УДК 547.563

НОВЫЕ БРОМЗАМЕЩЕННЫЕ СИММЕТРИЧНЫЕ И НЕСИММЕТРИЧНЫЕ КАРКАСНЫЕ ФОСФОНАТЫ

© 2022 г. Ю. М. Садыкова^{*a*}, В. В. Сенникова^{*b*}, А. В. Залалтдинова^{*a*}, А. Р. Бурилов^{*a*,*}, М. А. Пудовик^{*a*}

^а Институт органической и физической химии имени А. Е. Арбузова, Федеральный исследовательский центр «Казанский научный центр Российской академии наук», ул. Академика Арбузова 8, Казань, 420088 Россия ^b Казанский национальный исследовательский технологический университет, ул. К. Маркса 68, Казань, 420015 Россия *e-mail: burilov@iopc.ru

> Поступило в редакцию 24 марта 2022 г. После доработки 4 мая 2022 г. Принято к печати 5 мая 2022 г.

При бромировании симметричных и несимметричных каркасных фосфонатов получены новые монои дибромпроизводные. Структура бромированных каркасных фосфонатов установлена на основании данных ИК, ЯМР ³¹Р, ¹Н, ¹³С, ИК спектроскопии и масс-спектрометрии.

Ключевые слова: реакция бромирования, каркасные фосфонаты, каркасные бромфосфонаты

DOI: 10.31857/S0044460X22070113, EDN: CQXAAG

Бромирование – важнейший способ функционализации связи С-Н в ароматическом кольце [1]. Бромированные ароматические соединения используются в качестве исходных для получения металлоорганических соединений, а также играют важную роль в реакциях кросс-сочетания [2], катализируемых такими металлами как медь, никель и железо [3] и особенно палладий, катализаторы на основе которого отличаются простотой синтеза и приводят к высоким выходам образующихся соединений. Среди реакций кросс-сочетания наиболее востребована реакция Сузуки [4], в результате которой образуются различные производные биарилов, используемые как полупродукты в фармацевтической промышленности [5-7], при получении гербицидов [8], полимеров и т. д.

Доступность ключевых бромзамещенных ароматических соединений определяет молекулярную структуру конечного продукта в реакции Сузуки. В результате каскадной реакции 2-этоксивинилфосфонилдихлорида с различными фенолами нами был получен неизвестный ранее класс соединений – каркасные фосфонаты [9–12]. Присутствие в структуре этих соединений ароматических фрагментов открывает возможность проведения на их основе реакции Сузуки, образования углерод-углеродных связей и получения новых рецепторных систем. Поэтому синтез новых типов каркасных фосфонатов с атомами брома в ароматическом ядре с целью дальнейшего использования их в реакции Сузуки – актуальная задача.

Нами проведены реакции симметричных каркасных фосфонатов **1a**, **б** на основе резорцина и 2-метилрезорцина с молекулярным бромом в хлороформе (схема 1). В зависимости от соотношения исходных реагентов были получены моно- (**2**) и дибромзамещенные (**3a**, **б**) каркасные фосфонаты, которые могут служить удобными платформами для создания на их основе макроциклических соединений. Ход реакции контролировали методами ЯМР ¹Н, масс-спектрометрии (MALDI-TOF), элементного анализа реакционной массы (осадка и раствора).

 $R = H(a), CH_3(6).$

С учетом полученных данных были оптимизированы экспериментальные условия бромирования каркасных фосфонатов, позволившие получать соединения 2, 3а, б с высокими выходами. Введение в реакцию с каркасными фосфонатами 1а, б молекулярного брома в соотношении 1:1 приводит к образованию продуктов монобромирования. В индивидуальном виде нам удалось выделить только монобромзамещенный каркасный фосфонат 2 на основе 2-метилрезорцина. Исчерпывающее бромирование каркасных фосфонатов 1а, б при соотношении реагентов 4:1 позволяет ввести в молекулу два атома брома и получить соединения 3а, б с выходами 70 и 81% соответственно. Реакция несимметричного каркасного фосфоната 4 с молекулярным бромом протекает при соотношении регентов 1:4 в среде хлороформа и приводит к образованию соединения 5 с выходом 83% (схема 2). Структура и состав синтезированных симметричных и несимметричных бромзамещенных каркасных фосфонатов установлены на основании данных ЯМР ¹H, ¹³C, ³¹Р и масс-спектрометрии (MALDI-TOF).

