УДК 547.246

ГИДРОГЕРМИЛИРОВАНИЕ АЛЛИЛСИЛАНОВ И -ГЕРМАНОВ

© 2023 г. В. Г. Лахтин^{1,*}, Д. А. Ефименко¹, А. К. Шестакова¹, А. М. Филиппов¹, И. Б. Сокольская¹, Н. И. Кирилина¹, П. А. Стороженко¹

¹ Государственный научно-исследовательский институт химии и технологии элементоорганических соединений, и. Энтузиастов 38, Москва, 105118 Россия *e-mail: vlachtin@rambler.ru

> Поступило в редакцию 14 марта 2023 г. После доработки 14 марта 2023 г. Принято к печати 28 марта 2023 г.

Исследованы реакции гидрогермилирования аллилсиланов и -германов R₃MAll (M = Si, Ge; R = Cl, EtO, Me) гидридгерманами R₃GeH (R = Cl, Me) и эфиратом трихлоргермана $2Et_2O \cdot HGeCl_3$. Установлено, что в реакциях с эфиратом образуются небольшие количества продуктов моно- (β - и γ -аддукты) и двойного гермилирования и, в основном, полимеры. При гидрогермилировании Me₃SiAll трихлоргерманом зафиксированы незначительные количества β -аддукта, но, главным образом, во всей серии опытов с Cl₃GeH образуются γ -аддукты. В каталитических реакциях аллилсиланов и -германов с триметилгерманом независимо от обрамления атомов кремния и германия образуются исключительно γ -аддукты. Предложена схема возможного протекания изучаемых реакций. С помощью методов газожидкостной хроматографии, спектроскопии ЯМР ¹H, ¹³C и хромато-масс-спектрометрии проведена идентификация синтезированных соединений

Ключевые слова: аллилсилан, аллилгерман, гидридгерман, гидрогермилирование, катализатор Карстедта, хромато-масс-спектрометрия

DOI: 10.31857/S0044460X23040078, EDN: ATTPGG

Ранее мы сообщали о гидросилилировании аллилгерманов и аллилсиланов [1, 2], где отмечали потенциальную полезность получаемых аддуктов – 1,3-бис(силил/гермил)пропанов. Такие соединения могут найти применение при создании солнечных батарей, а также в синтезе новых биологически активных соединений. Продолжая исследования в этом направлении в данной работе мы изучали взаимодействие аллилсиланов и аллилгерманов общей формулы R_3MAll , (M = Si, Ge; R = Cl, OEt, Me) с доступными гидридгерманами – трихлоргерманом, триметилгерманом и эфиратом трихлоргермана, поскольку в некоторых случаях этот путь получения целевых 1,3-бис(силил/гермил)пропанов представляется более предпочтительным.

До настоящего исследования сведения о гидрогермилировании аллилсиланов и аллилгерманов содержались лишь в нескольких работах. В статьях [3, 4] сообщалось о гидрогермилировании трихлоргерманом аллилтрихлорсилана и аллилтрихлоргермана. Эти реакции успешно проводились в отсутствии катализаторов. В работе [5] изучалось присоединение триэтилгермана к аллилтриэтилгерману на гетерогенном платиновом катализаторе (Pt/асбест). В статьях [6, 7] сообщалось о гидрогермилировании аллилтрифенилгермана и -силана трифенилгерманом в присутствии перекиси бензоила, а в работе [8] авторам удалось присоединить триэтилгерман к аллилсилатрану, используя родиевый катализатор Rhacac(CO)₂. Имеется также сообщение о взаимодействии те-

M = Si, R = Cl (1a), OEt (16), Me (1B); M = Ge, R = Cl (2a), OEt (26), Me (2B); M = Si, R = Cl (3), Me (4, 5); M = Ge, R = Cl (6), Me (7).

трааллилстанана с трифенилгерманом, где вместо ожидаемых Sn/Ge аддуктов, образуется продукт перераспределения – 1,3-бис(трифенилгермил)-пропан [9].

