УДК 547.789:547.831:535.37

ФОТО- И ИОНОХРОМНЫЕ ДИАРИЛЭТЕНЫ С РЕЦЕПТОРНЫМИ ФРАГМЕНТАМИ В ТИАЗОЛЬНОМ МОСТИКЕ

© 2023 г. В. А. Подшибякин¹, Е. Н. Шепеленко², И. В. Дубоносова¹, О. Ю. Карлутова¹, А. Д. Дубоносов^{2,*}, В. А. Брень¹

¹ Научно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону, 344090 Россия

² Федеральный исследовательский центр Южный научный центр Российской академии наук, пр. Чехова 41, Ростов-на-Дону, 344006 Россия *e-mail: aled@ipoc.sfedu.ru

> Поступило в редакцию 7 октября 2022 г. После доработки 9 ноября 2022 г. Принято к печати 10 ноября 2022 г.

Синтезированы диарилэтены, содержащие кумариновые и тиофеновые заместители при тиазольном мостике и хинолиновые рецепторные фрагменты. 2-Хлорхинолиновые диарилэтены при облучении УФ светом образуют окрашенные циклические гексадиеновые формы, которые при воздействии видимого света претерпевают обратную изомеризацию. 2-Гидроксихинолиновые диарилэтены нефотохромны. Проведено исследование ионохромных эффектов при взаимодействии с фторид-анионами и катионами меди(II) и никеля(II).

Ключевые слова: диарилэтены, фотохромизм, ионохромный эффект (naked-eye эффект), флуоресценция **DOI:** 10.31857/S0044460X23020075, **EDN:** OBJVVH

Диарилэтены составляют группу широко исследуемых фотохромных соединений вследствие высокой реакционной способности, термической стабильности и устойчивостью к фотодеградации [1-6]. В последнее время особое внимание привлекают бифункциональные диарилэтены, проявляющие как фотоактивность, так и ионохромные свойства [7-11]. Их изомерные формы (открытая и циклическая) не перегруппировываются друг в друга в отсутствии внешнего воздействия и обладают различными физико-химическими характеристиками. Наличие флуоресценции у одного из изомеров открывает возможность для получения флуоресцентных молекулярных переключателей [12]. Как правило, рецепторные группы встраиваются в боковую цепь молекулы, хотя использование пирролдионовых или тиазольных мостиков позволяет осуществлять достаточно простую модификацию мостика и получать молекулярные переключатели с ионохромными свойствами [13, 14]. Ранее мы сообщали о синтезе и хемосенсорных свойствах диарилэтенов по отношению к анионам [15]. Такого рода соединения привлекают особое внимание, поскольку служат основой создания хромогенных и флуорогенных сенсоров, характеризующихся низкой себестоимостью, высокой селективностью и чувствительностью [16–19]. Для целей экспресс-анализа особо привлекательны системы с ион-индуцированными, видимыми невооруженным глазом (naked-eye эффект) изменениями электронных спектров поглощения и/или флуоресценции [20–24].

В настоящей статье описаны синтез серии диарилэтенов с 1,3-тиазольным мостиком, соединен-

 $R^1 = H, R^2 = Cl (a, 34\%); R^1 = Me, R^2 = Cl (6, 37\%); R^1 = H, R^2 = OH (B, 49\%); R^1 = Me, R^2 = OH (\Gamma, 47\%).$

ным гидразинометиленовым спейсером с 2-хлор-(гидрокси)хинолиновыми заместителями, а также исследование их фотохромных, флуоресцентных и ионохромных свойств по отношению к анионам и катионам переходных металлов. Выбор хинолиновых рецепторов обусловлен тем, что они имеют дополнительный центр координации – атом азота пиридинового типа, который может содействовать более эффективному связыванию катиона металла без образования ковалентных связей [7, 25].

Диарилэтены **3а**-г синтезировали согласно схеме 1. Кетоны **1** получали по ранее описанным методикам [15]. Бромирование [26] и взаимодействие полученных бромкетонов **2** с тиоамидами проводили без выделения промежуточных продуктов.

