УДК 547.481:546.183.548.737

Памяти В. И. Галкина

ТРИФЕНИЛФОСФИН В РЕАКЦИЯХ С ф-БРОМАЛКАНКАРБОНОВЫМИ КИСЛОТАМИ

© 2022 г. С. Р. Романов^{*a*,*}, А. И. Хафизова^{*a*}, А. В. Герасимов^{*a*}, Д. Р. Исламов^{*a*}, М. П. Шулаева^{*b*}, О. К. Поздеев^{*b*}, И. В. Галкина^{*a*}, В. И. Галкин^{*a*}, Ю. В. Бахтиярова^{*a*}

^а Казанский (Приволжский) федеральный университет, ул. Кремлевская 18, Казань, 420008 Россия ^b Казанская государственная медицинская академия, Казань, 420012 Россия *e-mail: Semvonromanov@yandex.ru

> Поступило в редакцию 30 марта 2022 г. После доработки 3 мая 2022 г. Принято к печати 5 мая 2022 г.

Фосфониевые соли и соответствующие им фосфабетаины – ω-фосфониоалканоаты – с большим количеством метиленовых звеньев получены на основе реакции трифенилфосфина и ω-бромалканкарбоновых кислот. Структура и состав продуктов реакции доказана с помощью ИК и ЯМР спектроскопии, рентгеноструктурного анализа, элементного анализа. Для ряда соединений изучена противомикробная активность и термическая стабильность.

Ключевые слова: фосфабетаин, ω-фосфониоалканоаты, третичный фосфин, ω-галогенкарбоновая кислота, фосфониевая соль

DOI: 10.31857/S0044460X2207006X, EDN: CPXHMO

Фосфониевые соли и фосфабетаины занимают важное место в органической и элементоорганической химии. Соли фосфония используются как прекурсоры в реакции Виттига [1], применяются для катализа межфазного переноса [2], используются в суперконденсаторах [3], как сенсибилизированные красители в солнечных элементах [4], ингибиторы коррозии [5]. Фосфониевые соли могут придавать полимерным материалам антимикробные свойства [6]. ω-Фосфониоалканоаты часто выступают в качестве лигандов в реакциях комплексообразования [7, 8].

Синтез, реакционная способность, а также биологическая активность фосфониевых солей и ω -фосфониоалканоатов интенсивно исследуются [9, 10, 11]. Предложен одностадийный метод синтеза фосфабетаинов, который основан на реакции нуклеофильного присоединения третичных фосфинов к непредельным карбоновым кислотам [12] (схема 1).

Схема 1.

$$R^{1}R^{2}{}_{2}P + R^{3}CH = C - COOH \longrightarrow R^{1}R^{2}{}_{2}PCHCCH_{2}OO^{-1}$$

$$R^{3}$$

$$R^{4}$$

 $R^1 = R^2 = Ph$, Bu, C_6H_{11} ; $R^1 = Me$, $R^2 = Ph$; $R^3 = H$, CH_3 , Ph, COOH; $R^4 = H$, CH_3 , CH_2COOH .

Схема 2.

$$Ph_{3}P + Hlg(CH_{2})_{n}COOH \longrightarrow [Ph_{3}P(CH_{2})_{n}COOH]Hlg^{-} \xrightarrow{NaOH} Ph_{3}P(CH_{2})_{n}COO^{-}$$

$$1a-11a \qquad 16-46, 96-116$$

n = 1 (1a, 6, 5a), 2 (2a, 6, 6a), 3 (3a, 6, 7a), 4 (4a, 6, 8a), 5 (9a, 6), 7 (10a, 6), 9 (11a, 6); Hlg = Cl (1a-4a), Br (5a-11a).

Этот метод синтеза имеет ряд ограничений. Во-первых, донорные заместители при кратной связи препятствуют протеканию реакции, и в качестве основного продукта реакции часто образуется фосфиноксид. Во-вторых, в результате реакции нуклеофильного присоединения третичных фосфинов к непредельным карбоновым кислотам невозможно получить фосфабетаины с более чем двумя метиленовыми группами из-за низкой поляризации двойной связи непредельной карбоновой кислоты, делающей невозможной нуклеофильную атаку третичного фосфина.

