УДК 547.1'181.54:547.791.7

НЕСИММЕТРИЧНЫЙ ТРИПОДАЛЬНЫЙ ФОСФИНОКСИД С ТРИАЗОЛЬНЫМИ ГРУППАМИ: СИНТЕЗ И МОЛЕКУЛЯРНАЯ СТРУКТУРА

© 2022 г. О. В. Быховская^{*a*}, И. Ю. Кудрявцев^{*a*,*}, Т. В. Баулина^{*a*}, М. П. Пасечник^{*a*}, А. В. Вологжанина^{*a*}, А. Г. Матвеева^{*a*}, А. А. Моисеева^{*a*}, В. К. Брель^{*a*}

Институт элементоорганических соединений имени А. Н. Несмеянова Российской академии наук, ул. Вавилова 28, Москва, 119991 Россия *e-mail: zaq@ineos.ac.ru

> Поступило в редакцию 12 апреля 2022 г. После доработки 12 апреля 2022 г. Принято к печати 19 мая 2022 г.

Реакцией Мицунобу трис(2-гидроксифенил)фосфиноксида с 3-бутин-1-олом получен бис[2-(3"-бутинилокси)фенил](2'-гидроксифенил)фосфиноксид, который клик-реакцией с PhN₃ превращен в соответствующий триазол, на основе которого при взаимодействии с пропаргилбромидом и PhN₃ получен несимметричный триподальный лиганд, содержащий три 1,2,3-триазольные группы в молекуле. Строение последнего установлено методом рентгеноструктурного анализа.

Ключевые слова: триподальные лиганды с 1,2,3-триазольными группами, функционализированные триарилфосфиноксиды, реакция Мицунобу

DOI: 10.31857/S0044460X2208008X, EDN: IOUXHD

Политопные триподальные лиганды с 1,2,3-триазольными фрагментами в боковых цепях стали доступны в последнее время благодаря методам клик-химии. Они представляют интерес в качестве лигандов, способных связывать катионы d- и f-элементов [1-4], органические и неорганические анионы [5-8] и могут быть использованы в качестве сенсоров и рецепторов [9-15]. Эти лиганды также обладают биологической активностью [16-18] и способностью к гелеобразованию [19]. Комплексы таких лигандов обладают рядом полезных свойств, которые позволяют их использовать в качестве спин-кроссоверов [20, 21], контрастных реагентов для магниторезонансной томографии [22] катализаторов [23-25], светоизлучающих материалов [26].

Недавно мы синтезировали ряд триподальных лигандов на трифенилфосфиноксидной платфор-

ме 1, в которых 1,2,3-триазольные фрагменты соединены с платформой через атомы азота гетероцикла (N-присоединение, схема 1). Такие лиганды образуют комплексы с U(VI) и Pd(II) и могут быть использованы для экстракции этих элементов из растворов [27, 28].

Другим типом перспективных экстрагентов и комплексообразователей являются триподальные лиганды на Ph₃PO-платформе **2**, в которых 1,2,3-триазольный фрагмент связан с триподальным ядром через атом углерода (С-присоединение, схема 1). Примером таких соединений является недавно полученный нами лиганд с метиленовым линкером **3**, который образует комплексы с лантанидами [29].

Настоящая работа посвящена разработке синтетических подходов к триподальным лигандам на Ph_3PO -платформе **2** (схема 1, n = 2), содержа-

щим триазольные группы, которые соединены с платформой этиленовым линкером. Для синтеза молекулярного каркаса лиганда с этиленовым линкером 2 (n = 2) была использована реакция Мицунобу, которая широко применяется в органической химии, в том числе и для получения простых эфиров [30, 31] и представляет собой взаимодействие спиртов с нуклеофилами в присутствии азодикарбоксилатов и фосфинов или фосфитов. Чаще всего используют комбинацию диэтилазодикарбоксилата (DEAD) с Ph₃P. Существуют различные методики проведения этой реакции в зависимости от природы исходных компонентов, где варьируется температура реакции, природа растворителя, соотношение реагентов и способ их прибавления [32]. В нашей работе мы воспользовались видоизмененной методикой, предложенной авторами для синтеза бут-3-ин-1-илоксибензола [33].

Исходный трифенол 4 [34] вводили в реакцию с 3-бутин-1-олом в присутствии Ph_3P при температуре не выше 0°С, медленно прибавляя DEAD [35] к реакционной смеси (схема 2). В результате реакции был получен дизамещенный фосфиноксид 5, содержащий в молекуле две бутинильных и одну гидроксигруппу. В качестве растворителей использовали абсолютный ТГФ, ДМСО и CH₂Cl₂. Выход фосфиноксида 5 в случае CH₂Cl₂ составил 52%, в то время как в ТГФ и ДМСО он не превышал 40%. Ход реакции контролировали с помощью спектроскопии ЯМР ³¹Р.

Оказалось, что независимо от стехиометрического соотношения исходных компонентов фосфиноксид:3-бутин-1-ол (от 1:1 до 1:3) образования моно- и три-замещенных продуктов не было зафиксировано, т. е. наблюдается необычная двойная селективность, которая приводит к образованию только одного продукта из трех возможных.

Для введения триазольного заместителя в молекулу фосфиноксида **5**, содержащего две тройных связи, мы использовали клик-реакцию, которая представляет собой взаимодействие алкинов с азидами в присутствии различных катализаторов [36]. Реакцию соединения **5** с PhN₃ [37] проводили в мягких условиях в присутствии CuBr в качестве катализатора. В результате был получен фосфиноксид **6** с выходом 77%.

Наличие в соединениях 5 и 6 ОН-групп позволило нам получить пропаргилзамещенные фосфиноксиды с различной длиной линкера в молекуле (соединения 7 и 8). Реакцию фосфиноксидов 5 и 6 с бромистым пропаргилом проводили в условиях межфазного переноса в присутствии K_2CO_3 в абс. ДМФА при 60–70°С. Фосфиноксид 7 был выделен с выходом 89% без дополнительной очистки. Фосфиноксид 8 был синтезирован с выходом 69%

Фосфиноксид 9, содержащий три триазольных заместителя в молекуле был получен в условиях клик-реакции, описанных выше для фосфиноксида 6 (схема 2), исходя из соединений 7 и 8, с выходом 73 и 70% соответственно. Фосфиноксид 9 хорошо растворим в неполярных растворителях (CH₂Cl₂, CHCl₃) и плохо растворим в полярных (MeOH, ацетон, MeCN и ДМСО).

Состав и строение полученных соединений **5–9** подтверждены данными элементного анализа, ЯМР (¹H, ¹³C, ³¹P), ИК и КР спектроскопии, а также масс-спектрометрии. Структура фосфиноксида **9** доказана методом РСА.