Строение и свойства синтезированных диарилэтенов изучали методами ИК, ЯМР ¹H, ¹³C, COSY, HSQC, HMBC спектроскопии, электронной спектроскопии поглощения и испускания, а также квантово-химическими расчетами. В ИК спектрах диарилэтенов **3а–г** проявляются полосы валентных колебаний карбонильных групп C=O и связей C=N при 1712–1716, 1604–1615 и 1577 см⁻¹. Полосы групп OH и NH регистрируются при 3146–3419 и 3001–3004 см⁻¹.

В спектрах ЯМР ¹Н соединений **За**–г в области сильного поля регистрируются синглетные сигналы протонов метильных групп, а в области 6.81–7.15 м. д. – сигнал протона Н⁴ тиофенового цикла. Сигналы ароматических протонов хинолинового и кумаринового фрагментов наблюдаются при 7.12–8.69 м. д. В спектрах диарилэтенов **Зв**, г, измеренных в DMSO-*d*₆, проявляются сигналы групп NH и OH при 11.97–11.98 и 12.38–12.43 м. д. соответственно.

Электронные спектры поглощения диарилэтенов **За-г** в ацетонитриле характеризуются полоса-

```
ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 2 2023
```

ФОТО- И ИОНОХРОМНЫЕ ДИАРИЛЭТЕНЫ

N⁰	Открытая форма А			Циклическая форма Б
	поглощение	флуоресценция		поглощение
	λ _{max} , нм (ε, л·моль ⁻¹ ·см ⁻¹)	$\lambda_{ m max},$ нм ($I_{ m fl},$ отн. ед.)	Сдвиг Стокса, см ⁻¹	λ_{\max} , нм (A_{\max})
3 a	296 (21200), 388 (16000)	505 (595)	5970	501 (0.28)
36	296 (21100), 387 (14400)	496 (410)	5680	502 (0.30)
3в	289 (14100), 422 (17200)	570 (120)	6150	не обр.
3г	294 (13600), 427 (15200)	580 (110)	6180	не обр.

Таблица 1. Данные ЭСП диарилэтенов За–г в ацетонитриле ($c 5.0 \times 10^{-5}$ моль/л)^{а,б}

^а *I*_{ff} – интенсивность флуоресценции;

⁶ A_{max} – величина оптической плотности в максимуме полосы поглощения фотоиндуцированной формы С в фотостационарном состоянии.

ми с максимумами в диапазонах 289–296 и 387– 427 нм (табл. 1, рис. 1). Спектры флуоресценции содержат полосы в районе 496–580 нм. Спектры возбуждения флуоресценции хорошо согласуются с вышеуказанными максимумами поглощения, свидетельствуя о том, что наблюдаемая эмиссия принадлежит открытыми изомерам А диарилэтенов **За–г** (рис. 2).

Облучение ацетонитрильных растворов 2-хлорхинолиновых диарилэтенов **За**, **б** светом 365 нм приводит к появлению новых длинноволновых полос поглощения 501–502 нм, характерных для изомерных циклических форм **Б** тиазольных дигетарилэтенов [15] (рис. 1). Интенсивность исходной флуоресценции уменьшается симбатно увеличению интенсивности поглощения в области 500 нм, циклические формы **Б** диарилэтенов **За**, **б** не проявляют эмиссионных свойств. Согласно данным [1, 2, 4, 15, 26], такая спектральная трансформация соответствует фотохимически инициированной электроциклической перегруппировке открытых 1,3,5-гексатриеновых изомеров **За, б-А** в циклические 1,3-циклогексадиеновые формы **За, б-Б** (схема 2).

Рис. 1. Спектры поглощения диарилэтена **За** в ацетонитриле ($c 5.0 \times 10^{-5}$ моль/л) до (I), после облучения светом с длиной волны 365 нм в течение 30 (2), 60 (3) и 90 с (4) и после добавления ТВАF (5) ($c 1.0 \times 10^{-4}$ моль/л).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 2 2023

Рис. 2. Спектры флуоресценции (*1*, $\lambda_{возб}$ 385 нм), возбуждения флуоресценции (*2*, $\lambda_{набл}$ 506 нм) диарилэтена **3а** в ацетонитриле (*с* 2.5×10⁻⁵ моль/л) и флуоресценции после добавления ТВАF (*3*) (*с* 1.0×10⁻⁴ моль/л).

