К 300-летию со дня основания Санкт-Петербургского государственного университета УДК 546.922;547-304.7;54.03

БИСИЗОЦИАНИДНЫЕ ЦИКЛОМЕТАЛЛИРОВАННЫЕ КОМПЛЕКСЫ ПЛАТИНЫ(II): СИНТЕЗ, СТРУКТУРА, ФОТОФИЗИЧЕСКИЕ СВОЙСТВА И МЕХАНОХРОМНОЕ ПОВЕДЕНИЕ

© 2023 г. С. А. Каткова^{1*}, Э. В. Соколова¹, М. А. Кинжалов¹

¹ Санкт-Петербургский государственный университет, Университетская наб. 7–9, Санкт-Петербург, 199034 Россия *e-mail: s.katkova@spbu.ru

> Поступило в редакцию 1 октября 2022 г. После доработки 24 октября 2022 г. Принято к печати 26 октября 2022 г.

Серия циклометаллированых комплексов платины(II) [Pt(ppy){CNAr}₂]X с двумя изоцианидными лигандами (Hppy = 2-фенилпиридин, Ar = C_6H_2 -2,4,6-Me₃, C_6H_3 -2-Cl-6-Me, C_6H_3 -2,6-Cl₂, C_6H_4 -4-NMe₂, C_6H_4 -4-Me, C_6H_4 -4-Cl, C_6H_4 -4-Br, C_6H_4 -4-I, C_6H_4 -4-CF₃, C_6H_4 -3-CF₃; X = BF₄, OTf) синтезирована взаимодействием димера [{Pt(ppy)Cl}₂] с изоцианидами (выход 52–70%). Структура полученных комплексов установлена с помощью масс-спектрометрии, спектроскопии ЯМР ¹H, ¹³C{¹H}, ¹⁹⁵Pt{¹H}, ¹H–¹H COSY, ¹H–¹H NOESY, ¹H–¹³C HSQC и ¹H–¹³C HMBC в растворе и твердотельной спектроскопии ЯМР CP/MAS ¹³C и ¹⁹⁵Pt, ИК спектроскопии и рентгеноструктурного анализа в твердой фазе. Изучены фотофизические свойства полученных комплексов в твердой фазе и механохромное люминесцентное поведение. В твердой фазе все синтезированные соединения фосфоресцируют в зеленом или оранжевом диапазоне видимого света, квантовые выходы фотолюминесценции достигают 26%. Зеленые люминофоры демонстрируют обратимое механохромное изменение люминесценции, достигаемое механическим измельчением (зеленый в оранжевый) и адсорбцией растворителя (оранжевый в зеленый).

Ключевые слова: комплексы платины, изоцианиды, люминесценция, механолюминесценция **DOI:** 10.31857/S0044460X23010134, **EDN:** OZPAUN

Люминесцентные материалы на основе комплексных соединений металлов платиновой группы, такие как эмиссионные слои в светоизлучающих устройствах, люминесцентные хемосенсоры и агенты для биомиджинга, обладают рядом преимуществ по сравнению с органическими люминофорами [1–5]. В таких комплексах излучения имеет триплетный характер (фосфоресценция), проявляющийся за счет сильного спин-орбитального взаимодействия, вызванного эффектом тяжелого атома – металлоцентра – и способствующего формально запрещенному переходу между синглетным и триплетным возбужденными уровнями [1, 6]. Одними из перспективных соединений данного класса люминофоров являются гетеролептические C^N-циклометаллированные комплексы платины(II) [Pt(C^N)(L^1,L^2)]^Z. Настройка фотофизических свойств таких люминофоров достигается варьированием структуры циклометаллированного (C^N) и вспомогательных лигандов (L^1, L^2). Основную роль в формировании люминесцентных свойств играет хелатный лиганд, поскольку эмиссия в основном определяется лиганд-центрированными переходами (³LC) и переходами с переносом заряда с металла на лиганд (³MLCT). Вспомогательные лиганды, как правило, способствуют увеличению энергетического зазора между самым низколежащим возбужденным состоянием

(IL/MLCT) и более высоким d^* -уровнем, что приводит к снижению вероятности нерадиационного распада и увеличению квантового выхода люминесценции [7–11]. Использование в качестве вспомогательных лигандов L сильных σ-донорных лигандов, таких как изоцианиды, позволяет получить люминофоры, обладающие высокими квантовыми выходами фотолюминесценции [12-14]. К тому же, линейная геометрия изоцианидных лигандов гарантирует отсутствие стерических затруднений для образования межмолекулярных нековалентных взаимодействий различных типов (металлофильные $Pt \cdots Pt$, $\pi \cdots \pi$ -стекинг), что, в свою очередь, может повысить структурную жесткость молекул в кристалле и снизить безызлучательное рассеивание энергии [9, 13, 15-20]. К настоящему времени циклометаллированные комплексы платины(II) с изоцианидными лигандами зарекомендовали себя в качестве высокоэффективных люминофоров [10, 12–14, 21–26], фотокатализаторов [27], а также потенциальных противоопухолевых препаратов [28, 29].

В ряде работ показано, что циклометаллированные комплексы платины(II) также могут проявлять механолюминесцентные свойства (см. обзорные статьи [30-33], последние работы [14, 34-37]). В литературе описаны способные к механолюминесценции гетеролептические С^N-циклометаллированные комплексы платины(II), такие как [Pt(ppy)(O^N)] (O^N = хинолин [38], 5-[2-(4-R-фенил)этинил]-8-хинолин $\{R = H, Me, Et, t-Bu\}$ [39]); и $[Pt(C^N)(C \equiv CTol) \{CNR\}]$ [Pt(C^N)Cl{CNR] (C^N = ppy, дифторфенилпиридин, фенилхинолин; $R = C_6 H_3 - 2, 6 - Me_2$) [20]. Тем не менее, исследованию механолюминесцентных свойств С^N-циклометаллированных комплексов платины(II) с изоцианидными лигандами представлено всего в двух работах [14, 20].

Учитывая наш научный интерес к разработке светоизлучающих и фотоактивных систем на основе изоцианидных комплексов платины(II) [13, 14, 26, 40–42], в представленной работе получена серия бисизоцианидных циклометаллированных комплексов платины(II) [Pt(ppy){CNAr}₂]X (Ar = C_6H_2 -2,4,6-Me₃, C_6H_3 -2-Cl-6-Me, C_6H_3 -2,6-Cl₂, C_6H_4 -4-NMe₂, C_6H_4 -4-Me, C_6H_4 -4-Cl, C_6H_4 -4-Br, C_6H_4 -4-I, C_6H_4 -4-CF₃, C_6H_4 -3-CF₃; X = BF₄, OTf) (схема 1), изучены фотофизические свойства в

растворе CH₂Cl₂ (поглощение и эмиссия) и твердой фазе (эмиссия, время жизни возбужденного состояния и квантовый выход фотолюминесценции), а также влияние механического воздействия на люминесцентные свойства в твердой фазе.

Синтез соединений За-л проводили взаимодействием хлормостикового димера 1 со стехиометрическим количеством соответствующего изоцианида CNAr [Ar = C_6H_2 -2,4,6-Me₃ (**a**), C_6H_3 -2-Cl-6-Me (**6**), C_6H_3 -2,6- Cl_2 (**B**), C_6H_4 -4- NMe_2 (**r**), C_6H_4 -4- Me_2 (д), C_6H_4 -4-Cl (e), C_6H_4 -4-Br (ж), C_6H_4 -4-I (3), C_6H_4 -4-CF₃ (и), C_6H_4 -3-CF₃ (к)] двумя способами (схема 1). Первый способ заключался в предварительном удалении хлоридного лиганда и получении ацетонитрильного комплекса 2, который далее вводили в реакцию с изоцианидом. Этот метод оказался наиболее удобным для получения соединений За-в (выход 66-72%). Согласно второму способу, комплексы Зг-к получены при кипячении в 1,2-дихлорэтане димера 1, изоцианида и избытка NaBF₄ (выход 52–70%). Синтез соединений За-в с помощью второго способа протекает с меньшими препаративными выходами, поскольку комплексы растворимы в 1,2-дихлорэтане в отличие от соединений Зг-л. Соединения За-к устойчивы на воздухе при 20–150°С (т. разл. >165°С); комплексы За-в растворимы в широко используемых апротонных растворителях (CH₂Cl₂, CHCl₃ и MeCN), в свою очередь, соединения Зг-к имеют ограниченную растворимость в этих растворителях.