В связи с этим нами отработан синтез ω-фосфониоалканоатов с 5, 7 и 9 метиленовыми фрагментами между фосфониевым центром и карбоксилатной группой. Такие структуры обладают высокой биологической активностью. Длинные цепи липофильных заместителей обусловливают способность фосфониевых солей встраиваться в липидные слои биомембран патогенных микроорганизмов. Так как клеточные мембраны большинства бактерий заряжены отрицательно, они становятся мишенями для катионных биоцидов [13, 14]. Предполагается, что трифенилфосфониевый катион, обладающий высокой липофильностью за счет арильных заместителей, будет проникать в клеточную стенку бактерий и оказывать деструктивное воздействие на цитоплазматическую мембрану. В результате будет происходить утечка внутриклеточных компонентов и гибель клетки.

Ранее были синтезированы и охарактеризованы фосфониевые соли и фосфабетаины, в структуре которых находилось до четырех метиленовых звеньев [15]. Синтез проводили в две стадии. На первой стадии трифенилфосфин вовлекали в реакции нуклеофильного замещения с ω-галогенкарбоновыми кислотами и получали соответствующие фосфониевые соли. На второй стадии при добавлении 1 М. раствора гидроксида натрия происходило образование соответствующего фосфабетаина (схема 2).

Продолжительность синтеза фосфониевых солей на основе ω -хлоркарбоновых кислот в 2 раза больше в сравнении с ω -бромзамещенными, а выходы продуктов реакции ниже. Поэтому фосфониевые соли **9а–11а** и соответствующие им фосфабетаины **9б–116** получали из ω -бромгексановой, ω -бромоктановой и ω -бромдекановой кислот (схема 2).

Реакции проводили сплавлением на водяной бане: 64 ч при получении соединений 9а, 10а и 45 ч – соединения 11а. Строение солей 9а–11а доказано комплексом спектральных методов. Результаты РСА (рис. 1) однозначно подтверждают строение фосфониевой соли 9а. В табл. 1 приведены некоторые характеристики соединений 9а–11а. Соединения 9а и 10а – кристаллические вещества, т. пл. 205 и 114°С соответственно, а соль 11а – маслообразное вещество.

Несмотря на то, что синтез фосфониевых солей проводили без растворителя, выходы продуктов

Рис. 1. Общий вид молекулы (5-карбоксипентил)трифенилфосфонийбромида 9а в кристалле.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

N⁰	Выход, %	Т. пл, °С	ν, см ⁻¹		S N T
			v _{as} (COOH)	v _s (COOH)	0 _р , м. д.
9a	93	205	1704	1115	23.03
10a	86	114	1710	1110	23.11
11a	79	Масло	1722	1111	23.16

Таблица 1. Некоторые характеристики фосфониевых солей 9а-11а

Таблица 2. Некоторые характеристики фосфабетаинов 96-116

N⁰	Выход, %	Т. пл, °С	v, см ⁻¹		δ- м. п.
			v _{as} (COO ⁻)	v _s (COO⁻)	ор, м. д.
96	86	195–223	1559, 1587	1113	23.02
106	96	65	1558	1112	23.00
116	97	79	1558	1112	23.11

реакции составляли от 79 до 93%, причем выход уменьшался с увеличением числа метиленовых групп в бромкарбоновой кислоте.

Для отщепления аниона галогена и превращения фосфониевых солей **9а–11а** в фосфабетаины **96–116** использовали раствор гидроксида натрия. Реакции контролировали по фенолфталеину. Строение соединений доказано с помощью ИК и ЯМР спектроскопии, состав – с помощью элементного анализа. В табл. 2 приведены некоторые характеристики соединений **96–116**.

В ИК спектрах фосфабетаинов **96–116** наблюдалось исчезновение полосы поглощения валентных колебаний карбоксильной группы в области

Рис. 2. Дериватограмма фосфониевой соли 4а.

Рис. 3. Дериватограмма фосфабетаина 116.

1700 см⁻¹ и появление двух полос поглощения в области 1560 и 1340 см⁻¹, соответствующих карбоксилат-аниону.