За, б-А + F⁻

Более продолжительное облучение растворов не приводит к количественному образованию окрашенной формы **Б** вследствие установления фотостационарного состояния [15, 26]. Его образование обусловлено значительным перекрыванием полос поглощения, соответствующих переходу $S_0 \rightarrow S_1$ формы **A** и переходу $S_0 \rightarrow S_2$ циклического изомера **Б** [1, 2, 4]. Циклические формы **3a**, **б**-**Б** термически стабильны в ацетонитрильных растворах при 293 К в отсутствие облучения, однако их облучение видимым светом ($\lambda > 500$ нм) вызывает обратное превращение **Б** \rightarrow **A** с полным восстановлением исходных спектров поглощения и эмиссии.

2-Гидроксихинолиновые диарилэтены **3в**, **г** в растворах различной полярности при облучении светом 365 нм не проявляют фотохромных свойств, что, вероятно, связано с протеканием конкурирующего ESIPT (Excited-State Intramolecular Proton Transfer) эффекта, связанного с О→N переносом протона в возбужденном состоянии [27, 28] и образованием короткоживущего кето-таутомера. Сходное ингибирование фотохромных свойств отмечалось ранее для диарилэтенов с пирролдионовыми или тиазольными мостиковыми фрагментами [29–31].

Ионохромные свойства диарилэтенов За-г в ацетонитриле по отношению к катионам Na⁺, K⁺, Ba²⁺, Zn²⁺, Hg²⁺, Cu²⁺, Cd²⁺, Ni²⁺, Co²⁺ (в виде перхлоратов) и анионам (в виде тетрабутиламмониевых солей ТВАХ: X = F, Cl, CN, SCN) были изучены при помощи абсорбционной и флуоресцентной спектроскопии. 2-Хлорхинолинсодержащие диарилэтены За, б-А полностью индифферентны к присутствию катионов в растворе, однако фторид-анион практически селективно вызывает ионохромный эффект naked-eye [20] с изменением окраски раствора с бледно-желтой на малиново-фиолетовую. Исходная флуоресценция диарилэтенов полностью тушится после взаимодействия с ионом F⁻, причем другие основания (триэтиламин, пиридин, DABCO) не вызывают аналогичного эффекта. По данным метода изомо-

Рис. 3. Спектры поглощения и диарилэтена **3в** в ацетонитриле ($c \ 2.5 \times 10^{-5} \text{ моль/л}$) до (1) и после прибавления катионов Cu²⁺ (2) и Ni²⁺ (3) ($c_{\text{кат}} \ 5.0 \times 10^{-5} \text{ моль/л}$).

лярных серий, стехиометрия комплексообрзования соединений **3a**, **б**-**A** и иона F⁻ соответствует соотношению 1:1. Ранее было обосновано, что такие взаимодействия связаны с образованием сильной водородной связи N-H.F- вплоть до депротонирования лиганда [15, 32–34]. Добавление катионов Hg^{2+} к полученному in situ комплексу **3a**, **б-А**+F⁻ восстанавливает исходные спектры поглощения и эмиссии за счет эффективного связывания фторид-анионов (схема 2). Добавление фторид-аниона к циклической форме За, б-Б также приводит к ее депротонированию и практически моментальной изомеризации в открытую форму (схема 2). Спектральный отклик в обоих случаях одинаков: появление полосы поглощения с максимумом 599 нм (рис. 1, кривая 5).

