УДК 546.04:[547.8:546.302]

СТРУКТУРА И УСТОЙЧИВОСТЬ КОМПЛЕКСОВ НИКЕЛЯ(II) С КРИПТАНДОМ[2.2.2]

© 2023 г. В. А. Исаева^{1*}, Г. А. Гамов¹, А. С. Католикова¹, Е. И. Погодина¹

¹ Ивановский государственный химико-технологический университет, Шереметевский пр. 7, Иваново, 153000 Россия *e-mail: kvol1969@gmail.com

> Поступило в редакцию 21 сентября 2022 г. После доработки 14 октября 2022 г. Принято к печати 17 октября 2022 г.

В работе методом потенциометрического титрования определены значения констант устойчивости моноядерного, протонированного и биядерного комплексов никеля(II) с криптандом[2.2.2] в водном растворе при ионной силе $\mu \rightarrow 0$ и температуре 298 К. Представлены структура и основные геометрические характеристики криптатов Ni²⁺, установленные посредством квантово-химических расчетов *in vacuo*.

Ключевые слова: криптанд[2.2.2], никель(II), комплексообразование, константа устойчивости

DOI: 10.31857/S0044460X23010146, EDN: OZSKWV

Высокая селективность взаимодействия краун-эфиров, криптандов, подантов с ионами металлов позволяет использовать макроциклы для выделения неустойчивых химических соединений, для аналитического определения микрокомпонентов в природных и промышленных объектах, для избирательных каталитических и различных межфазных процессов, а также как высокоселективные сорбенты, ионофоры [1-6]. Как катализаторы межфазного переноса криптанды используются для производства радиофармацевтических препаратов [7–9], как контрастные агенты в виде комплексов с металлами для магнитно-резонансной томографии [10-14], как стабилизирующие хелатные лиганды в кристаллографии [15-17], находят применение криптанды в электрохимии [18, 19], хроматографии [20, 21], рассматриваются возможности их использования для лечения опухолей [22]. Практическое использование криптандов предполагает наличие данных об устойчивости их комплексов с ионами металлов. Криптатные комплексы наиболее изучены, согласно обзорной статье [24], с ионами щелочных и щелочноземельных металлов. Также имеется большое число работ, посвященных исследованию криптатов серебра(I) [24]. Комплексообразование криптандов с ионами двухвалентных *d*-металлов изучено в меньшей степени. Константы устойчивости в водном растворе комплексов криптанда[2.2.2] состава 1:1 определены с ионами Ni²⁺, Co²⁺, Zn²⁺, Cu²⁺, Cd²⁺, Hg²⁺, Pb²⁺ [24–27]. При изучении комплексообразования ионов меди(II) и цинка(II) с моноциклами и криптандами в метанольной среде было установлено, что с данными лигандами в растворе возможно образование не только моноядерных, но также биядерных и протонированных комплексов [28]. Константы образования моноядерного, протонированного и биядерного комплексов меди(II) с криптандом[2.2.2] в водном растворе определены нами в работе [26]. Для иона никеля(II) данные об образовании протонированных и биядерных комплексов с криптандами отсутствуют. Имеющиеся в литературе значения констант устойчивости моноядерного комплекса Ni²⁺ с криптандом[2.2.2] значительно отличаются друг от друга { $\lg K \le 3.5$ (298 K, µ 0.1 (Et₄NClO₄) [24], lgK 4.4 (298 K, µ 0.05 [(CH₃)₄NClO₄)] [25]}. Соответственно, являются актуальными вопросы уточнения численного

СТРУКТУРА И УСТОЙЧИВОСТЬ КОМПЛЕКСОВ НИКЕЛЯ(II)