В спектрах ЯМР ¹Н соединений 5, 7, 8 наблюдаются сигналы, указывающие на наличие в мо-

лекуле протонов при тройной связи. Так, сигнал СН-протона бутинильной группы в соединении **5** представляет собой триплет с химическим сдвигом $\delta_{\rm H}$ 1.96 м. д. и ${}^4J_{\rm HH}$ 2.6 Гц; в случае фосфиноксида **7** СН-протон бутинильной группы проявляется в виде синглета при 2.45 м. д. СН-протоны пропаргильной группы в соединениях **7** и **8** наблюдаются в этой же области в виде синглетных сигналов (1.89 и 2.36 м. д. соответственно). Протоны ОН-групп соединений **5** и **6** проявляются в слабом поле в виде широких синглетов с химическими сдвигами $\delta_{\rm H}$ 10.12 (**5**) и 11.50 м. д. (**6**). Триазольный цикл фосфиноксидов **6**, **8**, **9** в спектрах ЯМР ¹Н характеризуется наличием синглетов С–Н протонов триазола в области 7–8 м. д. Сигналы CH₂-протонов линкеров и арильных протонов в спектрах

N⁰	Образец	v(Р=О), см ⁻¹	ν(≡С–Н), см ⁻¹	ν(С≡С), см ⁻¹	Колебания триазольных колец		
					ν(С–Н), см ⁻¹	ν(C=C), см ⁻¹	v(N–C _{Ph}), см ⁻¹
5	Раствор в CDCl ₃	1121 c	3308 c	2125 о. сл	_	—	_
	Раствор в ДМСО- <i>d</i> 6	1121 cp	3210 сл	2124 сл			
	Твердый	1118 c	3279 c	2124 о. сл			
6	Раствор в CDCl ₃	1119 c	-	_	3128 сл	1556 сл	1502 c
	Раствор в ДМСО- <i>d</i> ₆	1120 ср, 1176 сл			3119 сл	1559 сл	1504 c
	Твердый	1117 c			3127 сл	1562 сл	1503 c
7	Раствор в CDCl ₃	1175 cp	3308 c	2125 о. сл	_	—	_
	Твердый	1182 c	3292 c, 3114 c	2104 сл			
8	Раствор в CDCl ₃	1172 cp	3308 cp	2125 о. сл	3148 о. сл,	1555 сл	1503 c
	Твердый	1180 c	3283 cp	2119 о. сл	3115 сл,	1551 сл	1504 c
					3152 сл		
9	Раствор в CDCl ₃	1172 cp	_	-	3148 сл,	1554 сл	1503 c
					3115 сл		
	Кристаллический	1176 c			3147 cp,	1560 сл	1503 c
					3127 ср		

Таблица 1. Избранные данные ИК спектров соединений 5-9 в твердом состоянии и в растворах

ЯМР ¹Н синтезированных фосфиноксидов **5–9** находятся в ожидаемой области (2–5 и 6–8 м. д. соответственно). Интегральная интенсивность сигналов в спектрах ЯМР ¹Н полученных соединений соответствует количеству протонов данного типа в молекуле.

В спектрах ЯМР ¹³С соединений **5** и **7** присутствуют синглеты в области 70–80 м. д., соответствующие атомам углерода фрагмента HC=C. В спектрах ЯМР ¹³С соединений **6**, **8** и **9** синглетные сигналы атомов углерода в области 144–145 и 121–122 м. д. свидетельствуют о наличии в молекуле триазольного цикла. Сигналы атомов углерода CH₂-групп в фосфиноксидах **5–9** наблюдаются в интервале 18–67 м. д. Сигналы атомов углерода в спектрах ЯМР ¹³С согласуются со значениями, типичными для подобных соединений [27].

В спектрах ЯМР ³¹Р{¹H} для фосфиноксидов 5 и 6, имеющих в молекуле ОН-группу, сигналы атома фосфора (δ_P 35–37 м. д.) сдвинуты в слабое поле примерно на 10 м. д. относительно сигналов фосфиноксидов 7–9 (δ_P 24–26 м. д.), содержащих в молекуле вместо ОН-группы пропаргилокси- (7, 8) или триазолилметокси- (9) заместители, что можно объяснить образованием связей О–H···O=P. Спектры ЯМР полученных соединений **5–9** представлены в Дополнительных материалах (рис. S1–S15).

Данные ИК спектров, характеризующие строение соединений **5–9** в растворах и в твердом состоянии, представлены в табл. 1. ИК и КР спектры твердых образцов приведены на рис. S16–S21 (см. Дополнительные материалы).

ИК спектры растворов, как и спектры ЯМР, подтверждают наличие в соединениях 5, 7 и 8 ацетиленовых групп: им соответствуют достаточно сильные полосы v(C-H) и очень слабые полосы v(C≡C), положение которых в спектрах растворов всех трех соединений одинаково и типично. В спектрах твердых образцов полосы v(C-H) в той или иной степени смещены в низкочастотную сторону относительно их положения в спектрах растворов, что говорит о различных межмолекулярных взаимодействиях с участием ацетиленовых СН-связей. Положение полос v(P=O) в спектрах растворов соединений 7 и 8 в CDCl₃, а также в спектрах твердых образцов соответствует ожидаемым. Частота колебания v(P=O) в соединении 5 так же, как и в соединении 6, значительно ниже обычной, причем как в твердых соединениях, так и в растворах; колебание v(OH) дает широкое поглощение в области 3100-2600 см⁻¹. В целом это свидетельствует об образовании в соединениях 5 и 6 достаточно прочной, сохраняющейся в растворах, внутримолекулярной водородной связи между фосфорильной и гидроксильной группами – так же, как в трис(2-гидроксифенил)фосфиноксиде [34]. Для интерпретации колебаний триазольных колец использованы данные нормально-координатного анализа модельного 1-фенил-4-пропил-1,2,3-триазола [38]. В спектрах соединений 6, 8, 9 в ожидаемых областях наблюдаются полосы триазольных циклов v(С–Н), v(C=C), и v(N-C_{Ph}) (табл. 1). Следует отметить, что в спектрах растворов соединений 8 и 9 присутствуют как полосы свободных (при 3148 см⁻¹), так и взаимодействующих триазольных СН-связей (при 3115 см⁻¹). Этим взаимодействием может быть внутримолекулярная водородная связь триазольной С-Н и фосфорильной групп. Образование такой связи установлено в кристаллическом образце соединения 9 методом РСА (рис. 1). В спектре КР кристаллического образца 9, фиксируются ожидаемые линии колебаний триазольных колец: v(C=C) при 1555 см⁻¹, v(N-C_{Ph}) при 1502 см⁻¹, v(C-N) при 1426 см⁻¹ и «дыхание» кольца при 1356 см⁻¹. Таким образом, данные колебательных спектров подтверждают строение синтезированных соединений 5-9.

