УДК 546.185;536.413

СИНТЕЗ, СТРУКТУРА, ТЕПЛОВОЕ РАСШИРЕНИЕ BiCr₂(PO₄)₃, SbCr₂(PO₄)₃ И ТВЕРДОГО РАСТВОРА $Bi_{1-x}Sb_xCr_2(PO_4)_3$

© 2023 г. В. И. Петьков^{1,*}, Д. А. Лавренов¹, Е. А. Асабина¹

¹ Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского, пр. Гагарина 23, Нижний Новгород, 603022 Россия *e-mail: petkov@inbox.ru

> Поступило в редакцию 10 декабря 2022 г. После доработки 16 января 2023 г. Принято к печати 26 января 2023 г.

Упариванием раствора солей с последующей термообработкой получены и охарактеризованы образцы системы $\operatorname{Bi}_{1-x}\operatorname{Sb}_x\operatorname{Cr}_2(\operatorname{PO}_4)_3$ со структурой α -CaMg₂(SO₄)₃. Уточнение методом Ритвельда структур BiCr₂(PO₄)₃ (x = 0) и SbCr₂(PO₄)₃ (x = 1) показало, что каркас [Cr₂(PO₄)₃]_{3∞} формируют сдвоенные гранями октаэдры CrO₆, между которыми расположены тетраэдры PO₄, присоединенные к октаэдрам кислородными вершинами, пустоты каркаса заселяют шести координированные атомы висмута или сурьмы. Изменяя состав неограниченного твердого раствора Bi_{1-x}Sb_xCr₂(PO₄)₃, можно получать материалы с малыми коэффициентами теплового расширения: $0.5 \times 10^{-6} \le \alpha_{av} \le 1.9 \times 10^{-6} \circ C^{-1}$.

Ключевые слова: фосфаты, висмут, сурьма, хром, структура α-CaMg₂(SO₄)₃, тепловое расширение

DOI: 10.31857/S0044460X23030150, EDN: QFOYZH

Минералоподобные фосфатные керамики характеризуются высокой термической, фазовой, гидролитической и радиационной устойчивостью, сопротивлением растрескиванию, суперионными, сегнетоэлектрическими, каталитическими свойствами [1–8]. Изоморфизм ионов в структурах таких фосфатов является одним из фундаментальных факторов для создания на их основе технических материалов для лазерных и космических технологий, специальной электротехники, химической технологии, медицинской отрасли, для решения одной из основных задач атомной энергетики – переработки радиоактивных отходов [9–16].

При замещении атомов натрия в известном фосфате $Na_3Fe_2(PO_4)_3$ со структурой минерала коснарита (или NASICON) [17–19] висмутом удалось получить $BiFe_2(PO_4)_3$ с неизвестной ранее для фосфатов структурой α -CaMg₂(SO₄)₃ [20, 21]. В качестве катиона в степени окисления +3 был

выбран висмут, обладающий большим ионным радиусом и поляризуемостью неподеленной электронной пары, которые способствуют проявлению кристаллами фосфата магнитных и диэлектрических свойств.

В основе структуры $BiFe_2(PO_4)_3$ находится каркас $\{[Fe_2(PO_4)_3]^{3-}\}_{3\infty}$, в котором атомы Fe координированы шестью атомами кислорода, принадлежащими шести тетраэдрам PO_4 [5]. Тетраэдры PO_4 двумя вершинами скрепляют два соединенных гранями октаэдра FeO₆, образуя колонку, и двумя другими вершинами присоединяются к соседним колонкам, образуя смешанный каркас. Пустоты каркаса заполняют атомы Bi, окруженные шестью атомами кислорода.

При сравнении кристаллических структур изоформульных α -CaMg₂(SO₄)₃ (пространственная группа *P*6₃/m) и NaZr₂(PO₄)₃ (NASICON, пространственная группа *R*3*c*) была выявлена их то-

Рис. 1. Рентгенограммы фосфатов $Bi_{1-x}Sb_xCr_2(PO_4)_3$: x = 0 (1), 0.25 (2), 0.5 (3), 0.75 (4), 1.0 (5).