Соединение	N ₁₆ -N ₂₄	O ₄ -O ₃₅ , O ₃₅ -O ₃₈ , O ₃₈ -O ₄	O ₉ -O ₄₉ , O ₄₉ -O ₅₂ , O ₅₂ -O ₉	N ₂₄ -H	N ₁₆ –Ni, N ₂₄ –Ni	O ₄ –Ni, O ₃₅ –Ni, O ₃₈ –Ni	O ₉ –Ni, O ₄₉ –Ni, O ₅₂ –Ni
[2.2.2] [35]	5.17	4.75	5.23	_	_	_	_
[Ni[2.2.2]] ²⁺	3.97	3.83	5.37	_	1.98	2.26	3.79
[NiH[2.2.2]] ³⁺	6.27	3.56, 3.41, 3.77	3.39, 3.49, 3.61	1.05	1.96	1.97, 2.65, 1.87	3.63, 2.02, 4.13
$[Ni_2[2.2.2]]^{4+}$	5.88	4.45, 3.74, 3.74	3.77, 3.91, 4.54	_	1.93	1.97, 1.87, 1.92	1.88, 1.93, 1.99
[Ni ₂ [2.2.2]] ⁴⁺ (альтернативная)	7.16	3.49, 3.77, 3.95	4.08, 3.11, 3.65	_	1.91, 1.87	2.82, 1.97, 1.90	4.60, 2.05, 3.86

Таблица 1. Основные расстояния (d, Å) для свободного криптанда[2.2.2] и его комплексов с никелем(II)

значения константы устойчивости моноядерного комплекса никеля(II) с криптандом[2.2.2], рассмотрение возможности формирования в растворе протонированного и биядерного комплексов, а также изучение геометрических параметров указанных комплексных частиц.

Криптанд [2.2.2] – объемный полициклический лиганд, узловые атомы азота которого соединены тремя оксиэтиленовыми цепочками, каждая из которых содержит два эфирных атома кислорода [N(CH₂CH₂OCH₂CH₂OCH₂CH₂)₃N]. Pasmep BHyтримолекулярной полости криптанда[2.2.2] подходит для размещения небольшого катиона никеля(II) (ионный радиус 0.69 Å [29]) с образованием в растворе моноядерного комплекса мольного состава 1:1. Исходя из данных работ [26, 28], не исключается возможность образования иных форм криптатных комплексов никеля(II) (протонированных и биядерных). Вероятность образования билигандного криптата никеля(II) нами не рассматривалась ввиду очевидных стерических препятствий для формирования данного вида.

Квантово-химические расчеты позволили установить структуру и основные геометрические параметры криптатных комплексов никеля(II) (*in vacuo*). Ион никеля(II) имеет электронную конфигурацию [Ar] $3d^84s^0$, и для него характерно значительное разнообразие возможных форм координационного полиэдра [30]. Наиболее интересным результатом квантовохимических расчетов является то, что в разных комплексах с криптандом[2.2.2] ион Ni²⁺ показывает разную геометрию: так, в моноядерном комплексе для него характерна

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 1 2023

тригональная бипирамида, в то время как в протонированном и биядерном комплексах, причем, как при внутреннем, так и внешнем связывании второго иона, проявляется плоская квадратная структура (рис. 1). Такой координационный полиэдр часто встречается при комплексообразовании никеля(II) с хелатирующими лигандами [31-34]. Для протонированного комплекса никеля(II) с криптандом[2.2.2] характерно расположение ионов и металла, и водорода внутри полости макроцикла, как и в случае протонированного криптата меди(II) [35]. Аналогично описанному ранее [35], для биядерного комплекса никеля(II) учитывалась возможность как размещения обоих катионов внутри макроциклической полости криптанда, так и связывания одного иона внутри, а другого снаружи криптанда. Структура, в которой один катион Ni²⁺ размещен внутри полости макроцикла, а другой – снаружи, связанный с одним атомом азота криптанда[2.2.2], обозначена в работе, как альтернативная. Важнейшие оптимизированные геометрические характеристики комплексов приведены в табл. 1.

Можно отметить, что криптанд испытывает более сильное сжатие вдоль оси N_{16} – N_{24} при моноядерном комплексообразовании с никелем(II), чем с медью(II) [35]. Однако из-за изменения координационного полиэдра, которого не наблюдалось для иона Cu²⁺ [35], биядерный комплекс никеля(II) лишь незначительно растянут вдоль линии N_{16} - N_{24} по сравнению со свободным лигандом. Интересно отметить, что при этом, ионы меди сближались до 2.69 Å [35], а расстояние между ионами никеля(II)

Рис. 1. Строение комплексов Ni²⁺ с криптандом[2.2.2] *in vacuo*: (a) [Ni[2.2.2]]²⁺, (б) [NiH[2.2.2]]³⁺, (в) [Ni₂[2.2.2]]⁴⁺, (г) [Ni₂[2.2.2]]⁴⁺(альтернативная).