Строение комплексов **За**–к установлено с помощью с помощью масс-спектрометрии высокого разрешения с электрораспылительной ионизацией, ИК спектроскопии, ЯМР ¹H, ¹³C {¹H}, ¹⁹F {¹H}, ¹⁹⁵Pt {¹H}, ¹H–¹H COSY, NOESY и ¹H–¹³C HSQC, HMBC, а также методом PCA (**За–в**, **Зк**). Из-за плохой растворимости соединений **Зд–и** в широкодоступных органических растворителях их строение изучено в растворе только методом масс-спектрометрии и в твердом состоянии методами ИК спектроскопии и твердотельной спектроскопии ЯМР ¹³C и ¹⁹⁵Pt.

В масс-спектрах растворов комплексов $3a-\kappa$ в MeOH пик максимальной интенсивности соответствует иону $[M - OTf/BF_4]^+$ и имеет изотопное распределение, соответствующее предполагаемой брутто-формуле. В ИК спектрах соединений $3a-\kappa$ присутствуют две частично перекрывающиеся ин-

тенсивные полосы валентных колебаний тройной связи С=N в области 2166-2226 см⁻¹, что свидетельствует о присутствии двух изоцианидных лигандов в структуре комплекса [20, 21, 23, 28, 43, 44]. Положение полос поглощения v(C=N) в комплексах **За**-к смещено в сторону более высоких частот по сравнению v(C=N) соответствующих некоординированных изоцианидов (табл. 1), что подтверждает координацию изоцианида и указывает на проявление изоцианидным лигандом сильных σ -донорных свойств [40, 45–47].

В спектрах ЯМР ¹Н соединений **3а–в**, к отличительным сигналом является высокочастотный пик 8.4–9.1 м. д., соответствующий протону H¹¹ (нумерация приведена согласно данным РСА фе-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 1 2023

нилпиридинового фрагмента (рру), мультиплетный характер этого сигнала обусловлен спин-спиновым взаимодействием с магнитно-активным ядром ¹⁹⁵Pt [50]. Сравнивания данные для соелинений За-в. к с описанными ранее для моноизоцианидных комплексов [Pt(ppy)Cl{CNR}], для которых δ атома водорода H¹¹ около 9.5 м. д. [40, 41], можно отметить, что введение в структуру второго изоцианидного лиганда приводит к низкочастотному смещению сигнала атома водорода H¹¹ в комплексах **За-в**, к. В спектрах твердотельного ЯМР ¹³С СР/МАЅ соединений Зг-и наблюдается набор сигналов, соответствующий фрагментам рру и CNR, как и в растворе для соединений **За-в**, к. Сигналы в спектре ЯМР ¹⁹⁵Рt расположены в диапазоне б_{рt} -4195-4074 м. д.,

A r	v(CN), см ⁻¹		
AI	CNAr	комплекс	
C ₆ H ₂ -1,3,5-Me ₃	2116[48]	2166, 2186	
C ₆ H ₃ -2-Cl-6-Me	2124	2184, 2207	
C ₆ H ₃ -2,6-Cl ₂	2120 [49]	2176, 2201	
C_6H_4 -4-NM e_2	2115	2183, 2204	
C_6H_4 -4-Me	2128 [49]	2196, 2226	
C_6H_4 -4-Cl	2126	2196, 2221	
C_6H_4 -4-Br	2125	2192, 2220	
C ₆ H ₄ -4-I	2128	2191, 2217	
C_6H_4 -4- CF_3	2128	2195, 2218	
C ₆ H ₄ -3-CF ₃	2123	2231, 2203	

Таблица 1. Положение полос колебаний v(C≡N) в ИК спектрах изоцинидов и комплексов 3а-к

что согласуется с литературными данными для описанных ранее бисизоцианидных циклометаллированных комплексов ([Pt(bzq){CNR}₂]⁺ [bzq = бензохинолин, R = *t*-Bu (δ_{Pt} -4246 м. д.), C₆H₃-2,6-Me₂ (δ_{Pt} -4168 м. д. [21])].

Для доказательства структуры соединений **За–в**, к в твердой фазе использован метод рентгеноструктурного анализа (РСА) (рис. 1). Значения некоторых длин связей и валентных углов приведены в табл. 2.

По данным PCA, соединения **За**–**в**, **к** имеют ионный характер в твердой фазе; во всех структурах кристаллографически независимая часть представлена одним металлорганическим катионом [Pt(ppy){CNR}₂]⁺ и анионом (OTf⁻ для **За**–**в** или BF₄ для **Зк**). Координационная сфера металла имеет плоскоквадратную геометрию, сформированную одним циклометаллированным и двумя изоцианидными лигандами. Длины связей Pt-C_{ppv} и Pt-N_{ppy} и угол С_{ppy}PtN_{ppy} находятся в стандартном диапазоне для связей этого типа и согласуются со значениями в других соединениях типа [Pt(ppy)L₂] [20, 21, 23]. Длины связей Pt-C_{CNR} сопоставимы с теми, которые наблюдаются в других изоцианидных комплексах [Pt(C^N){CNR}₂]X и $[Pt(C^N)Cl{CNR}]$. Во всех случаях тройная связь С≡N в изоцианидном фрагментах имеет длину, сходную с длинами аналогичных связей в других комплексах платины(II) [21, 40, 41]. Все прочие длины связей хорошо согласуются со значениями межатомных расстояний в других циклометаллированных изоцианидных комплексах платины(II).

Расстояния Рt-С^NС≡N в *транс*-положении по отношению к атому N_{ppy}, короче на 0.067-0.117 Å, чем расстояние Pt-C_{C=N} в *транс*-положении по отношению к атому Срру; данное наблюдение согласуется с меньшим *транс*-влиянием атома N относительно атома С фрагмента рру [26]. Изоцианидные лиганды CNR координированы линейно. Можно отметить, что во всех случаях арильный фрагмент изоцианидного лиганда, находящегося в транс-положении к Срру некомпланарен с координационной плоскостью [двугранный угол между арильным фрагментом изоцианидного лиганда и плоскостью Pt-C-N-C-С 60.88(8)° для **За**; 52.61(19)° для **Зб**; 43.93(7)° для **Зв**; 20.40(2)° и 34.2(5)° для 3к]. В кристалле комплексы 3а-в, к образуют димеры с конфигурацией голова к хвосту за счет слабых межмолекулярных п-п-взаимодействий между циклометаллированным и изоци-

Таблица 2. Значения некоторых длин связей (Å) и углов (град) в комплексах За-в, к

Связь, угол	3a	36	3в	3к
Pt-N _{ppy}	2.049(2)	2.0486(19)	2.0486(19)	2.049(3)
Pt-C _{ppy}	2.026(3)	2.020(2)	2.020(2)	2.036(4)
$Pt-C_{C\equiv N}^{C}$	2.015(3)	1.985(3)	1.985(2)	2.027(5)
$Pt-C^{N}_{C\equiv N}$	1.919(3)	1.918(2)	1.919(2)	1.910(4)
C≡N ^C	1.157(4)	1.153(3)	1.153(3)	1.162(16)
C≡N ^N	1.146(4)	1.149(3)	1.149(3)	1.152(6)
$C_{ppy}PtN_{ppy}$	80.79(11)	80.71(9)	80.71(9)	81.50(15)
$N_{ppv}PtC_{CNR}^{C}$	94.86(11)	94.18(9)	94.18(9)	95.49(16)
N _{ppy} PtC ^N _{CNR}	175.08(10)	175.24(11)	174.73(8)	174.22(16)

Рис. 1. Общий вид молекул комплексов За (а) и Зк (б) в кристалле.