Были проведены термогравиметрические исследования соединений **4a** и **116** (рис. 2, 3). Фосфониевая соль **4a** с 4 метиленовыми группами термически более стабильна. При нагревании до 300°С изменение массы составило всего 4.9%, а при 211.3°С наблюдался пик эндоэффекта температуры плавления. Фосфабетаин **116**, напротив, на протяжении всего нагревания терял небольшую массу. Это можно объяснить потерей влаги, появившейся у фосфабетаина **116** при хранении. О включении молекул воды и различных протонодонорных реагентов в структуру бетаинов сообщалось ранее [18].

Фосфониевые соли 7а, 9а–11а испытаны на биологическую активность в отношении патогенной и условно-патогенной микрофлоры человека и животных. Использовали музейные штаммы культур: *Escherichia coli* O55, *Staphylococcus aureus* 6538P, *Pseudomonas aeruginosa* ATCC 9027, *Candida albicans* ATCC 885653, *Bacillus cereus* ATCC 19637. Для изучения бактерицидной и антимикотической активности *in vitro* выбрали полученную ранее фосфониевую соль 7а с 3 метиленовыми звеньями, а также соединения 9а–11а. Полученные данные представлены в табл. 3.

По данным табл. 3, соединение 7а проявило слабовыраженную активность только в отношении грамположительных бактерий *B. cereus* и *S. aureus*, а соединение 9а с 5 метиленовыми группами не проявляло антимикотической и бактерицидной активности. Соединения 10а и 11а с 7 и 9 метиленовыми группами соответственно проявляли наивысшую активность по отношению к штаммам *B. cereus*, *S. aureus* и *Candida albicans*.

Следовательно, увеличение углеводородной цепи в фосфониевых солях приводит к увеличению их антибактериальной и антимикотической активности. То, что присутствие высших алкильных заместителей в структуре фосфониевых солей повышает их противомикробную активность, согласуется с ранее полученными данными [16, 17].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на ИК фурье-спектрометре PerkinElmer Spectrum Two. Спектры ЯМР зарегистрированы на приборе Bruker Avance III 400 Nanobay, рабочие частоты: 400 (¹H), 100.6 (¹³C) и 161.97 МГц (³¹Р). Элементный анализ (С, Н, N, S) проводили на анализаторе EuroEA3028-HT-OM Eurovector SpA (Италия). Образцы взвешивали на микровесах Sartorius CP2P (Германия) в оловянных капсулах. Для проведения количественных измерений и оценки полученных данных использовали программное обеспечение Callidus 4.1. Температуру плавления измеряли на приборе для определения температуры плавления Stuart SMP10.

Общая методика получения фосфониевых солей 9а–11а. Навески трифенилфосфина и ω-бромкарбоновых кислот в мольном соотношении 1:1 перемешивали без растворителя. Реакции проводили сплавлением полученной смеси при 100°С в течение 64 ч. Образующиеся кристаллы многократно промывали диэтиловым эфиром или гексаном и сушили при пониженном давлении.

(5-Карбоксипентил)трифенилфосфонийбромид (9а) получали из ω-бромгексановой кислоты. Выход 0.954 г (93%), беспветные кристаллы, т. пл. 205°С, растворимы в воде, ацетонитриле, хлороформе, этаноле. ИК спектр, v, см⁻¹: 493, 508, 531, 613, 690, 724, 745, 764, 795, 823, 839, 851, 929, 995, 1025, 1061, 1075, 1115, 1163, 1193, 1212, 1229, 1256, 1312, 1379, 1435, 1459, 1483, 1586, 1704, 2937, 3009. Спектр ЯМР ¹Н (D₂O), δ, м. д. (J, Гц): 1.28-1.43 м (4H, C²H₂C³H₂), 1.51 к (2H, C⁴H₂, *J* 7.4), 2.15 т (2H, C⁵<u>H</u>₂COOH, *J* 8.0), 3.12 т (2H, PC¹H₂, *J* 6.3), 7.44–7.78 м (15H, PhP). Спектр ЯМР ¹³С (D₂O), δ_C, м. д. (*J*, Гц): 21.11 д (РС¹Н₂, ¹*J*_{PC} 51.9), 21.29 д (С²H₂, ²*J*_{PC} 3.9), 23.36 (С⁴H₂), 29.10 д (С³H₂, ³*J*_{PC} 16.0), 33.21 (С⁵Н₂), 118.03 д (С^{*i*}, ¹*J*_{PC} 86.7), 129.97 д (С^{*м*}, ³*J*_{PC} 12.6), 133.39 д (С^{*n*}, ²*J*_{PC} 10.0), 134.90 д (С^{*o*}, ⁴*J*_{PC} 2.5), 178.44 (СООН). Спектр ЯМР ³¹Р (D₂O): δ_P 23.03 м. д. Найдено, %: С 62.97; Н 5.85; Р 6.65; Br 17.52. С₂₄Н₂₆BrO₂P. Вычислено, %: С 63.03; Н 5.73; P 6.77; Br 17.47.