Молекулярная и кристаллическая структура несимметричного триподального триазола 9 была установлена методом рентгеноструктурного анализа (рис. 1). Это первый структурно охарактеризованный трифенилфосфиноксид, в котором фенильные группы содержат в орто-положении разные заместители. Основные особенности молекулярного строения типичны для других триподальных фосфиноксидов, в которых связь Р=О и два из трех заместителей в орто-положении расположены по одну сторону относительно плоскости, образованной атомами углерода в тетраэдре РОС₃, а третий – по другую. В случае соединения 9 в позиции ниже плоскости расположен более короткий заместитель, и угол O¹P¹C²O² составляет -179.7(1)°, а углы ОРСО для двух других заместителей изменяются от 54.2(1) до 63.3(1)°. Как и ранее [27, 39, 40], конформация «2-UP» поддерживается слабыми внутримолекулярными взаимодействи-

Рис. 1. Общий вид молекулы соединения **9** в представлении тепловыми эллипсоидами (вероятность 50%). Укороченные связи С...О показаны *пунктиром*.

ями с участием атома О(Р). Наиболее значимой является водородная связь между атомом кислорода фосфорильной группы и атомом водорода триазольного цикла: О···H-C²⁵: d(O···C) 3.287(3) Å, угол О····Н-С 168.2(2)°. Связь Р=О несколько удлинена [1.492(2) Å] по сравнению с 2-замещенными триарилфосфиноксидами [1.485–1.486 Å)], в которых атом кислорода не участвует в образовании внутримолекулярных водородных связей [41]. На рис. S23 (см. Дополнительные материалы) представлено сравнение конформаций соединения 9 и его симметричного гомолога, опубликованного ранее [27], которое визуализирует структурную нежесткость молекул данного семейства, обусловленную вращением относительно связей О-С и С-С. В табл. S1 и S2 (см. Дополнительные материалы) приведены длины связей и валентные углы в соединении 9.

Таким образом, нами обнаружена необычная двойная селективность при реакции трис(2-гидроксифенил)фосфиноксида с 3-бутин-1-олом (в условиях реакции Мицунобу), приводящая к образованию только одного продукта из трех возможных – бис[2-(3"-бутинилокси)фенил](2'-гидроксифенил)фосфиноксида. Алкилированием этого эфира пропаргилбромидом и клик-реакциями с фенилазидом впервые синтезирован ряд несимметричных триарилфосфиноксидов с триазольными циклами в боковых цепях, в том числе первый несимметричный 1,2,3-триазольный триподальный лиганд на трифенилфосфиноксидной платформе с линкерами разной длины.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Органические растворители марки XЧ абсолютировали по стандартным методикам [42]. Дейтерированные растворители (CDCl₃ фирмы «Acros» и ДМСО- d_6 фирмы «Aldrich») использовали без дополнительной очистки. В работе использовали коммерческие реагенты: 3-бутин-1-ол (Aldrich), Ph₃P (Fluka AG), SiO₂ (Aldrich, 130–270 меш, 60 E). Исходные DEAD [35] и (2-HOC₆H₄)₃PO [34] синтезировали по литературным методикам. К₂CO₃ перед использованием прокаливали.

Спектры ЯМР ¹Н, ¹³С, ³¹Р записаны на спектрометре Bruker AMX-400 (рабочие частоты 400.13. 100.61. 161.98 МГц соответственно) и Bruker AMX-300 (рабочие частоты 300.13, 75.47, 121.49 МГц соответственно). Сигналы остаточных протонов и атомов углерода дейтерированного растворителя (CDCl₃) использованы в качестве внутренних стандартов в спектрах ЯМР ¹Н и ¹³С, точность определения химических сдвигов не менее 0.01 и 0.03 м. д. соответственно. Значения химических сдвигов в спектрах ЯМР ³¹Р получены относительно внешнего стандарта (85%-ная H₃PO₄). ИК спектры получены на FT IR спектрометре Bruker Tensor 37 для твердых образцов (таблетки с KBr) в диапазоне 4000-400 см⁻¹, для 0.01 М. растворов в CDCl₃ в диапазоне 4000-950 см⁻¹ [толщина кювет (СаF₂) 0.22 мм] и для 0.03 М. растворов в ДМСО-d₆ в диапазоне 3300-1100 см⁻¹ [толщина кювет (СаF₂) 0.06 мм]. Спектры КР в области 3500-100 см⁻¹ зарегистрированы на спектрометре Jobin-Yvon LabRAM 300, снабженном микроскопом и лазерным ССД-детектором. В качестве возбуждающей линии использована линия Не-Ne-лазера с длиной волны 632.8 нм и мощностью не более 2 мВт. Жидкостная хромато-масс-спектрометрия (ВЭЖХ-МС) была проведена на приборе Shimadzu LCMS-2020 (Япония) электро-распылительной ионизации методом (ESI). Диапазон определяемых масс – от m/z 50 до 2000, измерения были выполнены в режиме регистрации положительных ионов (напряжение на интерфейсе – 4500 В, напряжение на детекторе – 1000 В). В качестве подвижной фазы был использован ацетонитрил марки ОСЧ. Температуры плавления измеряли укороченными термометрами Аншютца в специальном блоке с использованием капилляров. С, Н, N определяли на приборе Carlo Erba 1106, Р – по известной методике [43].