Таким образом, нами получены новые моно- и дибромпроизводные симметричных и несимметричных каркасных фосфонатов. Присутствие в молекуле каркасных фосфонатов атомов брома

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

открывает возможности создания новых типов рецепторных систем с использованием реакции Сузуки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н, ¹³С и ³¹Р зарегистрированы на спектрометрах Bruker Avance-400 и Bruker Avance-600, рабочие частоты: 399.93 и 600 МГц (¹Н), 100.6 МГц (¹³С), 162 и 243 МГц (³¹Р). Внутренний стандарт – сигналы атомов растворителя ДМСО- d_6 . Химический сдвиг фосфора (³¹Р) измеряли относительно сигнала внешнего стандарта – H₃PO₄. Масс-спектры MALDI-TOF записаны на масс-спектрометре Bruker Ultraflex III. Для записи использовали пластиковую и металлическую пластины. В качестве матриц применяли 2,5-дигидроксибензойную кислоту и *n*-нитроанилин. Температуры плавления определяли на приборе Stuart SMP10.

2-Бром-3,9-дигидрокси-4,8-диметил-12Н-6,12-метанодибензо[d,g][1,3,2]диоксафосфоцин-6-оксид (2). К суспензии 0.1 г (0.3 ммоль) соединения 16 в 2 мл CHCl₃ прибавляли 0.015 мл (0.3 ммоль) Br₂. Реакционную массу перемешивали 20 ч при комнатной температуре, образовавшийся осадок отфильтровывали, промывали CHCl₃, и сушили в вакууме до постоянной массы. Выход 0.091 г (76%), светло-коричневый порошок, т. пл. >300°С. Спектр ЯМР ¹Н (399.93 МГц), б, м. д. (*J*, Гц): 2.00 с (3H, CH₃), 2.10 с (3H, CH₃), 2.55–2.69 м (2H, PCH₂), 4.49–4.72 м (1H, PCH₂C<u>H</u>), 6.50 д (1H_{Ar}, ³J 8.5), 7.05 д (1H_{Ar}, ³J 8.1), 7.62 с (1H_{Ar}), 9.24-9.46 уш. с (ОН), 9.46-9.58 уш. с (ОН). Спектр ЯМР ¹³С (100.6 МГц), δ_C, м. д, (*J*, Гц): 8.99, 10.35, 19.70 д (РСН₂, ¹*J*_{PC} 111.0), 20.47 д (¹*J*_{PC} 111.1 Гц), 106.11, 110.81, 113.69 д (²J_{PC} 7.8), 117.05 д (²J_{PC} 7.7), 119.61 д (³J_{PC} 11.0), 121.53 д (³J_{PC} 11.1), 125.78, 128.77, 148.90 д (²J_{PC} 7.5), 149.76 д (²J_{PC} 7.5), 152.20, 155.87. Спектр ЯМР ³¹Р (243 МГц): δ_Р 14.0 м. д. Масс-спектр (MALDI-TOF), *m/z* (*I*_{отн}, %): 399 (100) $[M + H]^+$.

2,10-Дибром-3,9-дигидрокси-12*H***-6,12-метанодибензо[***d***,***g***][1,3,2**]диоксафосфоцин-6-оксид (За) получали аналогично из 0.33 г (1.1 ммоль) соединения **1а** и 0.2 мл (4.4 ммоль) брома. Выход 0.34 г (70%), светло-коричневый порошок, т. пл. >300°С. Спектр ЯМР ¹Н (399.93 МГц), δ, м. д. (*J*, Гц): 2.77

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022

д. д (2H, PCH₂, ² J_{PH} 16.3, ³ J_{HH} 3.5), 4.7 д. т (1H, PCH₂C<u>H</u>, ³ J_{PH} 35.4, ³ J_{HH} 6.4), 6.6 с (2H_{Ar}), 7.8 с (2H_{Ar}). Спектр ЯМР ³¹Р (243 МГц): δ_{P} 14.0 м. д. Масс-спектр (MALDI-TOF), m/z (I_{OTH} , %): 449 (50) $[M + H]^+$, 471 (100) $[M + Na]^+$.

