котором лимитирующей стадией является перенос протона к енолятному центру цвиттер-ионного интермедиата.

Рис. 2. Изокинетическая зависимость для реакций трифенилфосфина с активированными алкенами в среде уксусной кислоты: *1* – итаконовый ангидрид, *2* – метилвинилкетон, *3* – акриловая кислота, *4* – α-метилен-γ-бутиролактон, *5* – метилакрилат, *6* – акриламид, *7* – диметилфумарат, *8* – акрилонитрил, *9* – диметилмалеат, *10* – метилметакрилат.

В табл. 1 приведены константы скорости третьего порядка $k_{\rm III}$, не зависящие от концентрации уксусной кислоты, а также активационные параметры для реакции трифенилфосфина с метилвинилкетоном и другими ранее использованными монозамещенными алкенами [21]. Как видно из табл. 1, метилвинилкетон очень значительно, а именно, на один-три порядка превосходит по активности остальные алкены в реакции с трифенилфосфином. Энтальпия активации для реакции с участием метилвинилкетона существенно ниже, чем для других алкенов. Во всех реакциях весомый вклад в энергетику процесса вносит энтропия активации, принимающая большие отрицательные значения, которые с учетом погрешности измерения (±7 Дж/(моль·К)) укладываются в очень узкий диапазон, что говорит об изоэнтропийном характе-

Таблица 1. Кинетические^а и активационные параметры реакции трифенилфосфина с активированными алкенами в уксусной кислоте (30.0±0.1°C)

Алкен	$10^3 \times k_{\rm III}, {\rm M}.^{-2} \cdot {\rm c}^{-1}$	$\Delta H^{\! \neq},$ кДж/моль	–∆Ѕ [≠] , Дж/(моль∙К)	
Метилвинилкетон	454±7	27	163	
Акриловая кислота	8.2±0.2	35	168	
Метилакрилат	0.88±0.01	41	169	
Акриламид	0.595±0.010	39	177	
Акрилонитрил	0.155±0.001	44	173	

^а Константы скорости приведены с доверительным интервалом 95%.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

Электроноакцепторная группа	–lgk _{III}	σ _n	$\sigma_{_{\mathcal{M}}}$	σ-	σ*
СОМе	0.343	0.50	0.38	0.85	1.65
CO ₂ H	2.086	0.43	0.36	0.73	2.08
CO ₂ Me	3.056	0.39	0.32	0.66	2.00
CONH ₂	3.225	0.36	0.28	0.63	1.68
CN	3.810	0.66	0.56	0.88	3.30
Коэффициент корреляции R		0.11	0.24	0.29	0.60

Таблица 2. Корреляция констант скорости с различными σ-константами [22] электроноакцепторных групп в алкене

ре реакционной серии. Количественно анализируя реакционную способность, можно обнаружить, что не наблюдается корреляций между скоростью и σ -константами электроноакцепторной группы алкена, выраженными в различных шкалах: Гаммета (σ_m , σ_n), Окамото–Брауна (σ^-), Тафта (σ^*). Из табл. 2 следует, что во всех перечисленных случаях коэффициенты корреляций имеют очень низкие значения, не превышающие 0.6 ед.

Майер для предсказания реакционной способности электрофилов и нуклеофилов предложил трехпараметровое уравнение (2) [23]:

Рис. 3. Корреляция констант скорости с параметром электрофильности Майера (*E*): 1 – метилвинилкетон (-16.76), $2 - \alpha$ -метилен- γ -бутиролактон (-19.4), 3 – метилакрилат (-18.84), 4 – акриламид (-21.8), 5 – диметилфумарат (использовано значение *E* –17.79 для диэтилфумарата), 6 – акрилонитрил (-19.05), 7 – диметилмалеат (использовано значение *E* –19.49 для диэтилмалеата), 8 – метилметакрилат (-23.4).

$$\lg k = s_N (N + E), \tag{2}$$

где k – константа скорости второго порядка для реакции нуклеофила с электрофилом, E – параметр электрофильности, N – параметр нуклеофильности, $s_{\rm N}$ – чувствительность реакции к природе нуклеофила.

Для определения параметров электрофильности E различных алкенов, активированных электроноакцепторными группами, в качестве стандартных нуклеофилов были использованы пиридиниевые и сульфониевые илиды. Мы обнаружили, что параметр электрофильности Майера также не может быть использован для предсказания реакционной способности алкенов в реакции с трифенилфосфином (рис. 3). В корреляции были использованы данные для восьми алкенов, для которых были определены константы скорости и в литературе известны параметры E [24, 25].