При добавлении катионов Na⁺, K⁺, Ba²⁺, Zn²⁺, Hg²⁺, Cu²⁺, Cd²⁺, Ni²⁺, Co²⁺ в ацетонитрильный раствор 2-гидроксихинолиновых диарилэтенов **3в**, г наблюдается контрастный ионохромный nakedеуе эффект при координации с ионами меди(II) и никеля(II) (рис. 3). Происходит визуально хорошо различимое изменение окраски растворов с бледно-желтой на малиновую или малиново-фиолетовую соответственно.

Одновременно наблюдается полное тушение исходной эмиссии. Наблюдаемый CHEQ эффект (Chelation-Enhanced Fluorescence Quenching) связан с замещением протонов групп ОН катионами металлов, приводящим к дезактивации внутримолекулярного О→N переноса протона в возбужденном состоянии [27, 28, 35] (схема 3). По данным метода изомолярных серий, комплексы **3в**, **г** с металлами имеют состав 2:1.

Таким образом, синтезирована серия диарилэтенов, содержащих кумариновые и тиофеновые заместители. Соединения с 2-хлорхинолиновыми фрагментами в тиазольном мостике в ацетонитриле при действии УФ света образуют термически устойчивые окрашенные циклические гексадиеновые изомеры. Их облучение видимым светом приводит к обратной изомеризации в открытые формы. Обе формы селективно реагируют на фторид-анион с проявлением ионохромного naked-eye эффекта и изменением окраски раствора с бледно-желтой на малиново-фиолетовую. Диарилэтены с 2-гидроксихинолиновыми фрагментами в мостике не проявляют фотохромных свойств. Добавление ионов меди(II) или никеля(II) к их раствору в ацетонитриле вызывает контрастное изменение окраски с бледно-желтой на малиновую или малиново-фиолетовую соответственно. Одновременно наблюдается тушение исходной ESIPT-эмиссии, связанное с замещением протонов групп ОН катионами металлов и дезактивацией внутримолекулярного О-N переноса протона в возбужденном состоянии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³C, COSY, HSQC, HMBC получены на спектрометре Bruker Avance III-400 (400 МГц для ¹Н и 100 МГц для ¹³С) в CDCl₃ и ДМСО-*d*₆. В качестве внутреннего стандарта использовали остаточные сигналы протонов дейтерорастворителей. Колебательные спектры записывали на приборе FT/IR-6800 FTIR (JASCO). Электронные спектры поглощения снимали на спектрофотометре Varian Cary 100. Спектры люминесценции измеряли на спектрофлуориметре Varian Cary Eclipse. Для приготовления растворов использованы ацетонитрил спектральной чистоты, перхлораты *d*-металлов и тетрабутиламмониевые соли (Aldrich). Облучение растворов производили при помощи ртутной лампы ДРШ-250 (250 Вт) с набором интерференционных светофильтров для выделения линий ртутного спектра в кварцевой кювете (l 1 см). Температуры плавления определя-

 $M = Cu^{2+}, Ni^{2+}; \lambda_{fl} 570-580 \text{ нм}, \Delta \nu = 6150-6180 \text{ см}^{-1}.$ λ_{fl} – длина волны максимума полосы флуоресценции, $\Delta \nu$ – величина сдвига Стокса.

ли в стеклянных капиллярах на приборе ПТП (М). Элементный анализ выполняли классическим методом [36]. Экспериментальные данные получены с использованием оборудования Центра коллективного пользования Южного федерального университета «Молекулярная спектроскопия».

Кетоны **1а**-г получали по ранее описанным методикам [15].

Диарилэтены (3а, б). К раствору соответствующего кетона 1а, б (1.6 ммоль) в 15 мл CH_2Cl_2 добавляли по каплям Br_2 (1.8 ммоль). Реакционную смесь выдерживали при комнатной температуре 12 ч, затем отгоняли растворитель при пониженном давлении. Полученный осадок растворяли в *i*-PrOH (15 мл) и прибавляли 1.6 моль [(6-метил-2-хлорхинолин-3-ил)метиленамино]тиомочевины. Реакционную смесь кипятили 3 ч, затем

охлаждали и выливали в 1%-ный раствор K₂CO₃. Осадок отфильтровывали и перекристаллизовывали из CH₃CN.