пологическую связь [5]. В основе структур лежат каркасы смешанного типа, состоящие из вытянутых вдоль направления c бесконечных цепочек из сдвоенных гранями октаэдров магния или вершинно-связанных октаэдров циркония, скрепленные между собой тетраэдрами SO₄ или PO₄. Связи между тетраэдрами и октаэдрами осуществляются через общие вершины. Основное различие между обеими структурами заключается в расположении в CaMg₂(SO₄)₃ еще одной цепочки из соединенных друг с другом ребрами CaO₆-октаэдров, в NaZr₂(PO₄)₃ присутствует только один тип цепочек из звеньев с одним NaO₆ и двумя ZrO₆-октаэдрами.

Представляется перспективным дальнейший поиск новых фосфатов, обладающих структурой типа α -CaMg₂(SO₄)₃ и содержащих в своем составе катионы в степени окисления +3.

Данная работа посвящена синтезу, исследованию кристаллической структуры и термических свойств новых фосфатов $BiCr_2(PO_4)_3$, $SbCr_2(PO_4)_3$ и твердого раствора $Bi_{1-x}Sb_xCr_2(PO_4)_3$. Синтезированные фосфаты Bi_{1-x}Sb_xCr₂(PO₄)₃ представляли собой поликристаллические порошки. Результаты растровой электронной микроскопии и рентгеноспектрального элементного микроанализа доказали гомогенность образцов, подтвердили соответствие химического состава исследуемых порошков заданному.

Термическое поведение реакционной системы, предшествующее образованию целевой фазы SbCr₂(PO₄)₃, изучали методом ДТА. Эндотермический эффект на кривой ДТА в температурной области 200–330°С показывает удаление оставшейся в образце кристаллизационной воды и разложение исходных реагентов. При 685–910°С на кривой ДТА присутствуют экзо- и эндоэффекты, отвечающие за завершение синтеза и кристаллизацию целевого продукта. Эти данные соответствуют данным РФА по температурам образования и разложения соединений в твердой фазе.

Обжиг образцов $Bi_{1-x}Sb_xCr_2(PO_4)_3$ при температуре 800°С позволил получить однофазные продукты (рис. 1). Данные РФА показали кристаллизацию образцов в структурном типе α -CaMg₂(SO₄)₃ (пространственная группа $P6_3/m$) [5, 20, 21]. С повышением температуры происходило увеличение интенсивности отражений на рентгенограммах, что свидетельствует о росте кристалличности фосфатов. Образцы системы $Bi_{1-x}Sb_xCr_2(PO_4)_3$ ($0 \le x \le 1$) устойчивы до 1200°С.

Концентрационная зависимость параметров элементарных ячеек образцов $\text{Bi}_{1-x}\text{Sb}_x\text{Cr}_2(\text{PO}_4)_3$ аппроксимирована линейно (a (Å) = 14.174 + 0.116x, c (Å) = 7.4046 – 0.0664x, V (Å³) = 1287.4 + 7.56x, x = 0-1.0) в соответствии с составом твердого раствора. Прямолинейная зависимость параметров ячейки с ростом x свидетельствует об образовании неограниченного твердого раствора в соответствии с правилом Вегарда.

Результаты растровой электронной микроскопии и микрозондового анализа показали, что образцы были гомогенны и представляли собой зерна различной формы, их химический состав соответствует заданному в пределах погрешности метода: $Bi_{1.01\pm0.02}Cr_{1.99\pm0.02}P_{3.00\pm0.02}O_{12}$ (для образца с x = 0) и $Sb_{1.00\pm0.02}Cr_{2.00\pm0.01}P_{3.01\pm0.02}O_{12}$ (x = 1).