Рис. 2. Ориентация голова-хвост в комплексе За в твердой фазе.

нанидным лигандами (рис. 2, расстояние между плоскостями фенилпиридинового и изоцианидных лигандов 3.55 Å для **3a**, 3.979 Å – **3б**, 3.818 Å – **3в** и 3.897 Å – **3к**, что соответствует 104–117% от удвоенного ван-дер-ваальсова радиуса атома углерода, предложенного Бонди [[51]). Для комплексов **За**–к в твердой фазе зарегистрированы спектры эмиссии и измерены квантовые выходы люминесценции и время жизни возбужденного состояния (табл. 3, рис. 4). Вследствие плохой растворимости соединений **Зв–к** получить фотофизические характеристики в растворе уда-

N⁰	Образец	λ_{ems} , нм (λ_{exc} , нм)	Φ, %	τ, мксб
3a ⁶	Раствор ^в	482, 515, 558 пл (310)	_	_
	Твердая фаза	484, 520, 550 пл (410)	1.9	1.2
	После измельчения	484, 520, 550, 609 пл (410)	4.5	1.2
36 ⁶	Раствор ^в	482, 517, 567 пл (310)	_	_
	Твердая фаза	600(410)	5.9	1.0
	После измельчения	600(410)	6.3	0.9
3в	Твердая фаза	497, 530, 554 пл (370)	4.3	1.2
	После измельчения	497, 530, 554 пл (370)	5.7	1.2
3г	Твердая фаза	600 (430)	6.3	0.6
	После измельчения	603 (430)	5.4	0.5
3д	Твердая фаза	493, 516, 558 пл (430)	19.3	3.2
	После измельчения	664 (410)	11.3	1.3
3e	Твердая фаза	503, 537, 563 пл (395)	13.7	2.4
	После измельчения	624 (410)	12.7	1.0
3ж	Твердая фаза	544 (395)	5.1	0.8
	После измельчения	629 (410)	6.3	1.2
33	Твердая фаза	537, 571 пл (395)	12.3	2.0
	После измельчения	618 (410)	10.9	1.1
3и	Твердая фаза	594 (430)	26.1	1.6
	После измельчения	611 (410)	6.2	0.7
3к	Твердая фаза	487, 500, 523, 550 пл (360)	1.5	1.8
	После измельчения	662 (410)	0.6	1.2

Таблица 3. Фотофизические характеристики комплексов За-к в растворе и твердой фазе

^а Время жизни комплексов определено в максимуме эмиссионных полос. ⁶ Среднее время жизни эмиссии для двух экспоненциальных распадов, определяемое уравнением $t_{av} = (A_1 t_1^2 + A_2 t_2^2)/(A_1 t_1 + A_2 t_2), A_i = \sec i - \text{ой экспоненты.}$

⁶λ_{abs}, HM (ε×10⁻³, cM⁻¹·M⁻¹): **3a**, 224 (29.5), 278 (3.1), 324 (1.4); **36**, 224 (30.1), 275 (2.9), 321 (1.3).

^в 293 К, раствор CH₂Cl₂ (1×10⁻⁴ М.).

лось только для комплексов **За** и **Зб** – для них зарегистрированы спектры поглощения и эмиссии в растворе CH_2Cl_2 (табл. 3, рис. 3).

Электронные спектры поглощения соединений **3a** и **36** в растворе CH_2Cl_2 (1×10⁻⁴ M.), имеют несколько типов оптических переходов (табл. 3, рис. 3), которые соответствуют литературным данным, полученным ранее для других циклометаллированных комплексов платины(II) с изоцианидными лигандами [Pt(C^N)X {CNR}] [13, 15, 19, 20, 23, 40, 41] и [Pt(C^N) {CNR}_2]X [21, 28, 52]. Так, интенсивные полосы поглощения в области λ 200– 300 нм можно отнести к внутрилигандным π - π *-переходам циклометаллированного лиганда ¹LC (рру), менее интенсивные низкоэнергетические полосы поглощения при λ 320–380 нм – спин-разрешенным переходам переноса заряда с лиганда на лиганд (¹L¹L²CT, L¹ = ppy, L² = CNR, π → π *) и с металла на лиганд [¹MLCT, $d\pi(Pt) \rightarrow \pi^*(ppy)$]. В спектре люминесценции комплексов **3a** и **36** в растворе CH₂Cl₂ (1×10⁻⁴ M) излучение имеет одинаковый колебательно-структурированный профиль (рис. 3), аналогичный для ранее описанных моноизоцианидных комплексов [Pt(ppy)Cl{CNR}] [13, 20, 40, 42], что свидетельствует о схожей природе излучательных переходов, обусловленной внутрилигандными ³LC_(ppy) переходам с небольшой примесью ³MLCT-переходов.

Спектр люминесценции комплекса **За** в твердой фазе аналогичен спектру, зарегистрированному в растворе. Схожую с комплексом **За** вибронную структуру и положения максимумов излучения демонстрируют также соединения **Зв**, **д**, **е**, **и**. Комплексы **Зб**, **г**, **ж**-**к** в твердой фазе демонстрирует эмиссию в виде уширенной бесструктурной полосы (табл. 3, рис. 4). Значение времени жизни

Рис. 3. Спектры поглощения соединений **3a** и **36** в растворе CH_2Cl_2 (1×10⁻⁴ M.). На вставка приведены спектры люминесценции.

возбужденного состояния (табл. 3) находится в микросекундном интервале (0.2–2.4 мкс), что указывает на триплетное происхождение люминесценции, т. е. фосфоресценцию [9, 53].

Для изучения механолюминесцентных свойств соединений **3а**–к исследованы фотофизические характеристики после механического измельчения в ступке (спектр люминесценции, время жизни возбужденного состояния и квантовый выход фото-

люминесценции (табл. 3, рис. 5). При измельчении желто-зеленых кристаллов комплексов 3д-ж, и наблюдается постепенное изменение окраски получающегося порошка на желто-оранжевую, что также сопровождается изменением цвета фотолюминесценции с зеленой на оранжевую. Произошедшее изменение цвета остается неизменным при хранении в течение нескольких недель, однако при добавлении нескольких капель растворителя, такого как *н*-гексан или CH₂Cl₂, происходит изменение окраски и цвета фотолюминесценции на наблюдаемые для неизмельченных образцов. При измельчении оранжевых кристаллов комплексов **36**, г, к не наблюдалось видимого изменения окраски образца и цвета фотолюминесценции.

Анализ спектров люминесценции подтвердил, что изученные комплексы по-разному реагируют на механическое воздействие. При измельчении комплексов Зд, е, и происходит изменение спектрального профиля на уширенный куполообразный и смещение максимума излучения в красную область (табл. 2, рис. 5). В случае соединений 3ж, з измельчение сопровождается значительным (более 100 нм) сдвигом максима излучения в красную область, в то время как для комплексов 36, г, к смещение полосы излучения незначительно (0-15 нм); в обоих случаях сохраняется куполообразный спектральный профиль. Важно отметить, что при механическом воздействии на комплексы За, в сохраняются фотофизические

Рис. 4. Спектры эмиссии в твердой фазе комплексов За-к.

Рис. 5. Спектры эмиссии комплексов **36** (а) и **3**д (б) до (1) и после измельчения (2).

свойства, в том числе спектральный профиль с разрешенной вибронной структурой (рис. 5).