3-[2-{2-[(6-Метил-2-хлорхинолин-3-ил)метилен]гидразинил}-4-(2,5-диметилтиофен-3-ил)тиазол-5-ил]-2*H***-хромен-2-он (3а). Выход 0.30 г (34%), желтый порошок, т. пл. 226–228°С (CH₃CN). ИК спектр, v, см⁻¹: 1712 (C=O), 1604 (C=N), 1577 (C=N_{хинолин}), 1056 (C–Cl). Спектр ЯМР ¹Н (CDCl₃), \delta, м. д.: 2.27 с (3H, Ме_{тиофен}), 2.44 с (3H, Ме_{тиофен}), 2.58 с (3H, Me), 6.81 с (1H, H_{тиофен}), 7.23–7.25 м (1H, H_{Ar}), 7.28–7.29 м (1H, H_{Ar}), 7.36–7.39 м (1H, H_{Ar}), 7.50–7.55 м (1H, H_{Ar}), 7.61 с (1H_{Ar}), 7.68 д. д (1H⁷_{хинолин},** *J* **8.8, 1.8 Гц), 7.77 уш. с (1H⁵_{хинолин}), 8.21 д (1H⁸_{хинолин},** *J* **9.0 Гц), 8.51 с (1H, CHN) 8.63 с (1H⁴_{хинолин}). Спектр ЯМР ¹³С (CDCl₃), \delta_{\rm C}, м. д.: 14.1, 15.3, 21.5, 116.5, 117.7, 119.3, 120.4, 121.5, 124.8, 125.3, 126.7, 127.7, 128.1, 128.6, 130.8, 131.6,**

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 2 2023

131.8, 134.3, 135.2, 135.4, 136.9, 137.9, 139.3, 146.5, 146.9, 148.6, 152.8, 157.8, 160.7. Найдено, %: С 62.51; Н 3.84; N 10.10. С₂₉Н₂₁СlN₄O₂S₂. Вычислено, %: С 62.53; Н 3.80; N 10.06.

3-[2-{2-[(6-Метил-2хлорхинолин-3-ил)метилен]гидразинил}-4-(2,5-диметилтиофен-3-ил)тиазол-5-ил]-7-метил-2Н-хромен-2-он (36). Выход 0.34 г (37%), желтый порошок, т. пл. >260°С (СН₃СN). ИК спектр, v, см⁻¹: 1716 (С=О), 1615 (C=N), 1577(C=N_{хинолин}), 1050 (С-Сl). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 2.34 с (3Н, Ме_{тиофен}), 2.40 с (3H, Me_{тиофен}), 2.49 с (3H, Me), 2.62 с (3H, Me), 7.07–7.10 м (1H_{Ar}), 7.15 с (1H_{Ar}), 7.17–7.20 м (2H_{Ar}), 7.43 с (1H_{Ar}), 7.71–7.75 м (1H_{Ar}), 7.83 с (1H_{Ar}), 8.27 д (1H_{Ar}, J 9.0 Гц), 8.55 с (1H, CHN) 8.69 с (1H_{Ar}). Спектр ЯМР ¹³С (CDCl₃), $\delta_{\rm C}$, м. д.: 14.6, 15.1, 21.6, 21.9, 110.4, 116.7, 116.9, 117.6, 119.0, 124.3, 125.3, 126.0, 127.7, 127.9, 128.7, 130.5, 131.6, 132.5, 134.2, 135.1, 135.9, 137.8, 138.9, 143.2, 144.3, 147.0, 148.3, 153.0, 157.4, 160.7. Найдено, %: С 63.01; Н 4.04; N 9.86. С₃₀H₂₃ClN₄O₂S₂. Вычислено, %: С 63.09; Н 4.06; N 9.81.