Для подтверждения строения твердого раствора ${\rm Bi}_{1-x}{\rm Sb}_x{\rm Cr}_2({\rm PO}_4)_3$ проведено уточнение его

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 3 2023

Характеристика	BiCr ₂ (PO ₄) ₃	SbCr ₂ (PO ₄) ₃
Пространственная группа, Z	P6 ₃ //	<i>m</i> , 6
Интервал углов 20, град	20.00-	110.00
a, Å	14.0974(8)	14.1611(8)
<i>c</i> , Å	7.3766(3)	7.4149(3)
<i>V</i> , Å ³	1269.59(11)	1287.75(12)
$d_{\rm rbiu}$ r/cm ³	4.690	4.624
Шаг сканирования	0.0	02
Число рефлексов отражения	573	578
Число уточняемых параметров:	·	
структурные	43	8
другие	22	2
Факторы достоверности: R_{wp} , R_{P} , S, %	4.13, 2.73, 2.95	3.70, 2.87, 1.97

Таблица 1. Условия съемки и результаты уточнения кристаллической структуры BiCr₂(PO₄)₃, SbCr₂(PO₄)₃

Таблица 2. Координаты, параметры атомных смещений и заселенности (q) базисных атомов в структуре фосфатов BiCr₂(PO₄)₃, SbCr₂(PO₄)₃

Атом	x	У	Z	B _{iso}	q	Атом	x	У	Z	B _{iso}	q
BiCr ₂ (PO ₄) ₃			SbCr ₂ (PO ₄) ₃								
Bi ^{1A}	0.6667	0.3333	0.0442(19)	1.67(11)	0.5	Sb ^{1A}	0.6667	0.3333	0.0468(13)	0.55(8)	0.5
Bi ^{1B}	0.6667	0.3333	-0.0438(20)	1.67(11)	0.5	Sb ^{1B}	0.6667	0.3333	-0.0547(13)	0.55(8)	0.5
Bi ²	0.0	0.0	0.5668(14)	1.67(11)	0.5	Sb ²	0.0	0.0	0.6097(7)	0.55(8)	0.5
Cr	0.0342(7)	0.6871(11)	0.5596(10)	2.7(3)	1.0	Cr	0.0285(4)	0.6836(5)	0.5667(5)	0.67(11)	1.0
\mathbf{P}^1	0.9225(7)	0.7702(2)	0.25	0.51(9)	1.0	P ¹	0.9216(6)	0.7723(2)	0.25	0.59(9)	1.0
\mathbf{P}^2	0.7924(8)	0.5628(5)	0.75	0.50(8)	1.0	P ²	0.7970(5)	0.5639(7)	0.75	1.87(7)	1.0
\mathbf{P}^3	0.9089(9)	0.4894(9)	0.25	0.48(5)	1.0	P ³	0.9059(2)	0.4871(9)	0.25	1.03(3)	1.0
O^1	0.9789(3)	0.7667(2)	0.4196(6)	0.64(3)	1.0	O^1	0.9715(3)	0.7624(7)	0.4165(3)	1.62(6)	1.0
O^2	0.8015(4)	0.6832(4)	0.25	0.53(3)	1.0	O^2	0.8006(7)	0.6868(2)	0.25	1.32(4)	1.0
O^3	0.9233(5)	0.8784(5)	0.25	1.23(6)	1.0	O^3	0.9228(9)	0.8760(8)	0.25	0.54(9)	1.0
O^4	0.9126(5)	0.6486(7)	0.75	0.97(5)	1.0	O^4	0.9156(9)	0.6483(5)	0.75	0.63(5)	1.0
O^5	0.7809(5)	0.4490(4)	0.75	0.89(5)	1.0	O ⁵	0.7804(5)	0.4472(3)	0.75	0.95(3)	1.0
O^6	0.1682(9)	0.7329(6)	0.4213(6)	0.65(4)	1.0	O ⁶	0.1619(2)	0.7319(6)	0.4209(2)	0.59(9)	1.0
O^7	0.9493(6)	0.5532(3)	0.4207(5)	0.89(8)	1.0	O ⁷	0.9491(7)	0.5553(2)	0.422	0.98(6)	1.0
O^8	0.0821(4)	0.6142(5)	0.75	0.79(8)	1.0	O ⁸	0.0856(2)	0.6127(4)	0.75	1.22(3)	1.0
O^9	0.7819(5)	0.4330(5)	0.25	0.91(4)	1.0	O ⁹	0.7827(9)	0.4362(7)	0.25	1.13(4)	1.0
	1							1		, ,	*