Согласно литературным данным [30-33, 54], при механическом воздействии на плоскоквадратные комплексы платины(II) происходит смещение молекул относительно друг друга таким образом, что происходит образование новых агрегатов за счет возникающих межмолекулярных Pt…Pt и/или π-π-взаимодействий. Наблюдаемое изменение фотофизических свойств, в частности батохромное смещение максимума эмиссии [13, 14], вызвано изменением природы возбужденных состояний с ³LC/³MLCT на состояния с переносом заряда металл-металл-лиганд (³MMLCT) или эксимерных (3пл*) возбужденных состояний. Подобное явление является обратимым и при нагревании или добавлении органического растворителя спектральные параметры восстанавливаются.

Таким образом, в работе изучена серия ранее не описанных циклометаллированных комплексов платины(II) с двумя арилизоцианидными лигандами [Pt(ppy)(CNR)₂]X (10 примеров). В твердой фазе все синтезированные соединения фосфоресцируют в зеленом или оранжевом диапазоне видимого света, квантовые выходы фотолюминесценции достигают 26%. Зеленые люминофоры, такие как [Pt(ppy){CNAr}₂]BF₄ (Ar = C₆H₄-4-Me, C₆H₄-4-Cl, C₆H₄-4-Br, C₆H₄-4-I, C₆H₄-3-CF₃), демонстрируют обратимое механохромное изменение люминесценции, достигаемое механическим измельчением (зеленый в оранжевый) и адсорбцией растворителя (оранжевый в зеленый). В тоже время, зеленые люминофоры, такие как [Pt(ppy){CNAr}₂]OTf(Ar = C_6H_2 -2,4,6-Me₃, C_6H_3 -2,6-Cl₂), не изменяют фотофизические свойства при механическом измельчении.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовались коммерческие реактивы и растворители (Aldrich, Вектон) без дополнительной очистки, кроме 1,2-дихлорэтана, CH₂Cl₂ и Et₂O. 1,2-Дихлорэтан и CH₂Cl₂ перегоняли над P₂O₅, Et₂O – над металлическим натрием в присутствии бензофенона. Хлормостиковый комплекс 1 синтезировали из K₂[PtCl₄] по ранее опубликованной методике [49]. Масс-спектрометрический анализ проводили на спектрометре Bruker micrOTOF (Bruker Daltonics) c ионизацией электрораспылением. Растворитель – метанол. Значения *m/z* приведены для сигналов изотопологов с наибольшим содержанием. Инфракрасные спектры записаны на спектрофотометре Shimadzu FTIR-спектр 8400S (4000-400 см⁻¹, образцы таблетированы с КВг). Спектры ЯМР ¹Н, $^{13}C{^{1}H}$ и $^{195}Pt{^{1}H}$ регистрировали в растворе на спектрометре Bruker Avance II+ Грабочая частота 400.13 (¹H), 100.61 (¹³C), 86 МГц (¹⁹⁵Pt)] при комнатной температуре, растворитель - CDCl₃.

Спектры поглощения зарегистрированы на спектрофотометре UV-1800 (Shimadzu). Твердотельные спектры ЯМР зарегистрированы на приборе Bruker 400 MHz WB Avance III (Bruker Daltonics), оснащенном датчиком вращения под магическим углом (MAS). Спектры ЯМР на ядрах ¹³С получены методом кросс-поляризации (СР) при скорости вращения 12.5 кГц, время контакта для всех экспериментов составило 2000 мкс. Релаксационная задержка – 2 с для комплексов 3д и 3к, 5 с – 3е–3. Спектры ЯМР на ядрах ¹⁹⁵Рt были получены методом прямого возбуждения (DE) при двух скоростях вращения для определения положения изотропной линии (12.5 и 13.3 кГц для комплексов 3д и 3к, 12.5 и 11.7 кГц – **3е**–**3**). Релаксационная задержка – 10 с для комплекса **3**д, 5 с – **3**к, 1 с – **3**е–**3**. Во всех экспериментах длительность импульса составила 3.5 мкс. Спектры возбуждения, эмиссии и расчетное время жизни возбужденного состояния получены с помощью спектрофлуориметра Fluorolog-3 (Horiba Jobin Yvon). Рентгеноструктурный анализ За (ССDС 2208906), Зб (ССDС 2208907), Зв (CCDC 2208908) и 3к (CCDC 2208903) выполняли на дифрактометре Xcalibur, Eos. Измерения проводили при 100 К с использованием монохроматического Мо K_{a} - (λ 0.71073 нм) и Си K_{a} -излучения (λ 1.54184 нм). Структура решена прямыми методами и уточнена с использованием программы SHELX [55] встроенной в комплекс OLEX2 [56]. Поправка на поглощение введена в программном комплексе CrysAlisPro эмпирически с помощью сферических гармоник, реализованных в алгоритме шкалирования SCALE3 ABSPACK [57].

Общая методика синтеза комплексов За–в. Суспензию [{Pt(ppy)(μ -Cl)}₂] (100 мг, 0.13 ммоль) и AgOTf (40 мг, 0.32 ммоль) в 20 мл ацетонитрила перемешивали 2 ч. Образовавшийся нерастворимый AgCl отделяли фильтрованием, фильтрат упаривали досуха при пониженном давлении. Образовавшийся твердый остаток растворяли в CH₂Cl₂ (2 мл) и добавляли 0.52 ммоль соответствующего твердого изоцианида CNAr (Ar = C₆H₂-2,4,6-Me₃, C₆H₃-2-Cl-6-Me, C₆H₃-2,6-Cl₂). Смесь перемешивали в течение 12 ч при комнатной температуре. Образовавшийся осадок отфильтровывали, промывали Et₂O (3×3 мл) и сушили на воздухе при комнатной температуре.

Комплекс За. Выход 61 мг (64%), т. разл. 165°С. ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 1 2023 ИК спектр, v, см⁻¹: 2166 с, 2186 (N≡C). Спектр ЯМР ¹Н (CDCl₂), б, м. д.: 2.35 с (3Н, Ме), 2.37 с (3H, Me, Mes), 2.49 c (6H, Me, Mes), 2.50 c (6H, Me, Mes), 7.03 д (4H, CH, Mes, J_{HH} 7.3 Гц), 7.28–7.38 м (2H, H³, H⁴), 7.66 д. д. д. (1H, H¹⁰, $J_{\rm HH}$ 7.3, 5.7, 1.4 Гц), 7.69–7.75 м (2H, H², H⁵), 7.96 д (1H, H⁸, J_{HH} 7.2 Гц), 8.18 т. д (1Н, Н⁹, $J_{\rm HH}$ 7.8, 1.5 Гц), 9.04 д с сателлитами ¹⁹⁵Рt (1H, H¹¹ J_{HH} 4.3, ³J_{HPt} 36.0 Гц). Спектр ЯМР ¹³С{¹H} (CDCl₃), $\delta_{\rm C}$, м. д.: 18.72 (Me, Mes), 18.79 (Me, Mes), 21.42 (Me, Mes), 21.46 (Me, Mes), 120.44 (C^8), 125.1 (C^2), 126.06 (C^9), 127.69 (C^3) , 129.39 (C_{Ar}H,Mes), 129.41 (C_{Ar}H, Mes), 131.68 (C⁴), 135.5(C_{Ar}, Mes), 135.90 (C_{Ar}, Mes), 137.34 (C⁵), 141.16 (C¹⁷), 141.83 (C²⁷), 142.43 (C⁹), 147.25 (C⁷), 148.01 (C⁶), 153.68 (C¹¹), 166.60 (C¹); сигнал $C_{изоцианид}$ не обнаружен. Спектр ЯМР ¹⁹⁵Pt{¹H} (CDCl₃): б_{Рt}-4103 м. д. Масс-спектр, *m/z*: 639.2108 $[M - OTf]^+$ (вычислено для $C_{31}H_{30}N_3Pt^+$: 639.2087). Данные PCA: C₃₄H₃₃F₃N₄O₃PtS, *M* 829.79, сингония триклинная, пространственная группа Р-1, a 8.5823(3) Å, b 12.1692(5) Å, c 15.6374(6) Å, β 86.339(3)°, V 1610.19(11) Å³, Z 2, d_{выч} 1.711 г/см³, µ 4.481 мм⁻¹, размер кристалла $0.2 \times 0.16 \times 0.08$ мм³, всего отражений 30934, независимых отражений с $I > 2\sigma(I)$ 7388 (R_{int} 0.0486), $R_1(|F_0| \ge 4\sigma F)/R_1$ (BCe данные) 0.0248/0.0306, $wR_2(|F_0| \ge 4\sigma F)/wR_2$ (все данные) 0.0502/0.0528, $\rho_{min}/\rho_{max} = 0.92/-0.97 \ e/Å^3$.