составляет 3.46 Å. Из-за тенденции никеля(II) к переходу от тригональной бипирамидальной конфигурации полиэдра в моноядерном комплексе к плоской квадратной (вершинами квадрата в комплексе [NiH[2.2.2]]³⁺ или [Ni₂[2.2.2]]⁴⁺ являются атомы N₁₆, O_{4, 38, 49}) в протонированном или биядерном комплексах катион Ni²⁺ в меньшей степени внедряется в полость макроцикла, чем Cu²⁺. Таким образом, в растворе каждый ион в биядерном комплексе никеля(II) становится доступным для ограниченной сольватации одной молекулой растворителя. Присоединение второго иона никеля(II) извне макроцикла также нарушает высокосимметричную структуру комплекса [Ni[2.2.2]]²⁺. При этом, катион, находящийся вне макроцикла, может быть сольватирован более эффективно, так

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 1 2023

Рис. 2. Изменения в электронном спектре поглощения никеля(II) $(7.5 \times 10^{-3} \text{ моль/л})$, происходящие при его титровании смесью H⁺ $(3.8 \times 10^{-2} \text{ моль/л})$ и криптанда[2.2.2] $(7.5 \times 10^{-2} \text{ моль/л})$. Спектр свободного никеля(II) выделен *полужирным*.

как атом азота занимает всего одно место в координационной сфере никеля(II), и такая структура, вероятно, является более предпочтительной.

Анализ электронных спектров поглощения растворов никеля(II), к сожалению, не дает прямого подтверждения изменения координационного полиэдра, предсказанного по результатам квантовохимических расчетов. Пики, связанные с переходами между электронными состояниями ³А_{2g}, ³T_{2g}, ³T_{1g} наблюдаются и для свободного катиона, и после добавления к нему макроциклического лиганда (рис. 2). Полоса перехода ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$ испытывает гипсохромный сдвиг от 394 до 389 нм, аналогичный наблюдаемому при комплексообразовании Ni²⁺ с N-донорными лигандами, например, [36]. Одновременно расщепленная линия перехода ³А_{2g}→³T_{1g}(Р) (657, 718 нм) проявляется для комплекса при 670 нм без расщепления. Линии поглощения при 465-475 нм, отмеченные авторами [31, 32], нами не обнаружены.

В растворе процессы комплексообразования сопровождаются реакциями протонирования криптанда[2.2.2]. Общую схему химических

Рис. 3. Диаграмма долевого распределения частиц в зависимости от pH при мольном соотношении Ni²⁺:криптанд[2.2.2] = 1:1 в водном растворе.

равновесий в растворе, протекающих с участием криптанда[2.2.2], описывали уравнениями (1)–(5).

$$[2.2.2] + \text{Ni}^{2+} \leftrightarrow [\text{Ni}[2.2.2]]^{2+} \lg K_1^{\circ}, \tag{1}$$

$$[2.2.2] + Ni^{2+} + H^+ \leftrightarrow [NiH[2.2.2]]^{3+} \lg\beta_2^{\circ}, \qquad (2)$$

$$[[Ni[2.2.2]]^{2+} + Ni^{2+} \leftrightarrow [Ni_2[2.2.2]]^{4+} \lg K_3^{\circ}, \qquad (3)$$

$$[2.2.2] + H^+ \leftrightarrow H[2.2.2]^+ \lg K_4^\circ, \tag{4}$$

$$H[2.2.2]^{+} + H^{+} \leftrightarrow H_{2}[2.2.2]^{2+} \lg K_{5}^{\circ},$$
(5)

Расчет констант образования криптатов никеля(II) по данным потенциометрических титрований проводили, используя программу PHMETR [37] при значениях констант протонирования криптанда[2.2.2], равных lgK°_4 9.87, lgK°_5 7.23 [38]. Одновременный расчет констант устойчивости трех комплексных соединений по результатам одного титрования не представлялся возможным в виду высокой корреляции определяемых величин. Поэтому в отдельном эксперименте, проводимом в отсутствии избытка иона никеля(II) по отношению к криптанду[2.2.2], определяли значение констант устойчивости моноядерного и протонированного