структуры (x = 0 и x = 1) при комнатной температуре методом Ритвельда. Условия съемки, параметры ячейки и основные данные по уточнению структуры приведены в табл. 1. Из рис. 2 видна согласованность экспериментальной и вычисленной рентгенограмм фосфатов. Координаты, параметры атомных смещений и заселенности базисных атомов фосфатов приведены в табл. 2. Исследуемые соединения BiCr₂(PO₄)₃ (x = 0) и SbCr₂(PO₄)₃ (x = 1) обладают гексагональной симметрией с примитивной *P*-решеткой. Фрагмент структуры фосфата BiCr₂(PO₄)₃ идентичен фрагменту структуры SbCr₂(PO₄)₃ (рис. 3). В основе структуры соединений лежит каркас смешанного типа {[Cr₂(PO₄)₃]³⁻}_{3∞}, состоящий из вытянутых вдоль направления *с* бесконечных цепочек из

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 3 2023

Рис. 2. Экспериментальная (*1, сплошная линия*), вычисленная (*2, точки*), разностная (*4*) рентгенограммы и штрих-диаграмма (*3*) фосфата SbCr₂(PO₄)₃.

сдвоенных гранями октаэдров, занятых атомами хрома и скрепленных между собой в двух других направлениях тетраэдрами РО₄. Связи между тетраэдрами PO₄ и октаэдрами CrO₆ осуществляются через общие вершины. Разброс расстояний Сг-О 1.92-2.08 Å и Р-О 1.46-1.59 Å находится в обычных пределах. Подобие строения смешанных каркасов BiCr₂(PO₄)₃ и SbCr₂(PO₄)₃ проявляется в соизмеримости параметров элементарных ячеек. В полостях структуры располагаются атомы Ві или Sb (координационные полиэдры - тригональные призма $Bi(Sb)^1$ и антипризма $Bi(Sb)^2$). Расстояния Bi-O и Sb-O распределены в пределах 2.02-2.78 Å и 1.86-3.08 Å соответственно. Величины межатомных расстояний Ві-О и Sb-О близки друг другу, кроме того Bi³⁺ и Sb³⁺ являются электронными аналогами (близки значения электроотрицательностей, электронное строение, тип химической связи). В силу этого возможен изовалентный изоморфизм и образование непрерывного твердого раствора $Bi_{1-r}Sb_rCr_2(PO_4)_3$.

Длины связей Cr–O в сдвоенных гранями октаэдрах из каркасобразующих атомов хрома слабо зависят от радиуса катионов Bi или Sb, размещенных во внекаркасных позициях (рис. 3). В цепочках из BiO₆- или SbO₆-октаэдров, параллельных оси *с* и заселяющих полости структуры, BiO₆-октаэдры, соединенные друг с другом по ребрам сильно ис-

Рис. 3. Фрагмент структуры SbCr₂(PO₄)₃.