(7-Карбоксигептил)трифенилфосфонийбромид (10а) получали из ω -бромоктановой кислоты. Выход 0.824 г (86%), бесцветные кристаллы, т. пл. 114°С, растворимы в воде, ацетонитриле, хлороформе, этаноле. ИК спектр, v, см⁻¹: 494, 511, 533, 625, 694, 724, 754, 763, 789, 823, 863, 995, 1110, 1162, 1204, 1223, 1272, 1317, 1340, 1417, 1438, 1464, 1484, 1587, 1710, 2864, 2935, 3050, 3284. Спектр ЯМР ¹Н (D₂O), δ, м. д. (*J*, Гц): 0.97–1.15 м (4H, C²H₂C³H₂), 1.31 м (4H, C⁴H₂C⁵H₂), 1.46 квинтет (2H, C⁶H₂, *J* 7.7), 2.13 т (2H, C⁷<u>H</u>₂COOH, *J* 8.0), 3.09 т (2H, PC¹H₂, *J* 7.0), 7.39–7.84 м (15H, PhP). Спектр ЯМР ¹³C (D₂O), $\delta_{\rm C}$, м. д. (*J*, Гц): 21.11 д (PC¹H₂, ¹*J*_{PC} 52.1), 23.07 (C⁶H₂), 23.94 д (C²H₂, ²*J*_{PC} 3.3), 27.31 (C⁵H₂), 27.56 (C⁴H₂), 29.34 д (C³H₂, ³*J*_{PC} 15.5), 33.61 (C⁷H₂), 118.15 д (Cⁱ, ¹*J*_{PC} 87.1), 129.93 д (C^{*M*}, ³*J*_{PC} 12.6), 133.40 д (C^{*n*}, ²*J*_{PC} 10.0), 134.85 (C^{*o*}), 180.42 (COOH). Спектр ЯМР ³¹P (D₂O): $\delta_{\rm P}$ 23.11 м. д. Найдено, %: C 64.78; H 6.05; P 6.16; Br 16.58. C₂₆H₃₀BrO₂P. Вычислено, %: C 64.34; H 6.23; P 6.38; Br 16.46.

(9-Карбоксинонил)трифенилфосфонийбромид (11а) получали из ω-бромдекановой кислоты. Выход 0.784 г (79%), масло, растворимо в воде, ацетонитриле, хлороформе, этаноле. ИК спектр, v, cm⁻¹: 507, 531, 615, 689, 722, 746, 791, 932, 996, 1026, 1111, 1163, 1316, 1383, 1437, 1485, 1587, 1722, 2855, 2927, 3388. Спектр ЯМР ¹Н (D₂O), б, м. д. (J, Гц): 0.8–1.06 м (8H, C⁴H₂C⁵H₂C⁶H₂C⁷H₂), 1.22 м (4H, C²H₂C³H₂), 1.38 квинтет (2H, C⁸H₂, J7.6), 2.07 т (2H, С⁹<u>Н</u>₂СООН, *J* 8.1), 3.01 т (2H, PC¹H₂, *J* 7.4), 7.39–7.71 м (15H, PhP). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д. (*J*, Гц): 20.44 (С²Н₂), 20.71 д (РС¹Н₂, ¹*J*_{PC}) 48.1), 22.64 (C⁸H₂), 26.65 (C⁴H₂C⁵H₂C⁶H₂), 26.70 ($C^{7}H_{2}$), 28.21 д ($C^{3}H_{2}$, $^{3}J_{PC}$ 15.8), 32.40 ($C^{9}H_{2}$), 116.17 д (Cⁱ, ${}^{1}J_{PC}$ 85.8), 128.61 д (C^M, ${}^{3}J_{PC}$ 12.4), 131.61 д (С^{*n*}, ²*J*_{PC} 9.8), 133.20 д (С^{*o*}, ⁴*J*_{PC} 3.0), 175.43 (СООН). Спектр ЯМР ³¹Р (D₂O): δ_P 23.16 м. д.