2,10-Дибром-3,9-дигидрокси-4,8-диметил-12*H***-6,12-метанодибензо[***d***,***g***][1,3,2]диоксафосфоцин-6-оксид (36) получали аналогично из 0.35 г (1.1 ммоль) соединения 16 и 0.23 мл (4.4 ммоль) брома. Выход 0.42 г (81%), светло-коричневый порошок, т. пл. >300°С. Спектр ЯМР ¹Н (399.93 МГц), \delta, м. д. (***J***, Гц): 2.11 с (6H, CH₃), 2.66 д. д (2H, PCH₂, ²***J***_{PH} 12.7, ³***J***_{HH} 3.5), 4.67 д. т (1H, PCH₂C<u>H</u>, ³***J***_{PH} 36.0, ³***J***_{HH} 7.5), 7.63 с (2H_{Ar}). Спектр ЯМР ¹³С (100.6 МГц), \delta_{\rm C}, м. д. (***J***, Гц): 10.37, 19.72 д (PCH₂, ¹***J***_{PC} 110.7), 106.14, 117.07 д (²***J***_{PC} 7.5), 121.55 д (³***J***_{PC} 11.2), 128.79, 148.93 д (²***J***_{PC} 7.2), 152.23. Спектр ЯМР ³¹Р (243 МГц: \delta_{\rm P} 13.9 м. д. Macc-спектр (MALDI-TOF),** *m/z* **(***I***_{отн}, %): 477 (80) [***M* **+ H]⁺, 499 (100) [***M* **+ Na]⁺.**

2,10-Дибром-9-гидрокси-1,3,4,8-тетраметил-12*H*-6,12-метанодибензо[*d*,*g*][1,3,2]диоксафосфоцин-6-оксид (5) получали аналогично из 0.13 г (0.4 ммоль) соединения 4 и 0.08 мл (1.6 ммоль) брома; время реакции – 10 ч. Выход 0.16 г (83%), светло-коричневый порошок, т. пл. >300°С. Спектр ЯМР ¹Н (600.13 МГц), δ, м. д. (*J*, Гц): 2.10 с (3Н, CH₃), 2.20 c (3H, CH₃), 2.3 c (3H, CH₃), 2.6 c (3H, CH₃), 2.67 м (2H, PCH₂), 5.2 д. т (1H, PCH₂CH, ³*J*_{PH} 34.4, ³*J*_{HH} 7.6), 7.4 с (1H_{Ar}). Спектр ЯМР ¹³С (100.6 МГц), δ_C, м. д. (*J*, Гц): 10.40, 13.65, 19.59, 20.33, 19.96 д (¹*J*_{PC} 111.6), 21.27, 21.81, 106.00, 117.37 д (²*J*_{PC} 7.5), 120.20 д (³*J*_{PC} 12.4), 123.85, 125.66 д (²*J*_{PC} 7.3), 125.83 д (²*J*_{PC} 8.4), 128.75, 132.83, 137.27, 148.96 д (²*J*_{PC} 8.2 Гц), 149.32 д (²*J*_{PC} 7.2 Гц), 152.44. Спектр ЯМР ³¹Р (243 МГц): δ_Р 13.7 м. д. Масс-спектр (MALDI-TOF), *m/z* (*I*_{отн}, %): 489 $(50) [M + H]^+, 511 (100) [M + Na]^+.$