Диарилэтены (3в, г). К раствору соответствующего кетона 1в, г (1.6 ммоль) в 15 мл CH_2Cl_2 добавляли по каплям Br_2 (1.8 ммоль). Реакционную смесь выдерживали при комнатной температуре 12 ч, затем отгоняли растворитель при пониженном давлении. Полученный осадок растворяли в 10 мл ДМФА (10 мл) и прибавляли 1.6 моль [(2-гидрокси-6-метил-3-хинолин-3-ил)метиленамино]тиомочевины. Реакционную смесь выдерживали 6 ч при 60°С, охлаждали и выливали в 1%-ный раствор K_2CO_3 . Осадок отфильтровывали и перекристаллизовывали из CH_3CN .

3-[2-{2-[(2-Гидрокси-6-метилхинолин-3-ил)метилен] гидразинил}-4-(2,5-диметилтиофен-3-ил)тиазол-5-ил]-2*H***-хромен-2-он (3в). Выход 0. 42 г (49%), оранжевый порошок, т. пл. 308–310°С (СН₃СN). ИК спектр, v, см⁻¹: 3147 (NH), 3001 (ОН), 1712 (С=О), 1605 (С=N), 1577 (С=N_{хинолин}). Спектр ЯМР ¹Н (ДМСО-***d***₆), δ, м. д.: 2.22–2.35 м (9H, 3Me), 6.72 с (1H_{тиофен}), 7.22–7.46 м (6H_{Ar}), 7.53–7.61 м (1H_{Ar}), 7.66–7.67 м (1H_{Ar}), 8.27 д (1H_{Ar},** *J* **6.0 Гц), 8.32 д (1H_{Ar},** *J* **3.9 Гц), 11.98 с (1H, CHN), 12.43 уш. с (1H, ОН). Спектр ЯМР ¹³С (ДМ-СО-***d***₆), δ_С, м. д.: 14.7, 15.2, 20.9, 109.8, 115.5, 116.5, 119.4, 119.6, 120.5, 120.7, 125.5, 125.8, 127.2, 128.5, 128.8, 131.8, 131.9, 132.0, 132.6, 133.5, 135.5, 136.3,**

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 2 2023

137.2, 137.7, 139.2, 152.5, 160.1, 161.2, 168.4. Найдено, %: С 64.65; Н 4.14; N 10.41. С₂₉Н₂₂N₄O₃S₂. Вычислено, %: С 64.67; Н 4.12; N 10.40.

3-[2-{2-[(2-Гидрокси-6-метилхинолин-3-ил)метилен]гидразинил}-4-(2,5-диметилтиофен-3-ил)тиазол-5-ил]-7-метил-2Н-хромен-2-он (Зг). Выход 0. 41 г (47%), оранжевый порошок, т. пл. 314–316°С (СН₃СN). ИК спектр, v, см⁻¹: 3146 (NH), 3004 (OH), 1712 (C=O), 1649 (C=N), 1577(C=N_{хинопин}). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 2.20–2.41 м (12H, 4Me), 6.70 с (1H_{тиофен}), 7.12–7.37 м (6H_{дr}), 7.65–7.67 м (1H_{дr}), 8.26 д (1H_{дr}) J 6.0 Гц), 8.3 д (1Н_{Аг}, J 3.9 Гц), 11.97 с (1Н, СНN), 12.38 уш. с (1Н, ОН). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ_с, м. д.: 14.7, 15.3, 20.9, 21.7, 109.9, 115.5, 116.6, 117.0, 117.1, 119.3, 119.5, 119.6, 125.8, 126.5, 127.2, 128.3, 128.7, 131.8, 131.8, 132.6, 133.4, 136.2, 137.2, 139.5, 143.1, 152.6, 152.8, 160.3, 161.2, 168.2. Найдено, %: С 65.20; Н 4.38; N 10.14. С₃₀H₂₄N₄O₃S₂. Вычислено, %: С 65.18; Н 4.39; N 10.16.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Подшибякин Виталий Алексеевич, ORCID: https://orcid.org/0000-0003-4755-9218

Шепеленко Евгений Николаевич, ORCID: https://orcid.org/0000-0002-8764-9560

Дубоносова Ирина Владимировна, ORCID: https://orcid.org/0000-0002-3368-5259

Карлутова Ольга Юрьевна, ORCID: https:// orcid.org/0000-0002-3290-101X

Дубоносов Александр Дмитриевич, ORCID: https://orcid.org/0000-0003-4701-2271

Брень Владимир Александрович, ORCID: https://orcid.org/0000-0003-3192-6204

БЛАГОДАРНОСТЬ

Авторы выражают благодарность сотрудникам Центра «Нанотехнологии» Южно-Российского государственного политехнического университета (НПИ) им. М.И. Платова за проведение ЯМРэкспериментов.