Общая методика получения фосфабетаинов 96–116. К растворенной в ацетонитриле навеске фосфониевой соли по каплям прибавляли 1 М. раствор гидроксида натрия. Ход реакции контролировали по фенолфталеину. Растворитель отгоняли в вакууме. Осадок многократно промывали диэтиловым эфиром Полученные соединения перекристаллизовывали из этанола и сушили в вакууме.

6-(Трифенилфосфонио)гексаноат (96) получали из (5-карбоксипентил)трифенилфосфонийбромида **9a**. Выход 0.388 г (86%), т. пл. 195–223°С, растворим в воде, хлороформе, ацетонитриле, этаноле. ИК спектр, v, см⁻¹: 459, 508, 532, 551, 571, 620, 648, 691, 722, 747, 818, 858, 923, 996, 1012, 1044, 1073, 1113, 1180, 1242, 1347, 1403, 1436, 1485, 1559, 1587, 1666 (H₂O), 2251, 2864, 2935, 3172, 3313 (H₂O). Спектр ЯМР ¹Н (D₂O), δ, м. д. (*J*, Гц) (здесь и далее нумерация метиленовых групп дана от атома Р): 1.28–1.43 м (4H, C³H₂C⁴H₂), 1.52 к (2H, C²H₂, *J* 7.3), 1.98 т (2H, C⁵H₂COOH, *J* 6.7), 3.12 т (2H, PC¹H₂, *J* 8.0), 7.44–7.78 м (15H, PhP). Спектр ЯМР ¹³С (D₂O), $\delta_{\rm C}$, м. д. (*J*, Гц): 21.19 д (PC¹H₂, ¹*J*_{PC} 51.7), 21.42 д (C³H₂, ³*J*_{PC} 3.8), 25.00 (C⁴H₂), 29.69 д (C²H₂, ²*J*_{PC} 16.4), 37.12 (C⁵H₂), 118.12 д (C^{*i*}, ¹*J*_{PC} 86.7), 129.94 д (C^o, ²*J*_{PC} 12.6), 133.41 д (C^{*m*}, ³*J*_{PC} 10.0), 134.84 д (C^{*n*}, ⁴*J*_{PC} 2.6), 183.34 (COOH). Спектр ЯМР ³¹P (D₂O): $\delta_{\rm P}$ 23.02 м. д. Найдено, %: С 75.10; Н 6.97; Р 8.67. С₂₄H₂₅O₂P. Вычислено, %: С 76.58; Н 6.69; Р 8.23.

8-(Трифенилфосфонио)октаноат (10б) получали из (7-карбоксигептил)трифенилфосфонийбромида 10a. Выход 0.386 г (96%), т. пл. 65°С, растворим в воде, хлороформе, ацетонитриле, этаноле. ИК спектр, v, см-1: 507, 532, 689, 722, 747, 996, 1027, 1112, 1163, 1315, 1404, 1436, 1485, 1558, 1667 (Н₂О), 2855, 2925, 3054, 3390 (Н₂О). Спектр ЯМР ¹Н (D₂O), б, м. д. (*J*, Гц): 0.97–1.09 м (4Н, С⁴H₂C⁵H₂), 1.14–1.33 м (4H, C²H₂C³H₂), 1.43–1.45 м (2H, C⁶H₂), 1.90–2.04 м (2H, C⁷<u>H</u>₂COOH), 3.00– 3.09 (2H, PC¹H₂), 7.3–7.83 м (15H, PhP). Спектр ЯМР ¹³С (D₂O), δ_C, м. д. (*J*, Гц): 21.08 д (PC¹H₂, ¹*J*_{PC} 51.4), 21.50 д (C³H₂, ³J_{PC} 4.3), 25.57 (C⁴H₂), 27.59 $(C^{5}H_{2}), 28.19 (C^{6}H_{2}), 29.51 \text{ g} (C^{2}H_{2}, {}^{2}J_{PC} 15.8), 37.41$ (C⁷H₂), 118.06 д (C^{*i*}, ¹J_{PC} 87.0), 130.04 д (C^{*o*}, ²J_{PC} 2.5), 133.29 д (С^{*n*}, ³*J*_{PC} 9.9), 134.93 д (С^{*n*}, ⁴*J*_{PC} 3.0), 183.65 (СООН). Спектр ЯМР ³¹Р (D₂O): δ_P 23.0 м. д. Найдено, %: С 75.10; Н 6.97; Р 8.67. С₂₆Н₂₉О₂Р. Вычислено, %: С 77.20; Н 7.23; Р 7.66.