комплексов. Полученные значения констант образования [Ni[2.2.2]]²⁺ и [NiH[2.2.2]]³⁺ использовали при расчете константы устойчивости биядерного комплекса на основе проведения потенциометрического титрования в условиях создания избытка иона никеля(II) относительно криптанда[2.2.2]. Потенциометрические титрования проводили по различным методикам и при различных концентрационных соотношениях реагентов. Оптимальными для определения констант устойчивости комплексов никеля(II) с криптандом[2.2.2] выбрали условия, представленные в экспериментальной части. Определение константы устойчивости моноядерного комплекса никеля(II) с криптандом[2.2.2] в водном растворе при различных условиях потенциометрического титрования показало хорошую сходимость результатов и соответствие полученной величины $lgK_1^{\circ}4.58\pm0.09$ более надежным литературным данным [25] $\{\lg K_1, 4, 4, \mu, 0.05\}$ [(CH₃)₄NClO₄)]}. Полученные значения констант образования в водном растворе протонированного и биядерного комплексов никеля(II) с криптандом[2.2.2] ($\lg\beta_2^\circ 11.7\pm0.2$, $\lg K_3^\circ 2.5\pm0.2$) сравнить не с чем в виду отсутствия в доступной литературе даже оценочных значений этих величин. Погрешность определения констант потенциометрическим методом оценивали, как экспериментальную, исходя из обработки результатов серии опытов. Малый выход протонированного и биядерного криптатов никеля(II) (рис. 3) создавал определенные трудности в постановке потенциометрического эксперимента и удовлетворительную сходимость результатов параллельных опытов, что обусловило достаточно большую погрешность определения констант устойчивости [NiH[2.2.2]]³⁺ и [Ni₂[2.2.2]]⁴⁺.

Константы устойчивости моно- и биядерного комплексов криптанда[2.2.2] с никелем(II) были также рассчитаны, исходя из электронных спектров поглощения (рис. 2). Константу образования протонированного комплекса по данным спектрофотометрического титрования определить не удалось в виду низкого выхода (<1.5%) данной частицы в условиях эксперимента. Используя программу KEV [39], получили значения констант $\lg K_1^\circ$ 4.25±0.18, $\lg K_3^\circ$ 2.71±0.49, что удовлетворительно согласуется с результатами потенциоме-

трического титрования. Приведенные значения погрешностей констант устойчивости, определяемых по данным спектрофотометрического титрования, характеризуют стандартную погрешность оптимизации констант KEV [39]. Высокая погрешность оптимизации констант является не только следствием малых изменений в электронных спектрах поглощения, но и работой в неоптимальном интервале значений оптической плотности (А < 0.2). Для спектрофотометрического титрования приходилось использовать малую начальную концентрацию раствора перхлората никеля(II), снижая тем самым точность спектрофотометрических измерений, так как высокая концентрация металла обуславливала бы необходимость поддержания постоянной ионной силы растворов с помощью фонового электролита, соответственно получаемые величины констант не могли быть отнесены к µ→0.

Авторами [24] определены [при 298 К, и 0.1 (Et₄NClO₄)] константы устойчивости моноядерных комплексов никеля(II) с криптандами [2.2.1] ($\lg K_1$ 4.28) и [2.1.1] (lg $K_1 \le 4.5$), а также с диазакраунэфирами [2.2] (lgK₁ ≤ 2.5) и [2.1] (lgK₁ 3.73). Данные [24] и результаты нашей работы показывают, что бициклические лиганды имеют практически равную устойчивость комплексов с никелем(II), несмотря на то, что одна или две цепи между атомами азота в макроциклах [2.2.1] и [2.1.1] короче, чем у криптанда[2.2.2]. По сравнению с моноциклическими аналогами (диазакраун-эфирами [2.2] и [2.1]) устойчивость комплексов трехмерных лигандов с ионом никеля(II) выше, в чем проявляется выигрыш в стабильности комплекса от пространственного удерживания катиона во внутримолекулярной полости криптандов. Однако выигрыш в устойчивости комплекса от удерживания катиона металла стенками трехмерной полости криптанда проявляется только по отношению к комплексам с моноциклическими лигандами. Устойчивость [Ni[2.2.2]]²⁺ значительно ниже устойчивости комплекса никеля(II) с хелатирующим бидентантным *N*-донорным лигандом, имеющим открытую цепь, этилендиамином (lgK° 7.36 [40]). Если сопоставить константы устойчивости биаммиачного комплекса никеля(II) (lgβ° 4.82 [41]) и этилендиаминового комплекса никеля(II) [40], можно оценить