Известно, что в реакциях эфиратных комплексов трихлоргермана с непредельными соединениями часто превалирует образование полимерных продуктов. Так при взаимодействии Cl₃GeH·2Et₂O с этиленом образуется полимер $[-CH_2CH_2GeCl_2-]_n$ [10-12]. Введение силильного заместителя в молекулу этилена не оказывает существенного влияния на эти реакции – при взаимодействии метилхлорвинилсиланов $Me_nCl_{3-n}SiCH=CH_2$ (*n* = 0-3) с эфиратом трихлоргермана с незначительными выходами были получены смеси аддуктов – α- и β-изомеры (5–11%) и продукты двойного гермилирования (~ 5-7%), но в основном образуются неперегоняемые вязкие продукты [13, 14]. Можно было предположить, что реакции Cl₃GeH · Et₂O с аллилсиланами и -германами будут протекать также с преимущественным образованием полимеров. Однако соединения \equiv MCH=CH₂ и \equiv MCH₂CH=CH₂ (M = Si, Ge) - это структурно различные соединения и в некоторых реакциях по кратной связи ведут себя по-разному. Например, в реакциях гидросилилирования винилсиланы образуют смеси α -и β -изомеров, и доля α -изомера бывает весьма существенной [15], в то время как аллилсиланы образуют исключительно γ -аддукты [2]. Поэтому нами также изучены реакции аллилсиланов и -германов с эфиратом трихлоргермана.

5

Взаимодействие с трихлоргерманом. Взаимодействие аллилсиланов **1а–в** и –германов **2а–в** с трихлоргерманом проводили в обычных условиях без катализаторов (схема 1).

В процессе прибавления $HGeCl_3$ к аллильным производным протекала экзотермическая реакция и в зависимости от скорости прибавления возможно повышение температуры реакционной массы до 80–90°С. В реакциях с аллилсиланами **1a** и **1b** и -германами **2a** и **2b** образуются в основном γ -аддукты. Незначительные количества β -аддукта были зафиксированы лишь в реакции с олефином **1b** (табл. 1, оп. № 3), продуктов двойного гермилирования не было обнаружено. Следует отметить, что в данных реакциях образуются также непере-

№ опыта	Исходный олефин	Продукт реакции	Выход, %	Т. кип., °С	$n_{\rm D}^{\ 20}$
1	1a	$Cl_3Si(CH_2)_3GeCl_3(3)$	72.1	110/5	1.5042
2	16	_	_	_	-
3	1в	$Me_3Si(CH_2)_3GeCl_3(4)$	44.4	58–60	1.4751ª
		$Me_3SiCH_2CH(CH_3)GeCl_3(5)$	9.7	$(2-3)^{a}$	
4	2a	$Cl_3Ge(CH_2)_3GeCl_3(6)$	67.3	120 (3)	1.5305
5	26	_	_	_	_
6	2в	$Me_3Ge(CH_2)_3GeCl_3(7)$	42.7	77 (1–2)	1.4883

Таблица 1. Гидрогермилирование аллилсиланов и -германов трихлоргерманом

^аγ- и β-изомеры выделены одной фракцией, выходы рассчитаны с помощью методов газожидкостной хроматографии и ЯМР ¹Н.

ЛАХТИН и др.

Схема 2.

 $\operatorname{GeCl}_3^- + \operatorname{H}^+ \longrightarrow \operatorname{HGeCl}_3 \longrightarrow \operatorname{GeCl}_2 + \operatorname{HCl}$

Схема 3.

гоняемые кубовые остатки, количества которых увеличиваются при переходе от трихлорных к триметильным производным. В этом же направлении снижаются и выходы получаемых аддуктов.

При наличии в исходных олефинах группировки (EtO)₃M образуются лишь вязкие неперегоняемые продукты, в которых, по данным ЯМР ¹H, преобладают сигналы этоксигрупп. Полученные результаты представлены в табл. 1.