Отсутствие каких-либо корреляций свидетельствует о том, что электрофильность алкена не является основным фактором, определяющим скорость реакции с третичными фосфинами, и наличие атома фосфора вносит существенную специфику в реакционную способность нуклеофила. Поскольку лимитирующей стадией реакции является перенос протона, наблюдаемая скорость реакции k_{III} является эффективной величиной и зависит не только от скорости нуклеофильной атаки (k_1) , но и от скорости распада интермедиата (k_{-1}) и скорости протонирования (k_2) . Литературные данные свидетельствуют [26-30], что существенную роль в стабилизации цвиттер-ионов играет внутримолекулярное электростатическое взаимодействие между фосфониевым и енолятным цен-

трами. Так, циклические активированные алкены, имеющие фиксированную s-uuc-геометрию связей С=С и С=О (например, итаконовый ангидрид, α-метилен-γ-бутиролактон), обнаруживают очень высокую реакционную способность, поскольку такое строение благоприятствует Р+...Об- взаимодействию в цвиттер-ионе. В случае ациклических активированных алкенов кетонная группа, по-видимому, лучше других стабилизирует цвиттер-ион за счет делокализации анионного заряда и наиболее эффективного участия в Р⁺...О⁶⁻ взаимодействии (схема 2), что приводит к высокой скорости реакции с участием метилвинилкетона. Напротив, отсутствие аналогичного стабилизирующего эффекта для цианогруппы (схема 2) делает акрилонитрил малореакционноспособным в реакции с трифенилфосфином, несмотря на сильный электроноакцепторный характер группы CN (табл. 2).

Таким образом, в ходе исследования были впервые определены кинетические и активационные параметры для реакции трифенилфосфина с метилвинилкетоном в среде уксусной кислоты с использованием метода остановленной струи. Высокая скорость реакции по сравнению с другими активированными алкенами объяснена способностью кетонной группы наиболее эффективно участвовать в стабилизации цвиттер-ионного интермедиата посредством электростатического Р⁺...О⁶⁻ взаимодействия. Полученные количественные данные о реакционной способности метилвинилкетона проливают дополнительный свет на особенности строения фосфониевых цвиттер-ионов и представляют интерес для развития химии фосфин-катализируемых превращений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Метилвинилкетон (Acros Organics, 95%) сушили над MgSO₄ и непосредственно перед использованием дважды подвергали фракционной перегонке при пониженном давлении в присутствии гидрохинона. Трифенилфосфин (Acros Organics, 99%) использовали без дополнительной очистки. Уксусную кислоту (ХЧ ледяная, 99.8%) перегоняли при пониженном давлении.

Кинетику реакции изучали спектрофотометрически на приборе Varian Cary 50 Bio с термостатируемой кюветой (точность термостатирования $\pm 0.1^{\circ}$ C), оснащенном приставкой Applied Photophysics RX2000 для исследования реакций методом остановленной струи. Эксперимент проводили в среде ледяной уксусной кислоты на длине волны 290 нм в условиях псевдопервого порядка по трифенилфосфину (0.2 мМ.) и большой избыточной концентрации метилвинилкетона, которая варьировалась в интервале от 10 до 70 мМ. Толщина пропускающего слоя 1 см. Кинетические измерения проводили при температурах от 20 до 50°С с интервалом 5°С. Для каждой концентрации метилвинилкетона и температуры кинетические измерения дублировались не менее десяти раз. Константы скорости определяли по уменьшению оптической плотности полосы поглощения трифенилфосфина в реакционных смесях. Константы скорости псевдопервого порядка рассчитывали методом наименьших квадратов по тангенсу угла наклона анаморфозы кинетической кривой в коорлинатах:

$$\ln(A_{\tau} - A_{\infty}) - \tau, \qquad (3)$$

где A_{τ} – текущее значение оптической плотности, A_{∞} – конечное значение оптической плотности после завершения реакции, τ – время. Анаморфозы кинетических кривых сохраняли линейный вид при степени завершенности реакции не менее 95%. Константу скорости второго порядка определяли из зависимости константы скорости псевдопервого порядка от концентрации метилвинилкетона. Константу скорости третьего порядка определяли делением константы скорости второго порядка на концентрацию AcOH, которая в собственном растворе принималась постоянной и равной 17.3 М. Активационные параметры рассчитывали из линейной зависимости (4) по известным формулам (5) и (6):

$$\ln\left(\frac{k_{\rm III}}{T}\right) = \frac{a}{T} + b,\tag{4}$$

$$\Delta H^{\neq} = -aR, \tag{5}$$

$$\Delta S^{\neq} = R[b - \ln(k_{\rm B}/h)], \tag{6}$$

где R – универсальная газовая постоянная, $k_{\rm B}$ – константа Больцмана, h – постоянная Планка. Ошибка в определении константы скорости не превышает ±1.5%, энтальпии активации ±2 кДж/моль, энтропии активации ±7 Дж·моль⁻¹·K⁻¹.