ИНФОРМАЦИЯ ОБ АВТОРАХ

Садыкова Юлия Масхутовна, ORCID: https:// orcid.org/0000-0003-2093-2860

Залалтдинова Алена Владимировна, ORCID: https://orcid.org/0000-0002-4822-7330

Бурилов Александр Романович, ORCID: https:// orcid.org/0000-0003-2938-7352

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 20-03-00118).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Saikia I., Borah A.J., Phukan P. // Chem. Rev. 2016. Vol. 116. P. 6837. doi 10.1021/acs.chemrev.5b00400
- Gholinejad M., Naghshbandi Z., Nájera C. // ChemCatChem. 2019. Vol. 11. P. 1792. doi 10.1002/ cctc.201802101
- Jana R., Pathak T.P., Sigman M.S. // Chem. Rev. 2011. Vol. 111. P. 1417. doi 10.1021/cr100327p
- Suzuki A. // Angew. Chem. Int. Ed. 2011. Vol. 50. P. 6722. doi 10.1002/anie.201101379
- Bringmann G., Rüdenauer S., Bruhn T., Benson L., Brun R. // Tetrahedron. 2008. Vol. 64. P. 5563. doi 10.1016/j.tet.2008.03.087

- Bouthenet E., Oh K-B., Park S., Nagi N.K., Lee H.-S., Matthews S.E. // Bioorg. Med. Chem. Lett. 2011. Vol. 11. P. 7142. doi 0.1016/j.bmcl.2011.09.072
- Gribble G.W. // Chem. Soc. Rev. 1999. Vol. 28. P. 335. doi 10.1039/A900201D
- Devendar P., Qu R.-Y., Kang W-M., He B., Yang G-F. // J. Agric. Food Chem. 2018. Vol. 66. P. 8914. doi 10.1021/acs.jafc.8b03792
- Sadykova Yu.M., Knyazeva I.R., Burilov A.R., Pudovik M.A., Dobrynin A.B., Litvinov I.A., Sinyashin O.G. // Heteroatom Chem. 2011. Vol. 22. N 1. P. 1. doi 10.1002/ hc.20646
- Sadykova Yu.M., Dalmatova N.V., Voronina Yu.K., Burilov A.R., Pudovik M.A., Sinyashin O.G. // Heteroatom Chem. 2014. Vol. 25. N 1. P. 55. doi 10.1002/hc.21135
- Садыкова Ю.М., Залалтдинова А.В., Смаилов А.К., Трофимова Л.М., Воронина Ю.К., Бурилов А.Р., Пудовик М.А. // ХГС. 2020. Т. 56. С. 1605; Sadykova Y.M., Zalaltdinova A.V., Smailov A.K., Trofimova L.M., Voronina J.K., Burilov A.R., Pudovik M.A. // Chem. Heterocycl. Compd. 2020. Vol. 56. P. 1605. doi 10.1007/s10593-020-02856-5
- Babouri R., Traore L., Bekro Y.A., Matveeva V.I., Sadykova Yu.M., Voronina J.K., Burilov A.R., Ayad T., Volle J.N., Virieux D., Pirat J.L. // Org. Lett. 2019. Vol. 21. P.45. doi 10.1021/acs.orglett.8b03474

New Bromine-Containing Symmetrical and Unsymmetrical Cage Phosphonates

Yu. M. Sadykova^a, V. V. Sennikova^b, A. V. Zalaltdinova^a, A. R. Burilov^{a,*}, and M. A. Pudovik^a

^aArbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420088 Russia

> ^b Kazan National Research Technological University, Kazan, 420015 Russia *e-mail: burilov@iopc.ru

Received March 24, 2022; revised May 4, 2022; accepted May 5, 2022

As a result of brominating of symmetrical and unsymmetrical cage phosphonates, new mono- and dibromo-containing derivatives were obtained. Composition and structure of all new bromine-containing symmetrical and unsymmetrical cage phosphonates were confirmed according to ¹H, ¹³C and ³¹P NMR, IR spectroscopy and mass spectrometry data.

Keywords: bromination reaction, cage phosphonates, cage bromo-phosphonates

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 7 2022