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания в сфере научной деятельности (№ FENW-2023-2020), а также в рамках реализации государственного задания Южного научного центра РАН (№ 122020100282-6, Е.Н. Шепеленко и А.Д. Дубоносов).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Komarov I.V., Afonin S., Babii O., Schober T., Ulrich A.S. In: Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Z. Pianowski. Weinheim: Wiley, 2022. P. 152.
- Irie M., Fukaminato T., Matsuda K. // Chem. Rev. 2014. Vol. 114. P. 12174. doi 10.1021/cr500249p
- Lvov A.G. / J. Org. Chem. 2020. Vol. 85. P. 8749. doi 10.1021/acs.joc.0c00924
- Irie M. // Chem. Rev. 2000. Vol. 100. P. 1685. doi 10.1021/cr980069d
- Zhang J., Tian H. // Adv. Opt. Mater. 2018. Article 1701278. doi 10.1002/adom.201701278
- Cheng H.B., Zhang S., Bai E., Cao X., Wang J., Qi J., Liu J., Zhao J., Zhang L., Yoon J. Adv. Mater. 2022. Vol. 34. Article 2108289. doi 10.1002/adma.202108289
- Guo S., Fan C., Liu G., Pu S. // RSC Adv. 2018. Vol. 8. P. 39854. doi 10.1039/C8RA08358D
- Gundogdu L., Kose M., Takeuchi S., Yokoyama Y., Orhan E. J. Lumin. 2018. Vol. 203. P. 568. doi 10.1016/j.jlumin.2018.06.014
- Lv J., Fu Y., Liu G., Fan C., Pu S. // RSC Adv. 2019. Vol. 9. P. 10395. doi 10.1039/c9ra00716d
- Jiang G., Shi F., Jia Y., Cui S., Pu S. // J. Fluoresc. 2020. Vol. 30. P.1567. doi 10.1007/s10895-020-02609-9
- Li X., Li X., Zhao H., Kang H., Fan C., Liu G., Pu S. // J. Fluoresc. 2021. Vol. 31. P. 1513. doi 10.1007/s10895-021-02775-4
- Mahesh K., Padmavathi D.A. // J. Fluoresc. 2020. Vol. 30. P. 35. doi 10.1007/s10895-019-02444-7
- Indelli M.T., Carli S., Ghirotti M., Chiorboli C., Ravaglia M., Garavelli M., Scandola F. // J. Am. Chem. Soc. 2008. Vol. 130. P. 7286. doi 10.1021/ja711173z
- 14. Zhang X.C., Huo Z.M., Wang T.T., Zeng H.P. // J. Phys. Org. Chem. 2012. Vol. 25. P. 754. doi 10.1002/poc.2914
- Shepelenko E.N., Podshibyakin V.A., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. // J. Mol. Struct. 2018. Vol. 1163. P. 221. doi 10.1016/j. molstruc.2018.03.005
- Chemosensors: Principles, Strategies, and Applications / Eds E.V. Anslyn, B. Wang. Hoboken: Wiley, 2011.
- Sun W., Li M., Fan J., Peng X. // Acc. Chem. Res. 2019. Vol. 52. P. 2818. doi 10.1021/acs.accounts.9b00340