величину хелатного эффекта при образовании комплексной частицы с этилендиамином: $\lg K^{\circ}_{cel} =$ $\lg K^{\circ}([NiEn]^{2+}]) - \lg \beta^{\circ}([Ni(NH_3)_2)]^{2+}) = 7.36 - 4.82 =$ 2.54. При образовании моноядерного криптатного комплекса никеля(II) топологическое несоответствие размера Ni²⁺ величине полости криптанда[2.2.2] не позволяет макроциклу оптимально построиться под размер катиона. Сжатие полости криптанда вдоль оси азот-азот, а также растяжение в поперечных плоскостях требует дополнительных затрат энергии на организацию структуры. что сказывается на устойчивости комплекса. Расчет криптатного эффекта по аналогии с хелатным $\{\lg K^{\circ}_{crvpt} = \lg K^{\circ}([Ni[2.2.2]]^{2+}]) - \lg \beta^{\circ}([Ni(NH_3)_2)]^{2+}) =$ 4.58 - 4.82 = -0.24 дает величину, демонстрирующую не только отсутствие выигрыша в устойчивости комплекса за счет удерживания стенками полости макроцикла, но и отсутствие хелатного эффекта при координировании иона никеля(II) двумя атомами азота макроцикла.

Таким образом, в настоящей работе посредством квантово-химических расчетов *in vacuo* установлена структура и основные параметры комплексов никеля(II) с криптандом[2.2.2] различного состава. Потенциометрическим методом уточнено численное значение константы устойчивости в водном растворе моноядерного комплекса никеля(II) с криптандом[2.2.2], а также определены константы устойчивости протонированного и биядерного криптатов никеля(II). Показано, что затраты энергии на искажение полости макроцикла с двумя донорными атомами азота при координировании иона Ni²⁺ не позволяют проявиться хелатному эффекту и нивелируют криптатный эффект.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали криптанд[2.2.2] (≥99%, Merck KGaA), перхлорат никеля(II) (ХЧ) и хлорную кислоту (ХЧ). Содержание основного вещества Ni(ClO₄)₂ в кристаллогидрате уточняли титрованием соли никеля(II) раствором трилона Б в среде аммиачного буферного раствора в присутствии индикатора мурексида. Концентрацию HClO₄ определяли титрованием точных навесок буры в присутствии метилового оранжевого.

Определение констант устойчивости комплексов никеля(II) с криптандом [2.2.2] проводили при

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 1 2023

температуре 298 К методом потенциометрического титрования с использованием пары стеклянный–хлорсеребряный электрод. Расчет констант устойчивости комплексов по результатам потенциометрического титрования проводили по программе PHMETR [37]. В качестве вспомогательных величин при расчетах использовали константы протонирования криптанда[2.2.2], полученные в отдельном эксперименте [38], и константу автопротолиза воды.

Для определения констант образования моноядерного и протонированного криптатных комплексов никеля(II) проводили титрование раствора криптанда[2.2.2] (5×10⁻³ моль/л) в ячейке раствором титранта, содержащим перхлорат никеля(II) (3×10⁻² моль/л) и хлорную кислоту (8×10⁻² моль/л), в условиях отсутствия избытка иона никеля(II) относительно лиганда. Для определения константы образования биядерного криптата никеля(II) проводили титрование раствора криптанда[2.2.2] (5×10⁻³ моль/л) в ячейке раствором титранта, содержащим перхлорат никеля(II) $(6 \times 10^{-2}$ моль/л) и хлорную кислоту $(4 \times 10^{-2}$ моль/л), в условиях создания избытка иона никеля(II) относительно лиганда. Чтобы создать в ячейке уровень рН, не превышающий 8.0, с целью предотвращения образования гидроксокомплексов никеля(II), первую порцию титранта вводили в количестве ≈ 1 мл, последующие порции титранта составляли ≈ 0.3 мл при объеме ячейки 20 мл.