Спектральные данные для продукта реакции трифенилфосфина с метилвинилкетоном (образует ассоциат с уксусной кислотой состава 1:2 по данным ЯМР ¹Н) представлены ниже.

(3-оксобутил)трифенилфосфония. Ацетат Спектр ЯМР ¹Н (400 МГц, CDCl₃), б, м. д.: 1.99 с $(9H, CH_3COO^- + 2CH_3COOH), 2.09 c (3H, CH_3CO),$ 3.13 д. т (2H, P<u>CH</u>₂, ²*J*_{PH} 14.3, ³*J*_{HH} 7.0 Гц), 3.71 д. т (2H, <u>CH</u>₂CO, ³*J*_{PH} 13.3, ³*J*_{HH} 7.0 Гц), 7.65–7.73 м (12Н, ArH), 7.78-7.85 м (3Н, ArH), 12.20-12.46 уш. м (2H, CH₃COOH, несимметричный многопозиционный обмен). Спектр ЯМР ¹³С{¹H} (100.6 МГц, CDCl₃), δ_C, м. д.: 16.4 д (РСH₂, ¹*J*_{PC} 55.5 Гц), 22.1 (<u>CH</u>₃COO⁻ + <u>C</u>H₃COOH), 29.4 (<u>C</u>H₃CO), 35.5 д (<u>CH</u>₂CO, ${}^{2}J_{PC}$ 3.0 Гц), 118.2 д (*unco*-C_{AP} ${}^{1}J_{PC}$ 86.7 Гц), 130.5 д (м-С_{Ар} ³J_{PC} 12.6 Гц), 133.6 д $(o-C_{Ar})^2 J_{PC}$ 10.0 Гц), 135.2 $(n-C_{Ar})$, 175.7– 175.8 м (СООН + СОО[–]), 204.6–204.8 м (CH₃CO). Спектр ЯМР ³¹Р (162 МГц, CDCl₃): δ_Р 25.9 м. д. Масс-спектр (HRMS-ESI), m/z: 333.1408 [*M*]⁺ (вычислено для С₂₂H₂₂OP⁺: 333.1403).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Салин Алексей Валерьевич, ORCID https:// orcid.org/0000-0002-2751-1666

БЛАГОДАРНОСТЬ

Авторы выражают благодарность доценту Штырлину В.Г. и м.н.с. Серову Н.Ю. за предоставленную возможность использовать оборудование для исследования кинетики методом остановленной струи.

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена за счет средств Программы стратегического академического лидерства Казанского (Приволжского) федерального университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Stewart I.C., Bergman R.G., Toste F.D. // J. Am. Chem. Soc. 2003. Vol. 125. P. 8696. doi 10.1021/ja035232n
- Baslé O., Porcel S., Ladeira S., Bouhadir G., Bourissou D. // Chem. Commun. 2012. Vol. 48. P. 4495. doi 10.1039/C2CC30399J
- Zhong F., Dou X., Han X., Yao W., Zhu Q., Meng Y., Lu Y. // Angew. Chem. Int. Ed. 2013. Vol. 52. P. 943. doi 10.1002/ange.201208285
- Wang D., Wei Y., Shi M. // Asian J. Org. Chem. 2013. Vol. 2. P. 480. doi 10.1002/ajoc.201300062
- Meng X., Xie P., Huang Y., Chen R. // RSC Adv. 2012. Vol. 2. P. 8104. doi 10.1039/C2RA20823G
- Shi Z., Tong Q., Leong W.W.Y., Zhong G. // Chem. Eur. J. 2012. Vol. 18. P. 9802. doi 10.1002/chem.201201318
- Li S., Liu Y., Huang B., Zhou T., Tao H., Xiao Y., Liu L., Zhang J. // ACS Catal. 2017. Vol. 7. P. 2805. doi 10.1021/acscatal.7b00030
- Tao M., Zhou W., Zhang J. // Adv. Synth. Catal. 2017. Vol. 359. P. 3347. doi 10.1002/adsc.201700666
- Cai L., Zhang B., Wu G., Song H., He Z. // Chem. Commun. 2011. Vol. 47. P. 1045. doi 10.1039/ C0CC02817G
- Wang G., Rexiti R., Sha F., Wu X.-Y. // Tetrahedron 2015. Vol. 71. P. 4255. doi 10.1016/j.tet.2015.04.076
- Zhang X.-N., Chen G.-Q., Dong X., Wei Y., Shi M. // Adv. Synth. Catal. 2013. Vol. 355. P. 3351. doi 10.1002/ adsc.201300828
- Ma G.-N., Wang F.-J., Gao J., Shi M. // Chem. Commun. 2008. Vol. 2008. P. 4998. doi 10.1039/B811167G
- Wang H., Zhou W., Tao M., Hu A., Zhang J. // Org. Lett. 2017. Vol. 19. P. 1710. doi 10.1021/acs. orglett.7b00489
- Chen P., Zhang J., Zhang J. // Adv. Synth. Catal. 2018. Vol. 360. P. 682. doi 10.1002/ adsc.201701168
- Salin A.V., Sobanov A.A., Bakhtiyarova Y.V., Khabibullin A.A., Galkin V.I., Cherkasov R.A. // Phosphorus, Sulfur Silicon Relat. Elem. 2011. Vol. 186. P. 854. doi 10.1080/10426507.2010.500642
- Salin A.V., Sobanov A.A., Bakhtiyarova Y.V., Khabibullin A.A., Galkin V.I., Cherkasov R.A. // Phosphorus, Sulfur Silicon Relat. Elem. 2011. Vol. 186. P. 857. doi 10.1080/10426507.2010.500643
- Salin A.V. // ChemistrySelect 2017. Vol. 2. P. 6984. doi 10.1002/slct.201701129