- 18. Wan H., Xu Q., Gu P., Li H., Chen D., Li N., He J., Lu J. // J. Hazard. Mater. 2021. Vol. 403. Article 123656.
- Daly B., Ling J., de Silva P. // Chem. Soc. Rev. 2015. Vol. 44. P. 4203. doi 10.1039/C4CS00334A
- Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/ j.ccr.2017.12.002
- 21. Wu J., Kwon B., Liu W., Anslyn E.V., Wang P., Kim J.S. // Chem. Rev. 2015. Vol. 115. P. 7893. doi 10.1021/cr500553d
- Kaur N., Kumar S. // Tetrahedron. 2011. Vol. 67. P. 9233. doi 10.1016/j.tet.2011.09.003
- Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi 10.1039/C7CS00240H
- 24. Saleem M., Lee K.H. // RSC Adv. 2015. Vol. 5. P. 72150. doi 10.1039/ C5RA11388A
- Shi Z., Tu Y., Wang R., Liu G., Pu S. // Dyes Pigm. 2018.
 Vol. 149. P. 764. doi: 10.1016/j.dyepig.2017.11.051
- Traven V.F., Bochkov A.Y., Krayushkin M.M., Yarovenko V.N., Nabatov B.V., Dolotov S.M., Barachevsky V.A., Beletskaya I.P. // Org. Lett. 2008. Vol. 10. P. 1319. doi 10.1021/ol800223g
- 27. Joshi H.C., Antonov L. // Molecules. 2021. Vol. 26. Article 1475. doi 10.3390/molecules26051475
- Li Y., Bai X., Liang R., Zhang X., Nguyen Y.H., Van Veller B., Du L., Phillips D.L. // J. Phys. Chem. (B). 2021. Vol. 125. P. 12981. doi 10.1021/acs.jpcb.1c05798
- Ohsumi M., Fukaminato T., Irie M. // Chem. Commun. 2005. P. 3921. doi 10.1039/B506801K
- Nourmohammadian F., Wu T.Q., Branda N.R. // Chem. Commun. 2011. Vol. 47. P. 10954. doi 10.1039/ C1CC13685B
- Shepelenko E.N., Revinskii Yu.V., Tikhomirova K.S., Karamov O.G., Dubonosov A.D., Bren V.A., Minkin V.I. // Mendeleev Commun. 2016. Vol. 26. P. 193. doi 10.1016/j.mencom.2016.04.004
- 32. Santos-Figueroa L.E., Moragues M.E, Climent E., Agostini A., Martinez-Manez R., Sancenon F. // Chem. Soc. Rev. 2013. Vol. 42. P. 3489. doi 10.1039/ C3CS35429F
- Saini R., Kaur N., Kumar S. // Tetrahedron. 2014. Vol. 70. P. 4285. doi 10.1016/j.tet.2014.04.058
- Kaur N., Kaur G., Fegade U.A., Singh A., Sahoo S.K., Kuwar A.S., Singh N. // Trends Analyt. Chem. 2017. Vol. 95. P. 86. doi 10.1016/j.trac.2017.08.003
- Dubonosov A.D., Bren V.A., Minkin V.I. In: Tautomerism: Concepts and Applications in Science and Technology / Ed. L. Antonov. Weinheim: Wiley-VCH. 2016. P. 229.
- Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 2 2023

Photo- And Ionochromic Diarylethenes with Receptor Fragments in The Thiazole Bridge

V. A. Podshibyakin^a, E. N. Shepelenko^b, I. V. Dubonosova^a, O. Yu. Karlutova^a, A. D. Dubonosov^{b,*}, and V. A. Bren^a

^a Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090 Russia ^b Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, 344006 Russia *e-mail:aled@ipoc.sfedu.ru

Received October 7, 2022; revised November 9, 2022; accepted November 10, 2022

Diarylethenes containing coumarin and thiophene substituents in the thiazole bridge and quinoline receptor fragments were synthesized. 2-Chloroquinoline diarylethenes form colored cyclic hexadiene forms under UV light, which undergo reverse isomerization when exposed to visible light. 2-Hydroxyquinoline diarylethenes are nonphotochromic. The ionochromic effects of interaction with fluoride anions and copper(II) and nickel(II) cations were studied.

Keywords: diarylethenes, photochromism, ionochromic effect (naked-eye effect), fluorescence