Бис[2-(3"-бутинилокси)фенил](2'-гидроксифенил)фосфиноксид (5). К раствору, 1.29 г (0.004 моль) трис(2-гидроксифенил)фосфиноксида, 0.98 г (0.014 моль) 3-бутин-1-ола и 3.14 г (0.012 моль) Ph₃P в 40 мл абс. CH₂Cl₂ при интенсивном перемешивании в токе аргона при -5°С прибавляли за 1 ч раствор 2.06 г (0.012 моль) DEAD [35] в 10 мл CH₂Cl₂. Реакционную смесь перемешивали при 40°С в течение 2.5 ч, затем охлаждали до ~20°С и оставляли на ночь. Выпавший осадок отфильтровывали и промывали диэтиловым эфиром (20 мл). Получили 1.28 г диэтилгидразиндикарбоксилата [EtOC(O)NH]₂ с т. пл. 129-130°С (т. пл. 131°С [34]). Фильтрат упаривали наполовину, затем добавляли 20 мл бензола и оставляли на ночь при комнатной температуре. Выпавший осадок отфильтровывали, промывали диэтиловым эфиром и сушили при 80°С (1 мм рт. ст.). Выход 0.92 г (52.2%), т. пл. 158-160°С. Фильтрат, по данным ЯМР 31 Р и 1 Н, содержал, в основном, Ph₃P(O). Спектр ЯМР ¹Н (300.13 МГц, CDCl₃), б, м. д.: 1.90 т (2H, CH, ⁴*J*_{HH} 2.6 Гц), 1.98–2.20 м (4H, CC<u>H</u>₂C), 3.75–4.03 м (4H, OCH₂), 6.78 т. д (1H, H^{5'}, ³J_{HH} 7.4, ⁴*J*_{PH} 1.7 Гц), 6.89 д. д (2H, H³, ³*J*_{HH} 8.1, ⁴*J*_{PH} 5.7 Гц), 6.93 д. д (1Н, Н^{3'}, ³*J*_{HH} 8.1, ⁴*J*_{PH} 4.8 Гц), 7.06 т. д (2Н, H⁵, ³*J*_{HH} 7.4, ⁴*J*_{PH} 1.6 Гц), 7.36 т. д (1H, H⁴', ³*J*_{HH} 7.2, ⁴*J*_{нн} 1.2 Гц), 7.40–7.55 м (3Н, Н^{6′}, Н⁴), 7.64 д. д. д. (2H, H⁶, ³*J*_{PH} 14.7, ³*J*_{HH} 7.8, ⁴*J*_{HH} 1.5 Гц), 10.07 уш. с (1H, OH). Спектр ЯМР ¹³С (100.61 МГц, CDCl₃), δ_C, м. д.: 18.52 (С<u>С</u>H₂C), 66.23 (ОСH₂), 70.01 (СН), 79.72 (СН2С≡), 111.68 д (С³, ³J_{СР} 6.7 Гц), 111.78 д (С¹', ¹*J*_{CP} 109.2 Гц), 118.21 д (С³', ³*J*_{CP} 7.9 Гц), 118.44 д (С^{5′}, ³*J*_{CP} 13.1 Гц), 121.24 д (С¹, ¹*J*_{CP} 108.7 Гц), 121.28 д (C^5 , ${}^3J_{CP}$ 12.6 Гц), 131.97 д (C^6 ', ${}^2J_{CP}$ 11.0 Гц), 133.76 д (C^4 ', ${}^4J_{CP}$ 2.0 Гц), 133.99 д (C^6 , ² J_{CP} 8.4 Гц), 134.00 д (C⁴, ⁴ J_{CP} 1.9 Гц), 159.42 д (C², ² J_{CP} 2.8 Гц), 163.87 (C², ² J_{CP} 3.6 Гц). Спектр ЯМР ³¹Р{¹H} (121.49 МГц, CDCl₃): б_Р 34.7 м. д. Массспектр, m/z (I_{0TH} , %): 431.00 (5.13) [M + H]⁺, 453.95 (27.05) [*M* + Na]⁺, 883.05 (84.7) [2*M* + Na]⁺. Найдено, %: С 72.56; Н 5.48; Р 7.21. С₂₆Н₂₃О₄Р. Вычислено, %: С 72.56; Н 5.35; Р 7.21.

Бис{2-[2'-(1"-фенил-1",2",3"-триазол-4"-ил)этокси]фенил}(2-гидроксифенил)фосфиноксид (6). Смесь 0.36 г (0.84 ммоль) фосфиноксида 5, 0.40 г (3.36 ммоль) PhN₃ и 0.012 г (0.084 ммоль)

CuBr в 15 мл абс. CH₂Cl₂ кипятили 4 ч. Растворитель упаривали, продукт очищали колоночной хроматографией на SiO₂, элюент – петролейный эфир-ацетон, 4:1 и 3:2. Выход 0.43 г (76.8%), т. разл. 90-95°С. Спектр ЯМР ¹Н (400.13 МГц, CDCl₃), δ, м. д.: 2.73 уш. с (4H, C<u>CH</u>₂C), 4.07 с и 4.21 с (4H, OCH₂), 6.65 т. д (1H, H^{5'}, ³J_{HH} 7.4, ⁴J_{PH} 1.6 Гц), 6.80–6.93 м (3H, 2H³, H^{3'}), 6.97 т. д (2H, H⁵, ³*J*_{HH} 7.4, ⁴*J*_{PH} 1.6 Гц), 7.05 д. д. д (1H, H^{6'}, ³*J*_{PH} 14.4, ³*J*_{HH} 7.6, ⁴*J*_{HH} 0.8 Гц), 7.26 т (1Н, Н^{4'}, ³*J*_{HH} 7.8 Гц), 7.35–7.55 м (10H, 2H⁴, 2H⁶, *м*-Ph, *n*-Ph), 7.77 д (4H, *о*-Ph, ³J_{HH} 8.0 Гц), 8.18 с (2H, CH-триазол), 11.47 уш. с (1H, OH). Спектр ЯМР ³¹С (100.61, CDCl₃), δ_C, м. д.: 25.44 с (С<u>С</u>H₂C), 67.08 (ОСH₂), 111.74 д (С¹', ¹*J*_{CP} 109.2 Гц), 111.78 д (С³, ³*J*_{CP} 6.5 Гц), 118.20 120.21 (*o*-Ph), 120.24 д (С¹, ¹*J*_{CP} 108.8 Гц), 120.96 д (С⁵, ³*J*_{CP} 12.8 Гц), 121.15 (СН-триазол), 128.52 (*n*-Ph), 129.66 (*м*-Ph), 131.56 д (С^{6'}, ²J_{CP} 10.8 Гц), 133.74 д (С⁶, ²*J*_{CP} 9.1 Гц), 133.97 д (С⁴, ⁴*J*_{CP} 2.0 Гц), 134.44 д (С⁴, ⁴*J*_{CP} 1.8 Гц), 137.07 (С^{*i*}), 144.65 (С=), 160.14 д (С², ²*J*_{CP} 2.4 Гц), 163.64 д (С^{2'}, ²*J*_{CP} 3.1 Гц). Спектр ЯМР ${}^{31}P{}^{1}H{}$ (161.97 МГц, CDCl₃): δ_{P} 37.6 м. д. Масс-спектр, *m/z* (*I*_{отн}, %): 669.00 (8.28) $[M + H]^+$, 691.00 (100) $[M + Na]^+$. Найдено, %: С 68.41; Н 5.09; N 12.37; Р 4.57. С₃₈Н₂₃N₆O₄P. Вычислено, %: С 68.26; Н 4.94; N 12.57; Р 4.64.