кажены по сравнению с недеформированными SbO₆-октаэдрами (рис. 4). Структура BiCr₂(PO₄)₃ из-за разброса расстояний Bi–O в сдвоенных BiO₆-октаэдрах усложнена разворотами октаэдров вокруг своих осей и дополнительными наклонами относительно друг друга, что приводит к их сближению по оси *с*. Изменение валентных углов O–Bi–O влечет за собой деформацию связанных с ними PO₄-тетраэдров. Происходит разворот тетраэдров вокруг своих осей симметрии и дополнительный наклон относительно друг друга, что сокращает расстояние между колонками и приводит к уменьшению параметра *а* элементарной ячейки. Из-за скоррелированного поворота фрагментов

Рис. 4. Межатомные расстояния (Å) в BiO_6 - и SbO_6 октаэдрах фосфатов $BiCr_2(PO_4)_3$ (а) и $SbCr_2(PO_4)_3$ (б).

Рис. 5. Температурная зависимость параметров ячеек $Bi_{1-x}Sb_xCr_2(PO_4)_3$: x = 0 (1), 0.25 (2), 0.5 (3), 0.75 (4), 1.0 (5).

структуры происходит закономерное уменьшение параметров *a*, *c* и *V* решетки твердого раствора $Bi_{1-x}Sb_xCr_2(PO_4)_3$ с ростом содержания более крупного катиона Bi^{3+} в составе фосфата.

Использование терморентгенографии [22, 23] позволило получить прямую информацию о тепловом расширении кристаллической решетки фосфатов ${\rm Bi}_{1-x}{\rm Sb}_x{\rm Cr}_2({\rm PO}_4)_3$ и преобразовании кристаллической структуры, фиксирующихся по термическому изменению дифракционной картины. Температурные зависимости параметров кристаллической решетки ${\rm Bi}_{1-x}{\rm Sb}_x{\rm Cr}_2({\rm PO}_4)_3$ близки к линейным (рис. 5). Отклонение экспериментальных значений от аппроксимирующей прямой не превышает погрешности измерения параметров элементарной ячейки. О влиянии температуры на структуру судили по значениям коэффициентов теплового линейного расширения: $\alpha_a = \Delta a/(a\Delta T)$, $\alpha_c = \Delta c/(c\Delta T)$, среднему коэффициенту α_{av} = $(2\alpha_a + \alpha_c)/3$ и анизотропии теплового расширения $|\alpha_a - \alpha_c|$ (табл. 3). Тепловое расширение структуры твердого раствора $\text{Bi}_{1-x}\text{Sb}_x\text{Cr}_2(\text{PO}_4)_3$ анизотропно. Для образцов твердого раствора характерны противоположные по знаку и близкие по величине осевые коэффициенты теплового линейного расширения. Минимальной анизотропией расширения при небольшом значении среднего коэффициента теплового линейного расширения со образцы с $0.5 \le x \le 0.75$, для которых $\alpha_{av} = 0.5 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$ и $|\alpha_a - \alpha_c| = 4.8 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$, они относятся к низко расширяющимся, устойчивым к тепловым ударам, материалам.

Таким образом, разработана методика синтеза новых соединений $BiCr_2(PO_4)_3$, $SbCr_2(PO_4)_3$ и образцов неограниченного твердого раствора $Bi_{1-x}Sb_xCr_2(PO_4)_3$, относящихся к новому для фосфатов структурному типу α -CaMg₂(SO₄)₃. Уточнена структура индивидуальных соединений (x = 0

Фосфат, х	$\alpha_a \times 10^6$, °C ⁻¹	$\alpha_c \times 10^6$, °C ⁻¹	$\alpha_{av} \times 10^6$, °C ⁻¹	$ \alpha_a - \alpha_c \times 10^6$, °C ⁻¹
0.00	4.9	-4.1	1.9	9.0
0.25	4.2	-2.7	1.9	6.9
0.50	2.1	-2.7	0.5	4.8
0.75	2.1	-2.7	0.5	4.8
1.00	4.9	-5.5	1.4	10.4