Комплекс 36. Выход 69 мг (72%), т. разл. 193°С. ИК спектр, v, см⁻¹: 2184 с, 2207 (N≡C). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 2.61 с (3Н, Ме), 2.65 с (3H, Me), 7.26–7.49 м (8H, H³, H⁴, H_{Ar}), 7.63 д. д. д. (1H, H¹⁰, J_{HH} 7.3, 5.8, 1.4 Гц), 7.72 д. д (1H, H⁵, J_{HH} 7.6, 1.8 Гц), 7.77 д. д (1Н, Н², J_{НН} 7.2, 1.7 Гц), 7.95 д (1H, H⁸, J_{HH} 7.5 Гц), 8.18 т. д (1H, H⁹, J_{HH} 7.8, 1.5 Гц), 9.09 д с сателлитами ¹⁹⁵Рt (1H, H¹¹, J_{HH} 5.9 Гц, ${}^{3}J_{\rm HPt}$ 31.0 Гц). Спектр ЯМР ${}^{13}C{}^{1}H{}$ (CDCl₃), δ_C, м. д.: 19.21 (Ме), 19.32 (Ме), 120.45 (С⁸), 125.04 (C²), 126.01 (C⁹), 127.59 (C³), 127.93 (Ar), 128.18 (Ar), 129.74 (C_{Ar}H, Ar), 129.84 (C_{Ar}H, Ar), 131.61 (C⁴), 131.94 (C_{Ar}, Ar), 132.20 (C_{Ar}, Ar), 137.75 (C⁵), 138.06, 138.85, 142.53 (C⁹), 146.90 (C⁷), 149.77 (C⁶), 153.94 (С¹¹), 166.69 (С¹); сигнал С_{изоцианид} не обнаружен. Спектр ЯМР ¹⁹⁵Рt{¹H} (CDCl₃): δ_{Pt} –4103 м. д. Масс-спектр, *m/z*: 639.2108 [*M* – OTf]⁺ (вычислено для C₃₁H₃₀N₃Pt⁺: 639.2087). Данные PCA: C₂₈N₃O₃F₃SCl₂PtH_{0,5}, *M* 781.86, сингония триклинная, пространственная группа P-1, a 8.8202(2) Å, b 11.6797(4) Å, c 15.6346(5) Å, β 88.761(2)°, V 1527.41(8) Å³, Z 2, $d_{\rm выч}$ 1.700 г/см³, μ 4.887 мм⁻¹, размер кристалла 0.1×0.15×0.1 мм³, всего отражений 17725, независимых отражений с $I > 2\sigma(I)$ 9665 ($R_{\rm int}$ 0.0314), $R_1(|F_{\rm o}| \ge 4\sigma F)/R_1$ (все данные) 0.0298/0.0377, $wR_2(|F_{\rm o}| \ge 4\sigma F)/wR_2$ (все данные) 0.0562/0.0602, $\rho_{\rm min}/\rho_{\rm max} = 1.32/-0.94 \ e/Å^3$.

Комплекс Зв. Выход 67 мг (66%), т. разл. 180°С. ИК спектр, v, см⁻¹: 2176 с, 2201 (N≡С). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 7.29–7.34 м (2Н, H³, H⁴), 7.44 д. д. д (1H, H¹⁰, J_{HH} 7.4, 5.7, 1.5 Гц), 7.57-7.69 м (5H, H^{Ar}, H⁵), 7.78-7.80 м (1H, H²), 7.94–7.96 м (2Н, Н^{Ar}), 8.03 д (1Н, Н⁸, *J*_{нн} 8.2 Гц), 8.17 т. д (1H, H⁹, $J_{\rm HH}$ 7.9, 1.6 Гц), 8.98 д с сателлитами ¹⁹⁵ Рt (1H, H¹¹, J_{HH} 5.7, ³J_{HPt} 36.0 Гц). Спектр ЯМР ¹³С{¹H} (CDCl₃), δ_{C} , м. д.: 120.85 (C⁸), 125.19 (C²), 125.26 (C⁹), 127.66 (C³), 129.19 (C_{Ar}H, Ar), 129.23 (C_{Ar}H, Ar), 131.82 (C⁴), 132.75 (C_{Ar}H, Ar), 132.87 (C_{Ar}, Ar), 132.92 (C_{Ar}H, Ar), 133.26 (C_{Ar}, Ar), 138.40 (C⁵), 142.75 (C⁹), 147.06 (C⁷), 148.13 (C_{Ar}, Ar), 149.70 (C_{Ar}, Ar), 149.84 (C⁶), 153.79 (С¹¹), 166.72 (С¹); сигнал С_{изоцианид} не обнаружен. Спектр ЯМР ¹⁹⁵Рt{¹H} (CDCl₃): δ_{Pt} –4093 м. д. Macc-спектр, *m/z*: 690.9517 [*M* – OTf]⁺ (вычислено для C₂₅H₃₀Cl₄N₃Pt⁺: 690.9584). Данные PCA: C₂₆N₃O₃F₃SCl₄PtH_{0.5}, *M* 828.74, сингония триклинная, пространственная группа P-1, а 8.0304(2) Å, b 13.7011(4) Å, c 14.3091(4) Å, β 83.126(2)°, V 1472.63(7) Å³, Z 2, d_{выч} 1.869 г/см³, µ 5.250 мм⁻¹, размер кристалла 0.15×0.11×0.1 мм³, всего отражений 36299, независимых отражений с $I > 2\sigma(I)$ 9812 (R_{int} 0.0357), $R_1(|F_0| \ge 4\sigma F)/R_1$ (все данные) $0.0228/0.0262, wR_2(|F_0| \ge 4\sigma F)/wR_2$ (все данные) 0.0515/0.0528, $\rho_{min}/\rho_{max} = 1.48/-0.93 \ e/Å^3$.

Синтез комплекса 3г. К суспензии [{Pt(ppy)(µ-Cl)}₂] (100 мг, 0.13 ммоль) и NaBF₄ (40 мг, 0.32 ммоль) в 20 мл 1,2-дихлорэтана при перемешивании и нагревании до 50°С прибавляли по каплям раствор CNC₆H₄NMe₂ (76 мг, 0.52 ммоль) в 10 мл 1,2-дихлорэтана в течение 1 ч. Полученную смесь перемешивали при 80°С 3 ч. В течение этого периода реакционная смесь постепенно превращалась из желтой суспензии в темно-коричневый раствор, из которого затем при медленном выпаривании растворителя образовался красный остаток, который отфильтровывали, промывали водой (2 мл), ацетоном (2 мл), MeCN (2 мл) и сушили на воздухе при комнатной температуре. Выход 110 мг (58%), т. разл. 183°С. ИК спектр, v, см⁻¹: 2183 с, 2204 (N=C). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 3.00 с (6H, Me, NMe₂), 3.03 с (6H, Me, NMe₂), 6.57 т (4H, Ar, J_{HH} 9.3 Гц), 6.83 т. д (1H, H³, J_{HH} 7.5, 0.9 Гц), 6.93 т. д (1H, H⁴, J_{HH} 7.3, 1.1 Гц), 7.10 д (2H, Ar, J_{HH} 9.0 Гц), 7.17–7.26 м (7H, H¹⁰, H⁵, H², Ar), 7.42–7.44 м (1H, H⁸), 7.59 т. д (1H, H⁹, J_{HH} 7.9, 1.3 Гц), 8.32 д (1H, H¹¹, J_{HH} 5.6 Гц). Спектр ЯМР ¹³С{¹H} (CDCl₃), δ_{C} , м. д.: 40.04 (Me), 119.87 (C⁸, C¹⁰), 124.60 (C⁵), 125.27 (C⁴), 125.40, 126.50, 127.73, 128.36 (C from Ar), 131.34 (C³), 136.72 (C²), 141.02 (C¹, C⁹), 146.29 (C⁶), 151.19 (C from Ar), 151.33 (C¹¹), 166.06 (C⁷); сигнал С_{изоцианид} не обнаружен. Спектр ЯМР ¹⁹⁵Pt{¹H} (CDCl₃): δ_{Pt} –4074 м. д. Масс-спектр, m/z: 641.1976 [M – BF₄]⁺ (вычислено для C₂₉H₂₈N₅Pt⁺: 641.1989).