10-(Трифенилфосфонио)деканоат (11б) получали из (9-карбоксинонил)трифенилфосфонийбромида 11a. Выход 0.417 г (97%), т. пл. 79°С, растворим в воде, хлороформе, ацетонитриле, этаноле. ИК спектр, v, см⁻¹: 507, 531, 689, 722, 747, 791, 929, 996, 1027, 1112, 1161, 1188, 1317, 1417, 1436, 1485, 1558, 1666 (H₂O), 2852, 2922, 3054, 3401 (H₂O). Спектр ЯМР ¹Н (D₂O), б, м. д. (*J*, Гц): 0.89–1.06 м (8H, C⁵H₂–C⁸H₂), 1.28 м (4H, C³H₂C⁴H₂), 1.41 квинтет (2H, C²H₂, J 7.8), 1.96 т (2H, С⁹<u>Н</u>₂СООН, *J* 7.5), 3.07 т (2H, PC¹H₂, *J* 7.9), 7.42–7.85 м (15Н, PhP). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д. (*J*, Гц): 21.11 д (РС¹Н₂, ¹*J*_{PC} 51.7), 21.48 д $(C^{3}H_{2}, {}^{2}J_{PC} 4.4), 25.77 (C^{4}H_{2}), 27.69 (C^{5}H_{2}), 28.02$ (C⁶H₂), 28.26 (C⁷H₂), 28.60 (C⁸H₂), 29.50 д (C²H₂, ²J_{PC} 15.5), 37.57 (С⁹Н₂), 118.11 д (С^{*i*}, ¹J_{PC} 86.5), 130.03 д (С°, ${}^{2}J_{PC}$ 12.5), 133.3 д (С^{*м*}, ${}^{3}J_{PC}$ 9.9), 134.94 д (Сⁿ, ⁴*J*_{PC} 3.2), 183.86 (СООН). Спектр ЯМР ³¹Р (D₂O): δ_P 23.11 м. д. Найдено, %: С 78.02; Н 7.83; Р 7.05. С₂₈Н₃₃О₂Р. Вычислено, %: С 77.75; Н 7.69; Р 7.16.

Рентгеноструктурный анализ кристаллов соединения 9а проводили на четырехкружном дифрактометре Rigaku XtaLAB Synergy S с детектором HyPix и микрофокусной рентгеновской трубкой PhotonJet с использованием излучения СиК_а (1.54184 Å) при 100 К. Полученные данные проиндексированы и интегрированы с помощью пакета программ CrysAlisPro. Учет поглощения проводили с использованием модуля ABSPACK: численная коррекция поглощения на основе гауссовского интегрирования по многогранной кристаллической модели и эмпирическая коррекция поглощения на основе сферических гармоник в соответствии с симметрией кристалла. Модуль GRAL использовали для анализа систематических затуханий и определения пространственной группы симметрии. Структура решена прямым методом и уточнена методом наименьших квадратов с использованием SHELXL [19, 20]. Все неводородные атомы были уточнены анизотропно. Атомы водорода помещены в расчетные положения и уточнены в модели наездника. Изображения сгенерированы с помощью программы Mercury 4.1 [21]. Кристаллы получены методом медленного испарения.