Для реакций гидрогермилирования непредельных соединений гидридгерманами R_3 GeH (R = Cl, Alk) предполагались разные механизмы с участием частиц различной природы: ионный механизм [16], электрофильное присоединение с последовательным образованием π - и σ -комплексов [17], образование промежуточных трехчленных гетероциклов с последующей атакой его хлористым водородом [11, 12]. Среди гидридгерманов HGeCl₃ выделяется своей крайне высокой реакционной способностью в реакциях присоединения по кратным углерод-углеродным связям. Это соединение в зависимости от среды и природы реагентов может выступать как источник и дихлоргермилена, и трихлоргермильного аниона [18] (схема 2).

Авторы работы [19] при помощи квантово-химических расчетов показали, что при наличии в аллильном фрагменте силильной группы (H₃SiCH₂CH=C=) связь Si–C находится практически параллельно π -электронному облаку кратной связи C=C, что обусловливает σ , π -гиперсопряжение и способствует смещению электронной плотности на γ -углеродный атом. Последующие исследования каталитических реакций гидросилилирования аллилгерманов и -силанов [1, 2] позволяют предположить, что для аллильных соединений \equiv MCH₂CH=CH₂ (M = Si, Ge) независимо от характера заместителей у атомов кремния и германия (Cl₃M, Me₃M) относительно больший отрицательный заряд все равно будет находиться на крайнем атоме углерода. Поэтому маловероятно, что при нуклеофильном присоединении аниона GeCl₃⁻ по кратной связи аллильной группы, он будет координироваться с крайним углеродным атомом.

Если рассматривать электрофильное присоединение трихлоргермана, то вызывает сомнение возможность координации протона H^+ с β -, а не с γ -атомом углерода при образовании промежуточных π -, а затем σ -комплексов на первых стадиях реакции.

Наиболее вероятным представляется протекание этих реакций через образование нестойких трехчленных гетероциклов, так как при присоединении гермилена GeCl₂ к олефину возможна делокализация электронной плотности связи C=C. В этом случае в результате последующей атаки промежуточного гермациклопропанового интермедиата хлористым водородом, возможно образование γ -аддукта (схема 3).

Следует отметить, что β-аддукт был получен только при участии олефина **1**в, имеющего группировку Me₃Si, которая является наиболее

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

Схема 4.

Схема 5.

электронодонорной в данном ряду исходных реагентов. Возможно, что именно ее наличие способствует образованию β-изомера.

Взаимодействие с триметилгерманом. Была проведена серия реакций с триметилгерманом. При взаимодействии Cl₃SiAll с Me₃GeH в присутствии катализатора Карстедта в обычных условиях реакция протекает медленно: за 4 ч выход целевого силилгермилпропана **10** не превышает 14%, но в запаянной ампуле при 60°C за 4 ч выход аддукта Me₃Si(CH₂)₃GeMe₃ достигает 73.8%, а при 100°C и той же продолжительности – 84.0%. Все реакции этой серии проводили в запаянных ампулах. В отсутствие катализатора реакции не протекают. Независимо от обрамления атомов кремния и германия в исходных непредельных соединениях образуются исключительно γ -аддукты (схема 4). Полученные результаты представлены в табл. 2.

Наиболее реакционноспособными в данных реакциях оказались Me₃M-производные Me₃SiAll Me₃GeAll (табл. 2, оп. № 3, 6). Значительно меньшую реакционную способность показали олефины с Cl₃M-группировками: в реакции аллилтрихлорсилана с триметилгерманом при 60°С и продолжительности 4 ч выход аддукта 8 составил всего лишь 34%. В более жестких условиях (100°С, 4 ч) удается повысить выход этого аддукта до 52% (табл. 2, оп. № 1). Аллилтрихлоргерман (табл. 2, оп. № 4) не вступал в данную реакцию даже при 110–120°С.

Реакционная способность этоксипроизводных (EtO)₃SiAll и (EtO)₃GeAll в изучаемых реакциях занимает промежуточное положение между Ме₃М- и Cl₃M-замещенными аллилами. При 60°С за 4 ч выход аддуктов **9** и **11** составил 61.3 и 15.3% соответственно. Ужесточение условий проведения (100°С, 4 ч) позволило увеличить выходы аддуктов до 70.2 и 20.7% (табл. 2, оп. № 2, 5).