Общая методика синтеза комплексов 3д-к. К суспензии [$\{Pt(ppy)(\mu-Cl)\}_2$] (100 мг, 0.13 ммоль) и NaBF₄ (35 мг, 0.32 ммоль) в 20 мл 1,2-дихлорэтана при перемешивании и нагревании до 50 °C прибавляли раствор 0.52 ммоль соответствующего изоцианида CNAr (Ar = C₆H₄-4-Cl, C₆H₄-4-Br, C₆H₄-4-I, C₆H₄-3-CF₃, C6H4-3-CF₃) в 10 мл 1,2-дихлорэтана в течение 1 ч. Смесь перемешивали при 80°C 3 ч. В течение этого периода реакционная смесь постепенно превращалась из желтой суспензии в светло-зеленый раствор, после чего образовался желтый или оранжевый осадок. Твердый продукт отфильтровывали, промывали водой (2 мл), ацетоном (5 мл), CH₂Cl₂ (2 мл) и сушили на воздухе при комнатной температуре.

Комплекс 3д. Выход 98 мг (56%), т. разл. 231°С. ИК спектр, ν , см⁻¹: 2196 с, 2226 (N≡C). Спектр ЯМР ¹³С СР/МАЅ, $\delta_{\rm C}$, м. д.: 21.41, 123.19, 124.23, 125.88, 129.81, 139.83, 141.59, 147.02, 148.12, 150.45, 151.64, 152.75, 166.21. Спектр ЯМР ¹⁹⁵Pt: $\delta_{\rm Pt}$ –4156 м. д. Масс-спектр, m/z: 583.1420 $[M-{\rm BF_4}]^+$ (вычислено для ${\rm C_{27}H_{22}N_3Pt^+}$: 583.1458).

Комплекс 3е. Выход 126 мг (68%), т. разл. 180°С. ИК спектр, v, см⁻¹: 2196 с, 2221 (N≡C). Спектр ЯМР ¹³С СР/МАЅ, $\delta_{\rm C}$, м. д.: 121.49, 124.70, 129.53, 136.08, 138.50, 141.02, 143.06, 147.43, 149.34, 154.55, 167.27. Спектр ЯМР ¹⁹⁵Рt $\delta_{\rm Pt}$, м. д.: -4156. Масс-спектр, *m/z*: 624.0405 [*M* – BF₄]⁺ (вычислено для C₂₅H₁₆Cl₂N₃Pt⁺: 624.0352).

Комплекс 3ж. Выход 146 мг (70%), т. разл. 185°С. ИК спектр, v, см⁻¹: 2192 с, 2220 (N \equiv C). Спектр ЯМР ¹³С СР/МАЅ, δ_{C} , м. д.: 123.09, 123.91,

129.47, 133.49, 134.63, 135.22, 142.53, 146.93, 151.43, 152.78, 165.12. Спектр ЯМР ¹⁹⁵Рt: δ_{Pt} –4168 м. д. Масс-спектр, *m/z*: 713.9352 [*M* – BF₄]⁺ (вычислено для C₂₅H₁₆Br₂N₃Pt⁺: 713.9332).

Комплекс 33. Выход 156 мг (68%), т. разл. 165°С. ИК спектр, ν , см⁻¹: 2191 с, 2217 (N=C). Спектр ЯМР ¹³С СР/МАЅ, $\delta_{\rm C}$, м. д.: 100.03, 119.42, 120.48, 124.76, 128.88,129.58, 139.36, 146.75, 150.07, 153.47, 165.49, 167.21. Спектр ЯМР ¹⁹⁵Рt: $\delta_{\rm Pt}$ –4168 м. д. Масс-спектр, *m/z*: 806.9079 [*M* – BF₄]⁺ (вычислено для C₂₅H₁₆I₂N₃Pt⁺: 806.9084).

Комплекс 3и. Выход 136 мг (67%), т. разл. 160°С. ИК спектр, v, см⁻¹: 2195 с, 2218 (N≡C). Спектр ЯМР ¹³С СР/МАЅ, $\delta_{\rm C}$, м. д.: 125.04, 127.63, 131.67, 132.06, 132.76, 139.25, 142.95, 146.28, 152.08, 155.42, 165.48, 165.87, 168.14. Спектр ЯМР ¹⁹⁵Рt $\delta_{\rm Pt}$: –4195 м. д. Масс-спектр, *m/z*: 691.0971 [*M*–BF₄]⁺ (вычислено для C₂₇H₁₆F₆N₃Pt⁺: 691.0896).

Комплекс Зк. Выход 136 мг (52%), т. разл. 230°С. ИК, v, см⁻¹: 3081 (С−Н), 2231, 2203 (С≡N), 1612 (C=C, C=N). Спектр ЯМР ¹Н (CD₃CN), б, м. д.: 7.30–7.32 м (2H, H³, H⁴), 7.43 т (1H, J_{HH}, H¹⁰), 7.75– 7.77 м (2H, H_{Ar}), 7.80–7.84 м 2H, H_{Ar}), 7.95–8.06 м (5H, H⁵, H², H_{Ar}), 8.12–8.16 м (3H, H⁴, H⁸, H⁹), 8.88 д (1Н, Н¹¹, *J*_{HH} 5.6, ³*J*_{HPt} 37.0 Гц). Спектр ЯМР ¹³С{¹H} (CD₃CN), δ_C, м. д.: 121.69, 122.92, 125.48 д (*J*_{C,F} 2.3 Hz), 125.62, 125.84 д (*J*_{C,F} 3.9 Гц), 126.12, 126.26, 128.45, 129.22 д (J_{CF} 3.9 Гц), 129.47 д (м-СF₃, *J*_{CF} 3.9 Гц), 132.13, 132.31, 132.86, 138.99, 143.56 (C¹), 148.13 (C⁶), 150.66 (C¹¹), 155.17, 167.75 (С⁷); сигнал С_{изоцианид} не обнаружен. Спектр ЯМР ¹⁹F (CD₃CN), δ_F, м. д.: -63.51 м (3F), -151.86 м (3F). Спектр ЯМР ¹⁹⁵Рt{¹H} (CD₃CN): δ_{Pt} –4137 м. д. Масс-спектр, *m/z*: 691.0990 [*M* – BF₄]⁺ (вычислено для C₂₇H₁₆F₆N₃Pt⁺: 691.0896). Данные PCA: С₂₇Н₁₆ВF₁₀N₃Pt, *М* 778.33, сингония триклинная, пространственная группа P-1, а 7.0835(3) Å, b 13.3599(4) Å, c 14.8864(4) Å, β 100.713(3)°, V 1284.55(8) Å³, Z 2, d_{выч} 2.012 г/см³, µ 11.113 мм⁻¹, размер кристалла 0.2×0.2×0.15 мм³, всего отражений 23008, независимых отражений с $I > 2\sigma(I)$ 4885 (R_{int} 0.0554), $R_1(|F_0| \ge 4\sigma F)/R_1$ (все данные) $0.0283/0.0307, wR_2(|F_0| \ge 4\sigma F)/wR_2$ (все данные) 0.0692/0.0710, $\rho_{\min}/\rho_{\max} = 1.70/-1.16 \ e/Å^3$.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Каткова Светлана Александровна, ORCID: https://orcid.org/0000-0002-7387-2948