Таблица 3. Коэффициенты теплового расширения и анизотропия фосфатов $Sb_{r}Bi_{1-r}Cr_{2}(PO_{4})_{3}$

x = 1) с использованием рентгенографических данных. Определены концентрационные и температурные зависимости параметров кристаллической решетки образцов твердого раствора. Параметры элементарных ячеек образцов Bi_{1_r}Sb_rCr₂(PO₄)₃ изменяются линейно в соответствии с составом (x) твердого раствора. Уменьшение параметров *a*, *c* и *V* решетки твердого раствора Bi_{1-r}Sb_rCr₂(PO₄)₃ при изоморфном замещении Sb³⁺ более крупным катионом Bi³⁺ связано с деформацией октаэдров BiO₆, соединенных друг с другом по ребрам, и скоррелированным поворотом фрагментов структуры. Проведено измерение параметров кристаллической решетки образцов $Bi_{1-r}Sb_rCr_2(PO_4)_3$ от температуры методом терморентгенографии в интервале от -100 до 200°С и показано, что образцы твердого раствора характеризуются малыми коэффициентами теплового линейного расширения ($\alpha_{av} < 2 \times 10^{-6} \, ^{\circ} \mathrm{C}^{-1}$) и относятся к низко расширяющимся материалам.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы $Bi_{1-x}Sb_xCr_2(PO_4)_3$ с x = 0, 0.25, 0.50,0.75, 1.0 получены упариванием раствора солей с последующей термообработкой. В качестве исходных реагентов применяли реактивы марки ХЧ. Для синтеза фосфатов стехиометрические количества Sb₂O₃, Bi₂O₃, Cr(CH₃COO)₃ растворяли в рассчитанном количестве соляной кислоты. При перемешивании добавляли раствор ортофосфорной кислоты, взятый также в соответствии со стехиометрией. Далее реакционные смеси подвергали высушиванию и термообработке при 90-200°С и диспергировали для увеличения степени гомогенности. Затем образцы обжигали при 600, 800, 1000, 1100, 1200°С не менее 24 ч на каждой стадии. Поэтапный обжиг чередовали с диспергированием. Температура изотермического обжига была определена исходя из данных дифференциально-термического анализа (ДТА). ДТА образца, соответствующего стехиометрии фосфата SbCr₂P₃O₁₂ и подвергнутого предварительной термообработке при 200°С, проводили с использованием термоанализатора DTG-60H Shimadzu в интервале температур 200-1100°С при скорости нагрева и охлаждения 10 град/мин.

Контроль за составом и однородностью полученных фосфатов осуществляли с помощью сканирующего (растрового) электронного микроскопа JEOL JSM-7600F. Микроскоп оснащен системой микроанализа – энергодисперсионным спектрометром OXFORD X-MaxN 20. Погрешность при определении элементного состава образцов составляла не более 2 ат%. Рентгенограммы образцов записывали на дифрактометре Shimadzu XRD-6000 (Си K_{α} -излучение, λ = 1.54178 Å, диапазон углов $2\theta = 10-60^{\circ}$). Рентгенофазовый анализ использовали для установления фазового состава образцов в процессе их получения после каждого этапа изотермического обжига и контроля однофазности полученных фосфатов. Рентгенодифракционные спектры BiCr₂(PO₄)₃ и SbCr₂(PO₄)₃ для структурного исследования записывали в интервале углов 20 = 20-110° с шагом сканирования 0.02° и экспозицией в точке 17 с. Обработку рентгенограмм и уточнение структуры фосфатов проводили методом Ритвельда [24] с использованием программы RIETAN-97 [25]. Аппроксимирование профилей пиков осуществляли согласно модифицированной функции псевдо-Войта (Mod-TCH pV [26]). В качестве базовой модели для уточнения кристаллической структуры фосфата использованы координаты атомов ВіFe₂(PO₄)₃ [5]. Погрешность определения параметров элементарной ячейки не превышала 0.0008 Å для линейных параметров и 0.12 Å³ для объема. Рентгенограммы для исследования теплового расширения записывали на том же дифрактометре с использованием температурной приставки Anton Paar TTK 450 в интервале температур от -100 до 200°С. В качестве внутреннего стандарта при съемке использовали кристаллический Si. Погрешности определения коэффициентов теплового расширения не превышали 0.2×10⁻⁶ °C⁻¹.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Петьков Владимир Ильич, ORCID: https://orcid. org/0000-0003-4106-2534

Асабина Елена Анатольевна, ORCID: https:// orcid.org/0000-0002-4992-8956

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 20-33-90014).