Кристаллографические данные и параметры уточнения структуры **9а** (ССDС 2162991), $C_{24}H_{26}BrO_2P$ (*M* 457.33 Да), моноклинная сингония, пространственная группа $P2_1/n$ (по. 14); *а* 7.68470(10) , *b* 17.4832(3), *c* 16.0899(3) Å, β 90.082(2)°, *V* 2161.73(6) Å³, *Z* 4, *T* 100.0(3) K, $\mu(CuK_{\alpha})$ 3.416 мм⁻¹, $d_{\rm Bыч}$ 1.405 г/см³. Всего измерено 26584 отражений (7.466° $\leq 2\theta \leq 153.576°$), 4484 уникальных отражений ($R_{\rm int}$ 0.0454, $R_{\rm sigma}$ 0.0267), R_1 0.0286 [$I > 2\sigma(I)$] и wR_2 0.0750.

Биологическую активность соединений 7а, 9а-11а исследовали с использованием музейных штаммов культур: Escherichia coli O55, *Staphylococcus* aureus 6538P, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 885653, Bacillus cereus ATCC 19637. Питательная среда для грибов Candida albicans - Сабуро, для остальных микроорганизмов - среда Мюллера-Хинтона. Суточные культуры микроорганизмов доводили до плотности 0.5 по стандарту мутности МакФарланда (1.5×10⁸ КОЕ/мл), затем наноси-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

ли на поверхность питательных сред. На поверхности сред в чашках Петри просекали лунки для препаратов и контрольных соединений и в каждую лунку вносили каплю исследуемого препарата в концентрации 1%. Чашки инкубировали 24–48 ч при 35°C.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Галкина Ирина Васильевна, ORCID: https:// orcid.org/0000-0002-7899-555X

Романов Семён Романович, ORCID: https:// orcid.org/0000-0002-9270-8932

Герасимов Александр Владимирович, ORCID: https://orcid.org/0000-0003-4213-9724

Исламов Даут Ринатович, ORCID: https://orcid. org/0000-0002-5988-1012

Бахтиярова Юлия Валерьевна, ORCID: https:// orcid.org/0000-0002-1865-274X

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-26-00096).

СПИСОК ЛИТЕРАТУРЫ

- Wan M., Li B., Lin S. // Chin. J. Chem. Eng. 2007. Vol. 38. P. 451. doi 10.1016/J.JCICE.2007.08.005
- Noroozi-Shad N., Gholizadeh M., Sabet-Sarvestani H. // J. Mol. Struct. 2022. Vol. 1257. P. 13628. doi 10.1016/j. molstruc.2022.132628
- Zhou H., Wang G.X., Zhang W.Z., Lu X.B. // ACS Catal. 2015. Vol. N 11. P. 6773. doi 10.1021/acscatal.5b01409
- Levin V.V., Trifonov A.L., Zemtsov A.A., Struchkova M.I., Arkhipov D.E., Dilman A. // Org. lett. 2014. Vol. 16. N 23. P. 6256. doi 10.1021/ol503225s
- Liu Y., Zhang, K., Huang Y., Pan S., Liu X.Q., Yang Y., Xu X.H. // Chem. Commun. 2016. Vol. 5. N 35. P. 5969. doi 10.1039/C6CC00666C
- Kenawy E. R., Abdel-Hay F.I., El-Shanshoury A.E., El-Newehy M.H. // J. Polym. Sci. (A). 2002. Vol. 40. P. 2384. doi 10.1002/POLA.10325
- Davletshina N.Y., Khabibullina A., Davletshin R., Ivshin K., Kataeva O., Cherkasov R. // J. Organometal. Chem. 2021. Vol. 951. P. 121996. doi 10.1016/j. jorganchem.2021.121996
- Galkina I., Tufatullin A., Krivolapov D., Bakhtiyarova Y., Chubukaeva D., Stakheev V., Galkin V., Cherkasov R., Büchnerc B., Kataeva O. // CrystEngCommun. 2014. Vol. 16. P. 9010. doi 10.1039/c4ce01361a