Бис[2-(3'-бутинилокси)фенил)](2-пропаргилоксифенил)фосфиноксид (7). Суспензию 0.33 г (0.77 ммоль) соединения 5 и 0.33 г (2.31 ммоль) К₂СО₃ в 10 мл абс. ДМФА перемешивали 30 мин при 70°С. Затем к суспензии прибавляли раствор 0.18 г (1.54 ммоль) бромистого пропаргила в 5 мл ДМФА. Полученную смесь перемешивали 1.5 ч при 70°С, затем охлаждали до комнатной температуры, прибавляли 20 мл ледяной воды, перемешивали в течение 1 ч и оставляли на ночь. Выпавший осадок отфильтровывали, промывали водой и сушили в вакууме при 80°С (1 мм рт. ст.). Выход 0.19 г (88.9%), т. пл. 159–160°С. Спектр ЯМР ¹Н (300.13 МГц, CDCl₃), б, м. д.: 1.83 с (2H, ≡CH), 2.13 т (4H, CC<u>H</u>₂C, ${}^{3}J_{\text{HH}}$ 7.2 Гц), 2.39 с (1H, ≡CH), 3.90 т (4H, OCH₂CH₂, ³J_{HH} 7.5 Гц), 4.53 с (2H, OCH₂), 6.87 д. д (2H, H⁵, ³J_{HH} 7.2, ⁴J_{PH} 1.2 Гц), 6.95–7.05 м (3H, 2H³, 1H^{3'}), 7.10 д. д (1H, H^{5'}, ³J_{HH} 8.0, ⁴J_{PH} 2.7 Гц), 7.40–7.55 м (4Н, 2Н⁴, 1Н⁴', 1Н⁶'), 7.63 д. д (2H, H⁶, ³*J*_{PH} 14.6, ³*J*_{HH} 7.4 Гц). Спектр ЯМР ¹³С (100.61 МГц, CDCl₃), б_с, м. д.: 18.55 (С<u>С</u>H₂C),

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 8 2022

55.78 (ОСН₂), 66.07 (ОСН₂), 69.77 (≡СН), 75.38 (≡СН), 78.22 (С≡), 79.87 (С≡), 111.61 д (С³, ³*J*_{CP} 6.5 Гц), 112.91 д (С³, ³*J*_{CP} 6.4 Гц), 120.75 д (С⁵, ³*J*_{CP} 12.6 Гц), 121.26 д (С⁵, ³*J*_{CP} 12.5 Гц), 121.32 д (С¹, ¹*J*_{CP} 111.6 Гц), 121.66 д (С¹, ¹*J*_{CP} 112.5 Гц), 132.96 д (С⁴, ⁴*J*_{CP} 1.1 Гц), 133.10 д (С⁴, ⁴*J*_{CP} 1.2 Гц), 134.57 д (С⁶, ²*J*_{CP} 9.0 Гц), 134.81 д (С⁶, ²*J*_{CP} 8.5 Гц), 159.31 д (С², ²*J*_{CP} 1.4 Гц), 159.78 д (С², ²*J*_{CP} 2.2 Гц). Спектр ЯМР ³¹Р (121.49 МГц, CDCl₃): $\delta_{\rm P}$ 24.7 м. д. Массспектр, *m/z* (*I*_{отн}, %): 468.95 (100) [*M* + H]⁺, 937.00 (32.76) [2*M* + Na]⁺. Найдено, %: С 74.03; Н 5.39; Р 6.38. С₂₉H₂₅O₄P. Вычислено, %: С 74.35; Н 5.34; Р 6.62.

Бис{2-[2'-(1"-фенил-1",2",3"-триазол-4"-ил)этокси]фенил}(2-пропаргилоксифенил)фосфиноксид (8). Суспензию 0.30 г (0.45 ммоль) фосфиноксида 6 и 0.19 г (1.35 ммоль) К₂СО₃ в 7 мл абс. ДМФА интенсивно перемешивали 30 мин при 60°С. Затем прибавляли раствор 0.12 г (1.00 ммоль) бромистого пропаргила в 5 мл абс. ДМФА и продолжали перемешивание в течение 4 ч. Реакционную смесь выливали в ледяную воду и оставляли на ночь. Выпавший осадок отфильтровывали, промывали водой и сушили на воздухе, затем перекристаллизовывали из смеси МеОНпетролейный эфир и сушили в вакууме при 80°С (1 мм рт. ст.). Выход 0.22 г (69.4%), т. пл. 158-160°C. Спектр ЯМР ¹Н (400.13 МГц, CDCl₂), δ, м. д.: 2.34 с (1Н, ≡СН), 2.80 уш. с (4Н, ССН₂С), 4.07 уш. с (4H, OCH2CH2), 4.36 с (2H, OCH2), 6.78-6.85 м (2H, 2H⁵), 6.88 т (2H, H³, ³*J*_{HH} 6.8 Гц), 6.95 т (1H, H^{3'}, ³*J*_{HH} 7.2 Гц), 7.00 (1H, H^{5'}, ³*J*_{HH} 7.2 Гц, ⁴*J*_{PH} 2.4 Гц), 7.28–7.44 м (11H, *м*-Ph, *n*-Ph, 2H⁴, 2H⁶, H^{4'}), 7.62–7.75 м (5H, o-Ph, H^{6'}), 8.46 с (2H, CH триазол). Спектр ЯМР ³¹С (100.61, CDCl₃), δ_{C} , м.д.: 25.73 (CCH₂C), 55.53 (OCH₂), 66.93 (OCH₂CH₂), 75.53 (=CH), 77.86 (C=), 111.53 д (C³, ${}^{3}J_{CP}$ 6.4 Гц), 112.73 д (С^{3′}, ³*J*_{CP} 6.3 Гц), 120.14 (*o*-Ph), 120.53 д (С¹, ¹*J*_{CP} 111.6 Гц), 120.60 д (С⁵, ³*J*_{CP} 12.9 Гц), 121.39 д (С¹', ¹*J*_{СР} 108.4 Гц), 121.51 д (С^{5'}, ³*J*_{СР} 12.2 Гц), 121.80 (СН-триазол), 128.20 (*n*-Ph), 129.49 (*м*-Ph), 133.37 (С⁴), 133.53 д (С⁴, ⁴*J*_{CP} 0.8 Гц), 134.36 д (С⁶, ²*J*_{CP} 9.5 Гц), 134.68 д (С⁶, ²*J*_{CP} 7.9 Гц), 137.11 (С⁷), 144.96 (С-триазол), 158.74 д (С^{2'}, ²*J*_{CP} 2.3 Гц), 160.52 д (C², ${}^{2}J_{CP}$ 1.6 Гц). Спектр ЯМР ${}^{31}P{}^{1}H{}$ (121.49 МГц, CDCl₃): бр 24.1 м. д. Масс-спектр, m/z ($I_{\text{отн}}$, %): 707.00 (100) [M + H]⁺, 729.00 (14.02) [*M* + Na]⁺. Найдено, %: С 68.95; Н 5.13; N 11.74;

Р 4.49. С₄₁Н₃₅N₆O₄P ·0.5МеОН. Вычислено, %: С 68.97; Н 5.12; N 11.63; Р 4.29.