Эксперимент проводили в отсутствии фонового электролита при малых концентрациях веществ. Ионная сила (μ) раствора в потенциометрической ячейке в конце титрования не превышала 0.035, поэтому полученные значения констант устойчивости комплексов принимали за стандартные значения этих величин (μ —0).

Электронные спектры поглощения регистрировали с помощью двухлучевого спектрофотометра Shimadzu UV1800 в диапазоне длин волн 350–1100 нм. Водный раствор перхлората никеля(II) (7.5×10^{-3} моль/л) титровали водным раствором, содержащим криптанд[2.2.2] (7.5×10^{-2} моль/л) и хлорную кислоту (3.8×10^{-2} моль/л), в стандартной кварцевой кювете с длиной оптического пути 1 см. Начальный объем раствора составлял 2.5-2.7 мл, прибавляли 20-22 порции титранта объемом 30 мкл каждая. Константы равновесия по спектро-

фотометрическим данным рассчитывали при помощи программного обеспечения KEV [39].

Геометрические параметры моноядерного, протонированного и биядерного комплексов никеля(II) с криптандом[2.2.2] оптимизированы при помощи программного обеспечения Firefly QC (версия 8.2.0) [42], частично основанного на коде GAMESS (US) [43] в рамках теории функционала плотности. Использован трехпараметрический функционал Беке-Ли-Янга-Парра ВЗLYP [44] и базисный набор 6-31G* [45]. С целью проверки достижения минимума потенциальной энергии проводили вычисление матриц вторых производных. Во всех случаях отмечалось отсутствие мнимых частот в расчетном колебательном спектре. Визуализацию молекулярных моделей осуществляли при помощи программного обеспечения ChemCraft [46]. Все расчеты проводили in *vacuo*. В качестве начального приближения для всех структур использовали результаты предыдущих вычислений для комплексов меди(II) с криптандом[2.2.2] [35].

ИНФОРМАЦИЯ ОБ АВТОРАХ

Гамов Георгий Александрович, ORCID: https://0000-0002-5240-212X

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственного задания Министерства образования и науки России (проект FZZW-2023-0008) при финансовой поддержке Совета по грантам при Президенте Российской Федерации (проект № МК-923.2022.1.3) с использованием ресурсов Центра коллективного пользования Ивановского государственного химико-технологического университета при поддержке Министерства образования и науки России (соглашение № 075-15-2021-671).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хираока М. Краун-соединения. М.: Мир, 1986. 363 с.
- Lehn J.M. // Struct. Bond. 1973. Vol. 16. P. 1. doi 10.1007/BFb0004364