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 1 2023

Соколова Элина Вадимовна, ORCID: https:// orcid.org/0000-0001-8857-9536

Кинжалов Михаил Андреевич, ORCID: https:// orcid.org/0000-0001-5055-1212

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского научного фонда (проект 22-23-00621) с использованием оборудования ресурсных центров Санкт-Петербургского государственного оборудования «Магнитно-резонансные методы исследований», «Рентгенодифракционные методы исследования», «Методы анализа состава вещества» и «Образовательный центр по направлению химия», «Оптические и лазерные методы исследования вещества».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. Vol. 9. N 3. P. 417. doi 10.1039/ d1qi01288f
- Adachi C., Baldo M.A., Thompson M.E., Forrest S.R. // J. Appl. Phys. 2001. Vol. 90. N 10. P. 5048. doi 10.1063/1.1409582
- Baldo M.A., Lamansky S., Burrows P.E., Thompson M.E., Forrest S.R. // Appl. Phys. Lett. 1999. Vol. 75. N 1. P. 4-6. doi 10.1063/1.124258
- McGhie B.S., Aldrich-Wright J.R. // Biomedicines. 2022.
 Vol. 10. N 3. P. 578. doi 10.3390/biomedicines10030578
- Lee L.C.-C., Lo K.K.-W. // J. Am. Chem. Soc. 2022. Vol. 144. N 32. P. 14420. doi 10.1021/jacs.2c03437
- Na H., Maity A., Morshed R., Teets T.S. // Organometallics. 2017. Vol. 36. N 15. P. 2965. doi 10.1021/acs.organomet.7b00428
- Fornies J., Sicilia V., Larraz C., Camerano J.A., Martin A., Casas J.M., Tsipis A.C. // Organometallics. 2010. Vol. 29. N 6. P. 1396. doi 10.1021/om901032v
- Sanning J., Stegemann L., Ewen P.R., Schwermann C., Daniliuc C.G., Zhang D., Lin N., Duan L., Wegner D., Doltsinis N.L., Strassert C.A. // J. Mater. Chem. (C). 2016. Vol. 4. N 13. P. 2560. doi 10.1039/C6TC00093B
- Solomatina A.I., Aleksandrova I.O., Karttunen A.J., Tunik S.P., Koshevoy I.O. // Dalton Trans. 2017. Vol. 46. N 12. P. 3895. doi 10.1039/C7DT00349H
- Chen Y., Lu W., Che C.-M. // Organometallics. 2013. Vol. 32. N 1. P. 350. doi 10.1021/om300965b

- Paziresh S., Babadi Aghakhanpour R., Fuertes S., Sicilia V., Niroomand Hosseini F., Nabavizadeh S.M. // Dalton Trans. 2019. Vol. 48. N 17. P. 5713. doi 10.1039/ c9dt00807a
- Sutton G.D., Olumba M.E., Nguyen Y.H., Teets T.S. // Dalton Trans. 2021. Vol. 50. N 48. P. 17851. doi 10.1039/D1DT03312C
- Katkova S.A., Luzyanin K.V., Novikov A.S., Kinzhalov M.A. // New J. Chem. 2021. Vol. 45. N 6. P. 2948. doi 10.1039/D0NJ05457G
- Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Cheranyova A.M., Ivanov D.M., Kukushkin V.Y., Bokach N.A. // ACS Omega. 2022. Vol. 7. N 38. P. 34454. doi 10.1021/acsomega.2c04110
- Solomatina A.I., Krupenya D.V., Gurzhiy V.V., Zlatkin I., Pushkarev A.P., Bochkarev M.N., Besley N.A., Bichoutskaia E., Tunik S.P. // Dalton Trans. 2015. Vol. 44. N 16. P. 7152. doi 10.1039/c4dt03106g
- Yam V.W.W., Law A.S.Y. // Coord. Chem. Rev. 2020.
 Vol. 414. P. 213298. doi 10.1016/j.ccr.2020.213298
- Wang P.P., Miao X.R., Meng Y., Wang Q., Wang J., Duan H.H., Li Y.W., Li C.Y., Liu J., Cao L.P. // ACS Appl. Mater. Interfaces. 2020. Vol. 12. N 20. P. 22630. doi 10.1021/acsami.0c04917
- Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. Vol. 405. P. 213094. doi 10.1016/j. ccr.2019.213094
- Diez A., Fornies J., Larraz C., Lalinde E., Lopez J.A., Martin A., Moreno M.T., Sicilia V. // Inorg. Chem. 2010. Vol. 49. N 7. P. 3239. doi 10.1021/ic902094c
- Martinez-Junquera M., Lara R., Lalinde E., Moreno M.T. // J. Mater. Chem. (C). 2020. Vol. 8. N 21. P. 7221. doi 10.1039/d0tc01163k
- 21. Diez A., Fornies J., Fuertes S., Lalinde E., Larraz C., Lopez J.A., Martin A., Moreno M.T., Sicilia V. // Organometallics. 2009. Vol. 28. N 6. P. 1705. doi 10.1021/om800845c
- Fornies J., Sicilia V., Borja P., Casas J.M., Diez A., Lalinde E., Larraz C., Martin A., Moreno M.T. // Chem. Asian J. 2012. Vol. 7. N 12. P. 2813. doi 10.1002/ asia.201200585
- Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M., Golbon Haghighi M., Notash B., Fereidoonnezhad M. // New J. Chem. 2017. Vol. 41. N 24. P. 15347. doi 10.1039/C7NJ03110F
- Sivchik V.V., Grachova E.V., Melnikov A.S., Smirnov S.N., Ivanov A.Y., Hirva P., Tunik S.P., Koshevoy I.O. // Inorg. Chem. 2016. Vol. 55. N 7. P. 3351. doi 10.1021/acs.inorgchem.5b02713
- Dobrynin M.V., Kasatkina S.O., Baykov S.V., Savko P.Y., Antonov N.S., Mikherdov A.S., Boyarskiy V.P., Islamova R.M. // Dalton Trans. 2021. Vol. 50. N 42. P. 14994. doi 10.1039/D1DT02823E