Бис{2-[2'-(1''-фенил-1'',2'',3''-триазол-4''-ил)этокси]фенил}[2'-(1'''-фенил-1''',2''',3'''-триазол-4'''-илметокси)фенил]фосфиноксид (9). Соединение 9 получено двумя способами, исходя из фосфиноксидов 7 и 8. Соответствующие клик-реакции проведены аналогично получению соединения 6. Целевой продукт очищали колоночной хроматографией на SiO₂, элюент – петролейный эфир–ацетон в градиенте концентраций от 4:1 до 1:1.5.

а. Из 0.31 г (0.66 ммоль) фосфиноксида 7, 0.46 г (3.84 ммоль) PhN₃ и 0.009 г (0.067 ммоль) CuBr в 10 мл абс. CH₂Cl₂ получили 0.40 г (72.7%) соединения 9 с т. пл. 189–190°С (разл.). Спектр ЯМР ¹Н (400.13 МГц, CDCl₃), б, м. д.: 2.79 уш. с (4Н, С<u>СН</u>₂С), 4.07 уш. с (4H, О<u>СН</u>₂СН₂), 5.15 с (2H, ОСН₂), 6.81–6.93 м (5H, 2H³, H³⁷, 2H⁵), 6.97–7.09 м (1H, H^{5'}), 7.20-7.73 м (21H, 2H⁴, H^{4'}, 2H⁶, H^{6'}, 15H-Ph), 7.76 с (1H, CH⁵"), 8.36 с (2H, CH⁵"). Спектр ЯМР ³¹С (100.61 МГц, CDCl₃), ₆С, м. д.: 25.72 (CCH₂C), 62.78 (OCH₂), 66.99 (OCH₂CH₂), 111.48 д (С³, ³*J*_{CP} 6.2 Гц), 112.56 д (С^{3'}, ³*J*_{CP} 6.2 Гц), 119.97 (*o*-Ph), 120.49 д (С⁵, ³J_{CP} 12.7 Гц), 120.76 д (С¹, ¹J_{CP} 110.6 Гц), 121.14 д (С^{5′}, ³*J*_{CP} 12.2 Гц), 121.20 (НС^{5′′′}), 121.28 (HC^{5"}), 121.33 д (C^{1'}, ¹*J*_{CP} 109.6 Гц), 128.13 (n-Ph), 128.64 (n-Ph), 129.42 (m-Ph), 129.57 (m-Ph), 133.51 (C⁴), 133.63 (C⁴), 134.40 д (C⁶, ²J_{CP} 8.7 Гц), 134.49 д (С^{6'}, ²*J*_{CP} 8.0 Гц), 136.68 (С^{*i*'}), 137.08 (С^{*i*}), 144.65 (С⁴^{'''}), 145.01 (С⁴^{''}), 159.84 д (С²', ²J_{CP} 1.8 Гц), 160.39 д (С², ²*J*_{CP} 1.5 Гц). Спектр ЯМР ³¹Р{¹H} (121.49 МГц, CDCl₃): б_Р 25.8 м. д. Массспектр, *m/z* (*I*_{0тн}, %): 826.10 (67.75) [*M*+H]⁺, 848.10 (100) [M + Na]⁺. Найдено, %: С 67.99; Н 4.64; N 15.47; Р 3.79. С₄₇Н₄₀N₉O₄Р. Вычислено, %: С 68.36; H 4.85; N 15.27; P 3.76.

б. Из 0.20 г (0.28 ммоль) фосфиноксида **8**, 0.07 г (0.56 ммоль) PhN₃ и 0.004 г (0.03 ммоль) CuBr в 8 мл абс. CH₂Cl₂ получили 0.16 г соединения **9** (69.6%) с т. пл. 189–191°С (разл.).

Рентгенодифракционный анализ проведен на автоматическом четырехкружном дифрактометре с двумерным детектором BrukerQuest при 100.0(2) К. Параметры элементарной ячейки уточнены по всему массиву данных. Кристаллы $C_{47}H_{40}N_9O_4P$ (*M* 825.85) триклинные, пространственная группа *P*1, *a* 8.4249(3), *b* 13.6002(5), *c* 17.8724(7) Å, α 93.831(1), β 90.037(2), γ 98.437(1)°, V 2021.02(13) Å³, Z 2, d 1.357 г/см³, µ 0.127 мм⁻¹. В экспериментально определенные значения интенсивности рефлексов внесены поправки на поглощение с использованием программы SADABS [44]. Структуры расшифрованы методом сопряженного пространства, реализованном в программе SHELXT [45] и уточнены полноматричным методом наименьших квадратов SHELXL-2014 [46] по F^2 по всем данным в анизотропном приближении для всех неводородных атомов, за исключением разупорядоченных. Атомы углерода одного фенильного кольца равновероятно разупорядочены по двум положениям и уточнены изотропно. Атомы водорода помещены в геометрически рассчитанные положения и уточнены в модели наездника с изотропными тепловыми параметрами, равными $U_{iso} = 1.2U_{eq}(X)$, где $U_{eq}(X) -$ эквивалентные изотропные тепловые параметры атомов, с которыми связан атом водорода. При уточнении накладывался ряд ограничений на длины связей С-С. Факторы расходимости составили: R₁ 0.0687 (для 7426 наблюдаемых отражений), wR₂ 0.1673, GOF 1.011 (для 12343 независимых отражений, $R_{\rm int}$ 0.0825). Координаты атомов и величины температурных параметров депонированы в Кембриджском центре кристаллографических данных (CCDC 2162570).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Кудрявцев Игорь Юрьевич, ORCID: https:// orcid.org/0000-0002-4324-8001

Баулина Татьяна Викторовна, ORCID: http:// orcid.org/0000-0003-0821-0056

Брель Валерий Кузьмич, ORCID: http://orcid. org/0000-0003-4645-3251

Пасечник Маргарита Павловна, ORCID: https:// orcid.org/0000-0002-9599-0638

Матвеева Анна Григорьевна, ORCID: https:// orcid.org/0000-0002-5953-6518

Вологжанина Анна Владимировна, ORCID: https://orcid.org/0000-0002-6228-303X

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Российского научного фонда (грант № 20-13-00329). Элемент-

ный анализ и регистрация спектров ЯМР, ИК и КР и рентгенодифракционные исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации с использованием научного оборудования Центра исследования строения молекул Института элементоорганических соединений РАН.