- Lehn J.M. // Pure Appl. Chem. 1980. Vol. 52. N 10. P. 2303. doi 10.1351/pac198052102303
- Цивадзе А.Ю., Чернядьев А.Ю. // ЖНХ. 2020. Т. 65. № 11. С. 1469. doi 10.31857/S0044457X20110197; *Tsivadze A.Y., Chernyad'ev A.Y.* // Russ. J. Inorg. Chem. 2020. Vol. 65. N 11. P. 1662. doi 10.1134/ S0036023620110194
- Kirschner S., Peters M., Yuan K., Uzelac M., Ingleson M.J. // Chem. Sci. 2022. Vol. 13. P. 2661. doi 10.1039/d2sc00303a
- D-Amato A., Sala G. D. // Catalysts. 2021. Vol. 11. N 12. P. 1545. doi 10.3390/catal11121545
- Scott P.J., Kilbourn M.R. // Appl. Radiat. Isot. 2007. Vol. 65. N 12. P. 1359. doi 10.1016/j. apradiso.2007.04.020
- Kuntzsch M., Lamparter D., Bruggener N., Muller M., Kienzle G.J., Reischl G. // Pharmaceutic. 2014. Vol. 7. P. 621. doi 10.3390/ph7050621
- Blevins D.W., Rigney G.H., Fang M.Y., Akula M.R., Osborne G.R. // Nucl. Med. Biolog. 2019. Vol. 74–75. P. 41. doi 10.1016/j.nucmedbio.2019.07.008
- Garcia J., Neelavalli J., Haacke E. M., Allen M.J. // Chem. Commun. 2011. Vol. 47. N 48. P. 12858. doi 10.1039/C1CC15219J
- Garcia J., Allen M.J. // Inorg. Chim. Acta. 2012. Vol. 393. P. 324. doi 10.1016/j.ica.2012.07.006
- Ekanger L.A., Polin L.A., Shen Y., Haacke E.M., Martin P.D., Allen M.J. // Angew. Chem. Int. Ed. 2015. Vol. 54. N 48. P. 14398. doi 10.1002/anie.201507227
- Bailey M.D., Jin G-X., Carniato F., Botta M., Allen M.J. // Chem. Eur. J. 2021. Vol. 27. N 9. P. 3114. doi 10.1002/ chem.202004450
- Leone L., Guarnieri L., Martinelli J., Sisti M., Penoni A., Botta M., Tei L. // Chem. Eur. J. 2021. Vol. 27. N 46. P. 11811. doi 10.1002/chem.202101701
- Huh D.N., Ziller J.W., Evans W.J. // Inorg. Chem. 2019. Vol. 58. N 15. P. 9613. doi 10.1021/acs. inorgchem.9b01049
- Chung A.B., Huh D.N., Ziller J.W., Evans W.J. // Inorg. Chem. Front. 2020. Vol. 7. N 22. P. 4445. doi 10.1039/ D0QI00746C
- Goodwin C.A.P., Giansiracusa M.J., Greer S.M., Nicholas H.M., Evans P., Vonci M., Hill S., Chilton N.F., Mills D.P. // Nat. Chem. 2021. Vol. 13. N 3. P. 243. doi 10.1038/s41557-020-00595-w
- Bento M.A., Realista S., Viana A.S., Ferraria A.M., Martinho P.N. // Sustainability. 2021. Vol. 13. P. 4158. doi 10.3390/su13084158
- Zejli H., Hidalgo-Hidalgo de Cisneros J.L., Naranjo-Rodriguez I., Elbouhouti H., Choukairi M., Bouchta D., Temsamani K.R. // Anal. Lett. 2007. Vol. 40. N 14. P. 2788. doi 10.1080/00032710701577906

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 1 2023

- Woodruff A., Pohl C.A., Bordunov A., Avdalovic N. // J. Chromatogr. (A). 2003. Vol. 997. N 1–2. P. 33. doi 10.1016/s0021-9673(03)00550-8
- Vanatta L.E., Woodruff A., Coleman D.E. // J. Chromatogr. (A). 2005. Vol. 1085. N 1. P. 33. doi 10.1016/j.chroma.2005.01.048
- McDonagh A.W., McNeil B.L., Patrick B.O., Ramogida C.F. // Inorg. Chem. 2021. Vol. 60. N 13. P. 10030. doi 10.1021/acs.inorgchem.1c01274
- Izatt R.M., Bradshaw J.S., Nielsen S.A., Lamb J.D., Christensen J.J., Sen D. // Chem. Rev. 1985. Vol. 85. N 4. P. 271. doi 10.1021/cr00068a003
- Amaud-Neu F., Spiess B., Schwing-Weill M.J. // Helv. Chim. Acta. 1977. Vol. 60. N 8. P. 2633. doi 10.1002/ hlca.19770600815
- 25. Buschman H.-J., Cleve E., Schollmever E. // J. Coord. Chem. 1997. Vol. 42. P. 127. doi 10.1080/00958979708045285
- Исаева В.А., Килятков К.А., Гамов Г.А., Шарнин В.А.// ЖФХ. 2021. Т. 95. № 5. С. 758. doi 10.31857/ S0044453721050162; Isaeva V.A., Kipyatkov К.А., Gamov G.A., Sharnin V.A. // Russ. J. Phys. Chem. (A). 2021. Vol. 95. N 5. P. 968. doi 10.1134/ S0036024421050162
- Anderegg G. // Helv. Chim. Acta. 1975. Vol. 58. N 4. P. 1218. doi 10.1002/hlca.19750580427
- Spiess B., Arnaud-Neu F., Schwing-Weill M. J. // Helv. Chim. Acta. 1979. Vol. 62. N 5. P. 1531. doi 10.1002/ hlca.19790620518
- 29. Волков А.И., Жарский И.М. Большой химический справочник. Минск: Современная школа, 2005. 608 с.
- Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул. Ростов-на-Дону: Феникс, 1997. С. 411.
- MacDonald D.J. // Inorg. Chem. 1967. Vol. 6. N 12. P. 2269. doi 10.1021/ic50058a034
- Royer D.J., Schievelbein V.H., Kalyanaraman A.Ft., Bertrand J.A. // Inorg. Chim. Acta. 1972. Vol. 6. N 2. P. 307. doi 10.1016/S0020-1693(00)91804-8