- Dobrynin M.V., Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Starova G.L., Kukushkin V.Y., Islamova R.M. // ACS Appl. Polymer Mater. 2021. Vol. 3. N 2. P. 857. doi 10.1021/acsapm.0c01190
- Anderson C., Crespo M., Morris J., Tanski J.M. // J. Organomet. Chem. 2006. Vol. 691. N 26. P. 5635. doi 10.1016/j.jorganchem.2006.09.012
- Liu J., Leung C.H., Chow A.L.F., Sun R.W.Y., Yan S.C., Che C.M. // Chem. Commun. 2011. Vol. 47. N 2. P. 719. doi 10.1039/c0cc03641b
- Sun R. W.Y., Chow A.L.F., Li X.H., Yan J.J., Chui S.S.Y., Che C.M. // Chem. Sci. 2011. Vol. 2. N 4. P. 728. doi 10.1039/c0sc00593b
- Sagara Y., Kato T. // Nat. Chem. 2009. Vol. 1. N 8. P. 605. doi 10.1038/nchem.411
- Chi Z., Zhang X., Xu B., Zhou X., Ma C., Zhang Y., Liu S., Xu J. // Chem. Soc. Rev. 2012. Vol. 41. N 10. P. 3878. doi 10.1039/C2CS35016E
- Sagara Y., Yamane S., Mitani M., Weder C., Kato T. // Adv. Mater. 2016. Vol. 28. N 6. P. 1073. doi 10.1002/ adma.201502589
- Huang Q., Li W., Yang Z., Zhao J., Li Y., Mao Z., Yang Z., Liu S., Zhang Y., Chi Z. // CCS Chem. 2022. Vol. 4. N 5. P. 1643. doi doi10.31635/ ccschem.021.202100968
- 34. Su M., Liu S., Zhang J., Meng C., Ni J. // Dyes Pigm. 2022. Vol. 200. P. 110139. doi 10.1016/j. dyepig.2022.110139
- Ito S. // CrystEngComm. 2022. Vol. 24. N 6. P. 1112. doi 10.1039/D1CE01614H
- Riesebeck T., Bertrams M.-S., Stipurin S., Konowski K., Kerzig C., Strassner T. // Inorg. Chem. 2022. Vol. 56. N16. P. 9391. doi 10.1021/acs.inorgchem.2c02141
- Zhang H.-H., Wu S.-X., Wang Y.-Q., Xie T.-G., Sun S.-S., Liu Y.-L., Han L.-Z., Zhang X.-P., Shi Z.-F. // Dyes Pigm. 2022. Vol. 197. P. 109857. doi 10.1016/j. dyepig.2021.109857
- Yang C.-J., Yi C., Xu M., Wang J.-H., Liu Y.-Z., Gao X.-C., Fu J.-W. // Appl. Phys. Lett. 2006. Vol. 89. N 23. P. 233506. doi 10.1063/1.2400395
- 39. Ni J., Liu G., Su M., Zheng W., Zhang J. // Dyes Pigm. 2020. Vol. 180. P. 108451. doi 10.1016/j. dyepig.2020.108451
- Каткова С.А., Лещев А.А., Михердов А.С., Кинжалов М.А. // ЖОХ. 2020. Т. 90. № 4. С. 591; Katkova S.A., Leshchev A.A., Mikherdov A.S., Kinzhalov M.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 4. P. 648. doi 10.1134/s1070363220040143
- Каткова С.А., Михердов А.С., Новиков А.С., Старова Г.Л., Кинжалов М.А. // ЖОХ. 2021. Т. 91. № 3. С. 430; Katkova S.A., Eliseev I.I., Mikherdov A.S., Sokolova E.V., Starova G.L., Kinzhalov M.A. // Russ.

J. Gen. Chem. 2021. Vol. 91. N 3. P. 393. doi 10.1134/ s1070363221030099

- Katkova S.A., Mikherdov A.S., Sokolova E.V., Novikov A.S., Starova G.L., Kinzhalov M.A. // J. Mol. Struct. 2022. Vol. 1253. P. 132230. doi 10.1016/j. molstruc.2021.132230
- Diez-Gonzalez S., Nolan S.P. // Coord. Chem. Rev. 2007.
 Vol. 251. N 5–6. P. 874. doi 10.1016/j.ccr.2006.10.004
- 44. Sicilia V., Fuertes S., Martin A., Palacios A. // Organometallics. 2013. Vol. 32. N 15. P. 4092. doi 10.1021/om400159g
- Popov R.A., Mikherdov A.S., Boyarskiy V.P. // Eur. J. Inorg. Chem. 2022. Vol. 2022. N 26. P. e202200217. doi 10.1002/ejic.202200217.
- Кинжалов М.А., Кашина М.В., Михердов А.С., Каткова С.А, Суслонов В.В. // ЖОХ, 2018. Т. 88. № 6.
 С. 1000; Kinzhalov М.А., Kashina M.V., Mikherdov A.S., Katkova S.A., Suslonov V.V. // Russ. J. Gen. Chem. 2018.
 Vol. 88. N 6. P. 1180. doi 10.1134/S107036321806021X
- 47. Кинжалов М.А., Боярский В.П. // ЖОХ. 2015. Т. 85.
 № 10. С. 1681; Kinzhalov М.А., Boyarskii V.P. // Russ.
 J. Gen. Chem. 2015. Vol. 85. N 10. P. 2313. doi 10.1134/ S1070363215100175
- Beer H., Bresien J., Michalik D., Rölke A.-K., Schulz A., Villinger A., Wustrack R. // J. Org. Chem. 2020. Vol. 85. N 22. P. 14435. doi 10.1021/acs.joc.0c00460.

- Guirado A., Zapata A., Gómez J.L., Trabalón L., Gálvez J. // Tetrahedron. 1999. Vol. 55. N 31. P. 9631. doi 10.1016/S0040-4020(99)00509-8
- Pazderski L., Pawlak T., Sitkowski J., Kozerski L., Szłyk E. // Magn. Reson. Chem. 2009. Vol. 47. N 11. P. 932. doi 10.1002/mrc.2491
- Bondi A. // J. Phys. Chem. 1964. Vol. 68. N 3. P. 441. doi 10.1021/j100785a001
- Fuertes S., Chueca A.J., Peralvarez M., Borja P., Torrell M., Carreras J., Sicilia V. // ACS Appl. Mater. Interfaces. 2016. Vol. 8. N 25. P. 16160. doi 10.1021/ acsami.6b03288
- Kinzhalov M.A., Katkova S.A., Doronina E.P., Novikov A.S., Eliseev I., Ilichev V.A., Kukinov A.A., Starova G.L., Bokach N.A. // Zeit. Kristallogr. Cryst. Mater. 2018. Vol. 233. N 11. P. 795. doi 10.1515/ zkri-2018-2075
- Shimizu M. In: Aggregation-Induced Emission. Elsevier, 2022. Ch. 8. P. 253.
- Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. Vol. 44. N 6. P. 1281. doi 10.1107/ S0021889811043202
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. N 2. P. 339. doi 10.1107/ S0021889808042726
- 57. CrysAlisPro A.T., Version 1.171.36.20 (release 27-06-2012).

Bisisocyanide Cyclometallated Platinum(II) Complexes: Synthesis, Structure, Photophysical Properties, and Mechanochromic Behavior

S. A. Katkova^{*a*,*}, E. V. Sokolova^{*a*}, and M. A. Kinzhalov^{*a*}

^a St. Petersburg State University, St. Petersburg, 199034 Russia *e-mail: s.katkova@spbu.ru

Received October 1, 2022; revised October 24, 2022; accepted October 26, 2022

A series of cyclometallated platinum(II) complexes [Pt(ppy){CNAr}₂]X with two isocyanide ligands (Hppy = 2-phenylpyridine, Ar = C₆H₂-2,4,6-Me₃, C₆H₃-2-Cl-6-Me , C₆H₃-2,6-Cl₂, C₆H₄-4-NMe₂, C₆H₄-4-Me, C₆H₄-4-Cl, C₆H₄-4-Br, C₆H₄-4-I, C₆H₄-4-CF₃, C₆H₄-3-CF₃; X = BF₄, OTf) was synthesized by the reaction of the [{Pt(ppy)Cl}₂] dimer with isocyanides (yield 52–70%). The structure of the resulting complexes was determined using mass spectrometry, ¹H, ¹³C{¹H}, ¹⁹⁵Pt{¹H}, ¹H-¹H COSY, ¹H-¹H NOESY, ¹H-¹³C HSQC, and ¹H-¹³C HMBC NMR spectroscopy in solution and solid-state CP/MAS ¹³C and ¹⁹⁵Pt NMR spectroscopy, IR spectroscopy and X-ray diffraction analysis in the solid phase. The photophysical properties of the obtained complexes in the solid phase and the mechanochromic luminescence behavior were studied. In the solid phase, all synthesized compounds phosphoresce in the green or orange range of visible light, while photoluminescence quantum yields reach 26%. Green phosphors exhibit a reversible mechanochromic luminescence change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).

Keywords: platinum complexes, isocyanides, luminescence, mechanoluminescence