- Романов С.Р., Бахтиярова Ю.В., Морозов М.В., Каратаева Ф.Х., Клочков, В.В., Галкина И.В., Галкин В.И. // ЖОХ. 2021. Т. 91 Вып. 7. С. 1068; Romanov S.R., Bakhtiyarova Y.V., Morozov M.V., Karataeva F.K., Klochkov V.V., Galkina I.V., Galkin V.I. // Russ. J. Gen. Chem. 2021. Vol. 9. N 7. P. 1333. doi 10.1134/S1070363221070112
- Romanov S.R., Dolgova Y.V., Morozov M.V., Ivshin K.A., Semenov D.A., Bakhtiyarova Y.V., Galkin V.I. // Mendeleev Commun. 2021. Vol. 3. N 2. P. 242. doi 10.1016/j.mencom.2021.03.032
- Бахтиярова Ю.В., Морозов М.В., Романов С.Р., Миннуллин Р.Р., Шулаева М.П., Поздеев О.К., Галкин В.И. // Изв. АН. Сер. хим. 2020. Vol. 6. N 8. P. 1569; Bakhtiyarova Y.V., Morozov M.V., Romanov S.R., Minnullin R.R., Shulaeva M.P., Pozdeev O.K., Galkin V.I. // Russ. Chem. Bull. 2020. Vol. 69. N 8. P. 1569. doi 10.1007/s11172-020-2936-y
- Galkin V.I., Bakhtiyarova Yu.V., Sagdieva R.I., Galkina I.V., Cherkasov R.A. // Heteroatom Chem. 2006. Vol. 17. P. 557. doi 10.1002/hc.20276
- Lambert P.A., Fraise A.P., Maillard J.Y., Sattar S.A. Mechanisms of action of microbicides. Principles and Practice of Disinfection, Preservation and Sterilization. Oxford: Wiley-Blackwell, 2013. P. 95.
- Xue Y., Xiao H., Zhang Y. // Int. J. Mol. Sci. 2015. Vol. 16. N 2. P. 3626. doi 10.3390/ijms16023626
- Romanov S.R., Aksunova A.F.F., Islamov D.R., Dobrynin A.B., Krivolapov D.B., Kataeva O.N., Galkin V.I. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2016. Vol. 191. N 11–12. P. 1637. doi 10.1080/10426507.2016.1223661
- Minnullin R.R., Bakhtiyarova Y.V., Morozov M.V., Bakhtiyarov D.I., Shulaeva M.P., Oskar K.P., Galkin V.I. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2019. Vol. 194. N 4-6. P. 476. doi 10.1080/10426507.2018.1539995
- Galkina I.V., Aksunova A.F., Bakhtiyarov D.I., Shulaeva M.P., Pozdeev O.K., Egorova S.N., Galkin V.I. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2016. Vol. 191. N 11–12. P. 1676. doi 10.1080/10426507.2016.1227821
- Galkin V.I., Bakhtiyarova Y.V., Polezhaeva N.A., Cherkasov R.A., Krivolapov D.B., Gubaidullin A.T., Litvinov I.A. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1999. Vol. 147. N 1. P. 91. doi 10.1080/10426509908053526
- Sheldrick G.M. // Acta Crystallogr. 2015. Vol. 71. P. 3. doi 10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. 2007. Vol. 64.
 P. 112. doi 10.1107/S2053229614024218
- Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., Van De Streek J. // J. Appl. Crystallogr. 2006. Vol. 39. P. 453. doi 10.1107/ S002188980600731X

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

Reactions of Triphenylphospine with ω-Bromoalkanecarboxylic Acids

S. R. Romanov^{*a*,*}, A. I. Khafizova^{*a*}, A. V. Gerasimov^{*a*}, D. R. Islamov^{*a*}, M. P. Shulaeva^{*b*}, O. K. Pozdeev^{*b*}, I. V. Galkina^{*a*}, V. I. Galkin^{*a*}, and Yu. V. Bakhtiyarova^{*a*}

^a Kazan (Volga Region) Federal University, Kazan, 420008 Russia ^b Kazan State Medical Academy, Kazan, 420012 Russia *e-mail: Semyonromanov@yandex.ru

Received March 30, 2022; revised May 3, 2022; accepted May 5, 2022

Phosphonium salts and their corresponding phosphabetaines – ω -phosphonioalkanoates – with a large number of methylene units were obtained on the basis of the reaction of triphenylphosphine and ω -bromoalkanecarboxylic acids. Structure and composition of the reaction products was proved using IR and NMR spectroscopy, X-ray diffraction analysis, and elemental analysis data. For a number of compounds, antimicrobial activity and thermal stability were studied.

Keywords: phosphabetaine, ω -phosphonioalkanoates, tertiary phosphine, ω -halocarboxylic acid, phosphonium salt