- Erkizia E., Conry R.R. // Inorg. Chem. 2000. Vol. 39. N 8. P. 1674. doi 10.1021/ic990931f
- Blanchard S., Neese F., Bothe E., Bill E., Weyhermuller T., Wieghardt K. // Inorg. Chem. 2005. Vol. 44. N 10. P. 3636. doi 10.1021/ic040117e
- Исаева В.А., Гамов Г.А., Шарнин В.А. // ЖНХ.
 2021. Т. 66. №N 11. С. 1577. doi 10.31857/ S0044457X2111009X; Isaeva V.A., Gamov G.A., Sharnin V.A. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 11. P. 1696. doi 10.1134/S0036023621110097
- 36. Gamov G., Dushina S., Sharnin V., Zavalishin M. // Cent. Eur. J. Chem. 2013. Vol. 11. N 12. P. 1959. doi 10.2478/s11532-013-0325-1
- 37. Бородин В. А., Козловский Е. В., Васильев В. П. // ЖНХ. 1986. Т. 31. № 1. С. 10.
- Исаева В. А., Шарнин В. А. // ЖФХ. 2018. Т. 92. № 4. C. 600. doi 10.7868/S0044453718040131; Isaeva V.A., Sharnin V.A. // Russ. J. Phys. Chem. (A). 2018. Vol. 92. N 4. P. 710. doi 10.1134/S0036024418040088
- Meshkov A.N., Gamov G.A. // Talanta. 2019. Vol. 198.
 P. 200. doi 10.1016/j.talanta.2019.01.107
- 40. *Невский А.В., Шорманов В.А., Крестов Г.А.* // Коорд. хим. 1989. Т. 15. № 11. С. 1576.
- 41. *Невский А.В., Шорманов В.А., Крестов Г.А.* // Коорд. хим. 1985. Т. 11. № 5. С. 666.
- 42. *Granovsky A.A.* Firefly version 8, www http://classic. chem.msu.su/gran/firefly/index.html
- Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. 1993. Vol. 14. N 11. P. 1347. doi 10.1002/jcc.540141112
- Becke A. D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi 10.1063/1.464913
- Rassolov V.A., Ratner M.A., Pople J.A., Redfern P.C., Curtiss L.A. // J. Comp. Chem. 2001. Vol. 22. P. 976. doi 10.1002/jcc.1058
- 46. *Zhurko G.A., Zhurko D.A.* ChemCraft. http://www.chemcraftprog.com/index.html

ИСАЕВА и др.

Structure and Stability of Nickel(II) Complexes with Cryptand[2.2.2]

V. A. Isaeva^{*a*,*}, G. A. Gamov^{*a*}, A. S. Katolikova^{*a*}, and E. I. Pogodina^{*a*}

^a Ivanovo State University of Chemistry and Technology, Ivanovo, 153000 Russia *e-mail: kvol1969@gmail.com

Received September 21, 2022; revised October 14, 2022; accepted October 17, 2022

The values of the stability constants of the mononuclear, protonated and binuclear complexes of nickel(II) with cryptand [2.2.2] were determined using potentiometric titration at ionic strength value $\mu \rightarrow 0$ and temperature of 298 K. The structure and the most important geometric characteristics of Ni²⁺ cryptates were optimized via quantum chemical calculations performed *in vacuo*.

Keywords: cryptand[2.2.2], nickel(II), complex formation, stability constant