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 3 2023

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Pet'kov V.I., Asabina E.A., Sukhanov M.V., Schelokov I.A., Shipilov A.S., Alekseev A.A. // Chem. Eng. Trans. 2015. Vol. 43. P. 1825. doi 10.3303/CET1543305
- Balaji D., Mandlimath T.R., Chen J., Matsushita Y., Kumar S.P. // Inorg. Chem. 2020. Vol. 59. P. 13245. doi 10.1021/acs.inorgchem.0c01597
- Петьков В.И., Асабина Е.А., Лукутцов А.А., Корчемкин И.В., Алексеев А.А., Демарин В.Т. // Радиохимия. 2015. Т. 57. № 6. С. 540; Pet'kov V.I., Asabina E.A., Lukuttsov A.A., Korchemkin I.V., Alekseev A.A., Demarin V.T. // Radiochemistry. 2015. Vol. 57. N 6. P. 632. doi 10.1134/S1066362215060119
- Abhilash P., Sebastian M.T., Surendran K.P. // J. Eur. Ceram. Soc. 2016. Vol. 36. № 8. P. 1939. doi 10.1016/j. jeurceramsoc.2016.02.019
- Петьков В.И., Сомов Н.В., Лавренов Д.А., Суханов М.В., Фукина Д.Г. // Кристаллография. 2020.
 Т. 65. № 5. С. 745. doi 10.31857/S0023476120050173; Pet'kov V.I., Somov N.V., Lavrenov D.A., Sukhanov M.V., Fukina D.G. // Cryst. Rep. 2020. Vol. 65. N 5. P. 716. doi 10.1134/S106377452005017X
- Chong M.K., Zainuddin Z., Omar F.S., Hj J.M.H. // Ceram. Int. 2022. Vol. 48. N 15. P. 22147. doi 10.1016/j. ceramint.2022.04.202
- Moussadik A., Halim M., Arsalane S., Kacimi M., Hamidi A.E., Tielens F. // Mater. Res. Bull. 2022. Vol. 150. P. 111764. doi 10.1016/j. materresbull.2022.111764
- Navarrete-Segado P., Grossin D., Frances C., Tourbin M., Tenailleau C., Duployer B. // Addit. Manuf. 2022. Vol. 50. P. 102542. doi 10.1016/j. addma.2021.102542
- Liu F., Deng D., Wu M., Chen B., Zhou L., Xu S. // J. Alloys Compd. 2021. Vol. 865. P. 158820. doi 10.1016/j. jallcom.2021.158820
- Shen L., Deng S., Jiang R., Liu G., Yang J., Yao X. // Energy Storage Mater. 2022. Vol. 46. P. 175. doi 10.1016/j.ensm.2022.01.010