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

- Marcus Y. Preferential solvation in mixed solvents / Eds P.E. Smith, E. Matteoli, J.P. O'Connell. Boca Raton: Taylor & Francis Group CRC Press, 2013. P. 65.
- Salin A.V., Khisamova D.R. // J. Mol. Liq. 2020.
 Vol. 318. P. 113911. doi 10.1016/j.molliq.2020.113911
- Exner O. // Nature 1964. Vol. 201. P. 488. doi 10.1038/201488b0
- 21. Salin A.V., Fatkhutdinov A.R., Il'in A.V., Galkin V.I. // Int. J. Chem. Kinet. 2014. Vol. 46. P. 206. doi 10.1002/ kin.20842
- 22. *Dean J.A.E.* Lange's Handbook of Chemistry. New York: McGraw-Hill, 1998. P. 9.2.
- Mayr H., Ofial A.R. // J. Phys. Org. Chem. 2008. Vol. 21. P. 584. doi 10.1002/poc.1325
- Mayer R.J., Allihn P.W.A., Hampel N., Mayer P., Sieber S.A., Ofia A.R. // Chem. Sci. 2021. Vol. 12. P. 4850. doi 10.1039/d0sc06628a

- 25. Mayr's Database of Reactivity Parameters. http://www. cup.lmu.de/oc/mayr/reaktionsdatenbank
- Zhu X.-F., Henry C. E., Kwon O. // J. Am. Chem. Soc. 2007. Vol. 129. P. 6722. doi 10.1021/ja071990s
- 27. *Liang Y., Liu S., Xia Y., Li Y., Yu Z.-X.* // Chem. Eur. J. 2008. Vol. 14. P. 4361. doi 10.1002/chem.200701725
- Saijo R., Uno H., Mori S., Kawase M. // Chem. Commun. 2016. Vol. 52. P. 8006. doi 10.1039/ C6CC01627H
- Salin A.V., Fatkhutdinov A.R., Il'in A.V., Shamsutdinova F.G. // Int. J. Chem. Kinet. 2016. Vol. 48. P. 161. doi 10.1002/kin.20981
- Salin A.V., Islamov D.R. // Org. Biomol. Chem. 2019.
 Vol. 17. P. 7293. doi 10.1039/c9ob01401b

Kinetics and Mechanism of Reaction of Triphenylphosphine with Methyl Vinyl Ketone

A. V. Salin^{*a*,*}, A. A. Shabanov^{*a*}, and T. V. Karamaeva^{*a*}

^a A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008 Russia *e-mail: salin555@mail.ru

Received February 25, 2022; revised April 7, 2022; accepted April 10, 2022

Kinetics of reaction of triphenylphosphine with methyl vinyl ketone was studied using stop-flow technique. Experimental data indicate that the reactions of alkenes activated by different electron-withdrawing groups belong to the same reaction series and involve the identical mechanism with rate-determining proton transfer step. The effect of electron-withdrawing group was analyzed quantitatively using various relationships, and no correlation between electrophilicity and reactivity of the alkene was found.

Keywords: tertiary phosphine, organocatalysis, zwitterion, kinetics, reaction mechanism