КОНФЛИКТ ИНТЕРЕСОВ

В.К. Брель является членом редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0044460X2208008X для авторизованных пользователей.

СПИСОК ЛИТЕРАТУРЫ

- Jevric M., Zheng T., Meher N.K., Fettinger J.C., Mascal M. // Angew. Chem. Int. Ed. 2011. Vol. 50. N 3. P. 717. doi 10.1002/anie.201006470
- Long S.R., Lin C.-Y., Anslyn E.V. // J. Coord. Chem. 2017. Vol. 70. N 1. P. 1. doi 10.1080/00958972.2016.1262949
- Lukashev N.V., Grabovyi G.A., Erzunov D.A., Kazantsev A.V., Latyshev G.V., Averin A.D., Beletskaya I.P. // Beilstein J. Org. Chem. 2017. Vol. 13. P. 564. doi 10.3762/bjoc.13.55
- Neumajer G., Tóth G., Béni S., Noszál B. // Cent. Eur. J. Chem. 2014. Vol. 12. N 1. P. 115. doi 10.2478/s11532-013-0351-z
- Grewal S., Roy S., Kumar H., Saraswat M., Bari N.K., Sinha S., Venkataramani S. // Catal. Sci. Technol. 2020. Vol. 10. N 20. P. 7027. doi 10.1039/D0CY01090A
- Jain A., Jain Y., Gupta R., Agarwal M. // J. Fluor. Chem. 2018. Vol. 212. P. 153. doi 10.1016/j. jfluchem.2018.06.005
- Erzunov D.A., Latyshev G.V., Averin A.D., Beletskaya I.P., Lukashev N.V. // Eur. J. Org. Chem. 2015. Vol. 2015. N 28. P. 6289. doi 10.1002/ejoc.201500835
- Лукашев Н.В., Ержунов Д.А., Латышев Г.В., Аверин А.Д., Белецкая И.П. // ЖОрХ. 2018.
 Т. 54. Вып. 1. С. 50; Lukashev N.V., Erzunov D.A., Latyshev G.V., Averin A.D., Beletskaya I.P. // Russ. J. Org. Chem. 2018. Vol. 54. N 1. P. 45. doi 10.1134/ S1070428018010025
- 9. Bharadwaj V., Park J.E., Sahoo S.K., Choi H.-J. // ChemistrySelect 2019. Vol. 4. N 36. P. 10895. doi 10.1002/slct.201902718

- Tümay S.O. // J. Lumin. 2021. Vol. 231. P. 117813. doi 10.1016/j.jlumin.2020.117813
- 11. Zhu J.-H., Fan X.-T., Cao Q.-Y. // Inorg. Chim. Acta 2016. Vol. 451. P. 111. doi 10.1016/j.ica.2016.07.021
- Sun J., Xu X., Yu G., Li W., Shi J. // Tetrahedron. 2018. Vol. 74. N 9. P. 987. doi 10.1016/j.tet.2018.01.013
- del Carmen González M., Otón F., Espinosa A., Tárraga A., Molina P. // Org. Biomol. Chem. 2015. Vol. 13. N 5. P. 1429. doi 10.1039/c4ob02135e
- Ghosh K., Kar D., Joardar S., Samadder A., Khuda-Bukhsh A.R. // RSC Adv. 2014. Vol. 4. N 23. P. 11590. doi 10.1039/c3ra45018j
- Tümay S.O., Yeşilot S.J. // Photochem. Photobiol. (A). 2019. Vol. 372. P. 156. doi 10.1016/j. jphotochem.2018.12.012
- Götzke L., Schaper G., März J., Kaden P., Huittinen N., Stumpf T., Kammerlander K.K.K., Brunner E., Hahn P., Mehnert A., Kersting B., Henle T., Lindoy L.F., Zanoni G., Weigand J.J. // Coord. Chem. Rev. 2019. Vol. 386. P. 267. doi 10.1016/j.ccr.2019.01.006
- Pawara S.V., Upadhyaya P.K., Kumbhara N., Buradea S., Patilb R., Dhavalea D.D. // Carbohydr. Res. 2019. Vol. 485. P. 107815. doi 10.1016/j. carres.2019.107815
- Harit T., Bellaouchi R., Rokni Y., Riahi A., Malek F., Asehraou A. // Chem. Biodiversity 2017. Vol. 14. N 12. P. e1700351. doi 10.1002/cbdv.201700351
- Thota B.N.S., Savyasachi A.J., Lukashev N., Beletskaya I., Maitra U. // Eur. J. Org. Chem. 2014. Vol. 7. P. 1406. doi 10.1002/ejoc.201301443
- Schweinfurth D., Demeshko S., Hohloch S., Steinmetz M., Brandenburg J.G., Dechert S., Meyer F., Grimme S., Sarkar B. // Inorg. Chem. 2014. Vol. 53. N 16. P. 8203. doi 10.1021/ic500264k
- 21. Hagiwara H., Minoura R., Okada S., Sunatsuki Y. // Chem. Lett. 2014. Vol. 43. N 6. P. 950. doi 10.1246/ cl.140133
- Hapuarachchige S., Artemov D. // Top Magn. Reson. Imaging. 2016. Vol. 25. N 5. P. 205. doi 10.1097/ RMR.0000000000000099
- Hohloch S., Deibel N., Schweinfurth D., Frey W., Sarkar B. // Eur. J. Inorg. Chem. 2014. Vol. 2014. N 12. P. 2131. doi 10.1002/ejic.201301339
- Schweinfurth D., Demeshko S., Khusniyarov M.M., Dechert S., Gurram V., Buchmeiser M.R., Meyer F., Sarkar B. // Inorg. Chem. 2012. Vol. 51. N 14. P. 7592. doi 10.1021/ic300392e
- Weisser F., Stevens H., Klein J., van der Meer M., Hohloch S., Sarkar B. // Chem. Eur. J. 2015. Vol. 21. N 24. P. 8926. doi 10.1002/chem.201406441
- Baschieri A., Mazzanti A., Stagni S., Sambri L. // Eur. J. Inorg. Chem. 2013. Vol. 2013. N 13. P. 2432. doi 10.1002/ejic.201201361