Реакции этой серии – каталитические, и полученные результаты вполне объяснимы предложенной нами ранее схемой [1, 2] (схема 5). На первой стадии происходит образование π -комплекса **A** и активация германа. Поскольку в конечном итоге образуются только γ -аддукты, то можно предположить преимущественную координацию атома металла с γ -углеродным атомом олефина, на котором, как было сказано выше, сосредоточена максимальная электронная плотность. На следующем этапе на каталитическом центре происходит взаимодействие активированного гидрогермана с координированным олефином, при этом атом водорода присоединяется к β -атому углерода (**Б** \rightarrow **B**). Этот

№ опыта	Исходный олефин	Продукт реакции	Т. кип., °С (мм рт. ст.)	$n_{\rm D}^{20}$	Выход, %
1	1a	$Cl_3SiCH_2CH_2CH_2GeMe_3(8)$	89 (12)	1.4612	52.5
2	16	$(EtO)_3SiCH_2CH_2CH_2GeMe_3(9)$	102–103 (2)	1.4263	70.2
3	1в	$Me_3SiCH_2CH_2CH_2GeMe_3(10)$	74 (15)	1.4369	84.0
4	2a	Cl ₃ GeCH ₂ CH ₂ CH ₂ GeMe ₃	_	_	_
5	26	$(EtO)_3GeCH_2CH_2CH_2GeMe_3$ (11)	105-106 (2)	1.4432	20.7
6	2в	$Me_3GeCH_2CH_2CH_2GeMe_3$ (12)	77 (15)	1.4515	74.3

Таблица 2. Гидрогермилирование аллилсиланов и -германов триметилгерманом (100°С, 4 ч)

процесс будет проходить тем легче, чем больше дефицит электронной плотности на β -атоме углерода и чем больше степень гидридности атома водорода гидрогермана. Известно, что атом водорода в гидридгерманах Alk₃Ge⁺H⁻ имеет гидридный характер [16].

Реакционная способность олефинов в данных реакциях снижается в ряду: Me₃M > (EtO)₃M > Cl₃M. При этом в той же последовательности увеличиваются значения химических сдвигов протонов метиленовых звеньев ≡МСН₂ в исходных олефинах: для кремниевых (м. д.) Me₃SiCH₂ (1.54) < (EtO)₃SiCH₂ (1.63) < Cl₃SiCH₂ (2.35) и для германиевых: Me₃GeCH₂ (1.67) < (EtO)₃GeCH₂ (2.11) < Cl₃GeCH₂ (2.89), так же как и в получаемых аддуктах: для кремниевых (м. д.) Me₃SiCH₂ (0.56) < (EtO)₃SiCH₂ (0.67) < Cl₃SiCH₂(0.87) и для германиевых Me₃GeCH₂ (0.77) < (EtO)₃GeCH₂ (1.56). Это качественно подтверждает увеличение электроотрицательности группировок R₃M в данном ряду. Следовательно, чем выше электроотрицательности группировок R₃M, тем больше вероятность частичного смещения электронной плотности на β-атом углерода и тем меньше вероятность присоединения к нему Н- триметилгермана. Поэтому, при наличии в исходных олефинах электронодонорных групп Ме₃М, по-видимому, не происходит смещения электронной плотности на β-атом углерода и Н- легко присоединяется к нему. Если исходный олефин содержит электроноакцепторные группы Cl₃M, то имеет место смещение электронной плотности, что существенно затрудняет присоединение H⁻ к β-атому углерода. Это подтверждается экспериментальными данными. Исходный олефин 2а имеет наиболее электроотрицательную группу Cl₃Ge и при этом взаимодействия с триметилгерманом не происходит.

Взаимодействие с эфиратом трихлоргермана. Взаимодействие Cl_3SiAll и Cl_3GeAll с эфиратом трихлоргермана протекает спокойно. При прикапывании к указанным хлоридам $Cl_3GeH \cdot 2Et_2O$ наблюдается лишь незначительный разогрев реакционной массы (на 5–7°С). При этом смесь остается гомогенной, ни расслаивания, ни выпадения осадка не наблюдается.