- Oda K., Saitoh H., Hoaki Y., Shimoda H., Hirao T., Ichiyoshi W., Shimizu Y. // Solid State Ion. 2020. Vol. 346. P. 115212. doi 10.1016/j.ssi.2019.115212
- Zhang Y., Huazhi G., Shuang Y., Ao H. // J. Magn. Magn. Mater. 2020. Vol. 506. P. 166802. doi 10.1016/j. jmmm.2020.166802
- Сафронова Т.В. // Неорг. матер. 2021. Т. 57. № 5. С. 467. doi 10.31857/S0002337X21050067; Safronova T.V. // Inorg. Mater. 2021. Vol. 57. N 5. P. 443. doi 10.1134/S002016852105006X
- Wang J., Wei Y., Zhang X., Wang Y., Li N. // Ceram. Int. 2022. Vol. 48. № 9. P. 12772. doi 10.1016/j. ceramint.2022.01.147
- Ramya R., Buvaneswari G. // J. Nucl. Mater. 2022.
 Vol. 558. P. 153388. doi 10.1016/j.jnucmat.2021.153388
- Bohre A., Avasthi K., Pet'kov V.I. // J. Ind. Eng. Chem. 2017. Vol. 50. P. 1. doi 10.1016/j.jiec.2017.01.032
- Pilonen P.C., Friis H., Rowe R., Poirier G. // Canad. Mineral. 2020. Vol. 58. P. 1. doi 10.3749/ canmin.2000044
- Yaroslavtsev A.B., Stenina I.A. // Russ. J. Inorg. Chem. 2006. Vol. 51. Suppl. P. 97.
- Masquelier C. W. C., Rodriguez-Carvajal J., Gaubicher J., Nazar L. // Chem. Mater. 2000. Vol. 12. № 2. P. 525. doi 10.1021/cm991138n
- Weil M. // Cryst. Res. Technol. 2007. Vol. 42. № 11. P. 1058. doi 10.1002/crat.200710975
- Krivovichev S.V., Shcherbakova E.P., Nishanbaev T.P. // Canad. Mineral. 2010. Vol. 48. № 6. P. 1469. doi 10.3749/canmin.48.5.1469
- Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. СПб: СПбГУ, 2011. Ч. 1.
- Drebushchak V.A. // J. Therm. Anal. Cal. 2020. Vol. 142. N 2. P. 1097. doi 10.1007/s10973-020-09370-y
- 24. *Rietveld H.M.* // Acta Crystallogr. 1967. Vol. 22. Pt 1.
 P. 151. doi 10.1107/S0365110X67000234
- Kim Y.I., Izumi F. // J. Ceram. Soc. Japan. 1994.
 Vol. 102. P. 401. doi 10.2109/jcersj.102.401
- Izumi F. // The Rietveld Method. New York: Oxford University Press, 1993. 298 p.

Synthesis, Structure, and Thermal Expansion of BiCr₂(PO₄)₃, SbCr₂(PO₄)₃ and Bi_{1-x}Sb_xCr₂(PO₄)₃ Solid Solutions

V. I. Pet'kov^{a,*}, D. A. Lavrenov^a, and E.A. Asabina^a

^a N. I. Lobachevsky National Research Nizhny Novgorod State University, Nizhny Novgorod, 603022 Russia *e-mail: petkov@inbox.ru

Received December 10, 2022; revised January 16, 2023; accepted January 26, 2023

The manifestations of the Bi_{1-x}Sb_xCr₂(PO₄)₃ system with the α -CaMg₂(SO₄)₃ structure were obtained and characterized by the evaporation of salt solutions with heat treatment. Refinement of the Rietveld method for the structure of BiCr₂(PO₄)₃ (x = 0) and SbCr₂(PO₄)₃ (x = 1) showed that the [Cr₂(PO₄)₃]_{3∞} framework is formed by CrO₆ octahedra doubled by faces, PO₄ tetrahedra are between the dependences, attached to the octahedrons by oxygen vertices, the voids of the framework are populated by six-coordinated bismuth or antimony atoms. By varying the composition of the Bi_{1-x}Sb_xCr₂(PO₄)₃ solid solution everywhere, it is possible to obtain materials with low thermal expansion coefficients: $0.5 \times 10^{-6} \le \alpha_{ay} \le 1.9 \times 10^{-6} \circ C^{-1}$.

Keywords: phosphates, bismuth, antimony, chromium, α -CaMg₂(SO₄)₃ structure, thermal expansion