- Kudryavtsev I.Y., Bykhovskaya O.V., Matveeva A.G., Baulina T.V., Pasechnik M.P., Matveev S.V., Vologzhanina A.V., Turanov A.N., Karandashev V.K., Brel V.K. // Monatsh. Chem. 2020. Vol. 151. N 11. P. 1705. doi 10.1007/s00706-020-02702-6
- Матвеева А.Г., Баулина Т.В., Кудрявцев И.Ю., Пасечник М.П., Айсин Р.Р., Быховская О.В., Годовикова М.И., Матвеев С.В., Туранов А.Н., Карандашев В.К., Брель В.К. // ЖОХ. 2020. Т. 90. № 12. С. 1939; Matveeva A.G., Baulina T.V., Kudryavtsev I.Yu., Pasechnik М.Р., Aysin R.R., Bykhovskaya O.V., Godovikova M.I., Matveev S.V., Turanov A.N., Karandashev V.K., Brel V.K. // Russ. J. Gen. Chem. 2020. Vol. 90. N 12. P. 2338. doi 10.1134/ S107036322012018X
- Matveeva A.G., Bykhovskaya O.V., Pasechnik M.P., Vologzhanina A.V., Aysin R.R., Matveev S.V., Godovikov I.A., Kudryavtsev I.Y., Baulina T.V., Brel V.K. // Mendeleev Commun. 2022. N 5.
- Mitsunobu O., Yamada Y. // Bull. Chem. Soc. Japan. 1967. Vol. 40. N 10. P. 2380. doi 10.1246/bcsj.40.2380
- Mitsunobu O. // Synthesis. 1981. N 1. P. 1. doi 10.1055/ s-1981-29317
- Hughes D.L. // Org. React. 1992. Vol. 42. P. 335. doi 10.1002/0471264180.or042.02
- Zhai R.L., Xue Y.S., Liang T., Mi J. J., Xu Z. // J. Org. Chem. 2018, Vol. 83. P. 10051. doi 10.1021/acs. joc.8b01388.
- 34. Кудрявцев И.Ю., Баулина Т.В., Хрусталев В.Н., Петровский П.В., Пасечник М. П., Нифантьев Э.Е. // Докл. АН. 2013. Т. 448. № 6. С. 657; Kudryavtsev I.Yu., Baulina T.V., Khrustalev V.N., Petrovskii P.V., Pasechnik M.P., Nifant'ev E.E. // Doklady Chem. 2013. Vol. 448. N 2. P. 55. doi 10.1134/S0012500813020092
- März M., Chudoba J., Kohout M., Cibulka R. // Org. Biomol. Chem. 2017. Vol. 15. N 9. P. 1970. doi 10.1039/ c6ob02770a
- Tornøe C. W., Christensen C., Meldal M. // J. Org. Chem. 2002. Vol. 67. N 9. P. 3057. doi 10.1021/ jo011148j

- 37. Dai Z.-C., Chen Y.-F., Zhang M., Li S.-K., Yang T.-T., Shen L., Wang J.-X., Qian S.-S., Zhu H.-L., Ye Y.-H. // Org. Biomol. Chem. 2015. Vol. 13. N 2. P. 477. doi 10.1039/C40B01758G
- Matveeva A.G., Vologzhanina A.V., Pasechnik M.P., Aysin R.R., Matveev S.V., Zubavichus Y.V., Artyushin O.I., Sharova E.V., Godovikov I.A., Brel V.K. // Polyhedron. 2022. Vol. 215, P. 115680. doi 10.1016/j. poly.2022.115680
- Быховская О.В., Матвеева А.Г., Пасечник М.П., Вологжанина А.В., Матвеев С.В., Кудрявцев И.Ю., Баулина Т.В., Брель В.К. // ЖОХ. 2019. Т. 89. № 12. С. 1885; Bykhovskaya O.V., Matveeva A.G., Pasechnik M.P., Vologzhanina A.V., Matveev S.V., Kudryavtsev I.Yu., Baulina T.V., Brel V.K. // Russ. J. Gen. Chem. 2019. Vol. 89. N 12. P. 2400. doi 10.1134/ S1070363219120120
- Baulina T.V., Pasechnik M.P., Kudryavtsev I.Yu., Bykhovskaya O.V., Sukat G.Ya., Smol'yakov A.F., Anikina L.V., Brel V.K. // J. Mol. Struct. 2020. Vol. 1217. P. 128324. doi 10.1016/j.molstruc.2020.128324
- Matveeva A.G., Kudryavtsev I.Yu., Pasechnik M.P., Vologzhanina A.V., Baulina T.V., Vavina A.V., Sukat G.Ya., Matveev S.V., Godovikov I.A., Turanov A.N., Karandashev V.K., Brel V.K. // Polyhedron 2018. Vol. 142. P. 71. doi 10.1016/j.poly.2017.12.025
- Armarego W.L.F., Chai C.L.L. Purification of laboratory chemicals. New York: Elsevier, 2009. 752 p. doi 10.1134/S0044460X1809024X
- Гельман Н.Е., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М. Методы количественного органического элементного микроанализа. М.: Химия, 1987. С. 296.
- 44. SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick G.M. // Acta Crystalogr. (A). 2015. Vol. 71. N 1. P. 3. doi 10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. N 1. P. 3. doi 10.1107/S2053229614024218

Unsymmetrical Tripodal Phosphine Oxide with Triazole Groups: Synthesis and Molecular Structure

O. V. Bykhovskaya^{*a*}, I. Yu. Kudryavtsev^{*a*,*}, T. V. Baulina^{*a*}, M. P. Pasechnik^{*a*}, A. V. Vologzhanina^{*a*}, A. G. Matveeva^{*a*}, A. A. Moiseeva^{*a*}, and V. K. Brel^{*a*}

^a Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russia *e-mail: zaq@ineos.ac.ru

Received April 12, 2022; revised April 12, 2022; accepted May 19, 2022

Unusual Mitsunobu reaction of tris(2-hydroxyphenyl)phosphine oxide with 3-butyn-1-ol afforded bis[2-(3"-butynyloxy)phenyl](2'-hydroxyphenyl)phosphine oxide, which was converted to the corresponding triazole by a click reaction with PhN₃. On the basis of triazole obtained, an asymmetric tripodal ligand containing three 1,2,3-triazole groups in the molecule was prepared by reacting with propargyl bromide and PhN₃. Structure of the ligand was established by single crystal X-ray diffraction analysis.

Keywords: tripodal ligands with 1,2,3-triazole groups, functionalized triarylphosphine oxides, Mitsunobu reaction