Проведенные исследования показали, что в данных реакциях также, как и с винилсиланами, преобладает образование полимеров. Так, при взаимодействии аллилтрихлорсилана с эфиратом трихлоргермана после отгонки эфира при атмосферном давлении вакуумной разгонкой удалось отогнать лишь ~28-30 мас% от всей реакционной массы жидкой фракции (без учета эфира). Анализ отогнанных фракций методами ГЖХ, спектроскопии ЯМР и хромато-масс-спектрометрии (XMC) показал, что реакция протекает в двух направлениях: присоединение Cl₃GeH по кратной связи и двойное гермилирование. В данной реакции наряду с ү-аддуктом 3 были зафиксированы два продукта двойного гермилирования 13а и 13б (в последнем случае один атом хлора у кремния замещен на EtO-группу), о чем однозначно свидетельствуют данные спектров ЯМР ¹Н и ¹³С (схема 6). В этой реакции продукты β-присоединения трихлоргермана зафиксированы не были.

Полученный кубовый остаток из-за наличия реакционноспособных этоксигрупп, представлял собой, по-видимому, набор полимеров хаотичной пространственной структуры. В спектре ЯМР ¹Н имеются многочисленные сигналы в широкой Схема 6.

Cl₃SiCH₂CH=CH₂ + Cl₃GeH•2Et₂O
$$\longrightarrow$$
 Cl₃SiCH₂CH₂CH₂GeCl₃
1a 3 (6.2%)
+ Cl₃SiCH₂CHCH₂GeCl₃ + (EtO)Cl₂SiCH₂CHCH₂GeCl₃
 \downarrow
GeCl₃
13a 136 $\Sigma = 13a \times 136 (5.7\%)$

Схема 7.

области химических сдвигов: 2.25–2.85 д. д (4H, <u>CH₂CH<u>CH</u>₂) и 2.95–3.25 м (1H, CH₂<u>CH</u>CH₂), очевидно, относящиеся к пропановым звеньям. Здесь также присутствовали сигналы протонов этоксигрупп при 1.25–1.40 (<u>CH₃CH₂O)</u> и 3.95–4.10 (CH₃<u>CH₂O)</u>.</u>

В опыте с аллилтрихлоргерманом реакция протекает более селективно: после отгонки эфира при помощи вакуумной разгонки удалось отогнать ~36 мас% от всей реакционной массы (без учета эфира), кубовый остаток был меньше, отогнанные фракции содержали три основных соединения – γ и β -аддукты 6 и 14 и продукт двойного гермилирования 15 (схема 7). В данной реакции не происходил обмен Cl \leftrightarrow EtO и полученные соединения содержали только Cl₃Ge-группы, что подтверждает их стабильность в эфирной среде. Эти результаты вполне объяснимы разницей в реакционной способности связей Si–Cl и Ge–Cl в реакциях алкоксилирования [20].

В спектре ЯМР ¹Н кубового остатка наблюдаются сигналы при 2.50–2.75 (4H, <u>CH₂CHCH₂)</u> и 3.10–3.20 (1H, CH₂<u>CH</u>CH₂), причем по соотношению интегральных интенсивностей они являются основными, что может свидетельствовать

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

о наличии полимера нерегулярной структуры, содержащего в основном чередующиеся звенья [-Cl₂GeCH₂CH(CH₂GeCl₃)–].

В этих реакциях из-за малых выходов образующихся продуктов гидрогермилирования выделялись не индивидуальные соединения, а фракции, содержащие их смеси. Идентификация аддуктов проведена методами ЯМР ¹H, ¹³C и ХМС. Выходы рассчитаны с помощью газожидкостной хроматографии и ЯМР ¹H.

Реакции (EtO)₃SiAll и (EtO)₃GeAll с эфиратом трихлоргермана более экзотермичны. При прибавлении Cl₃GeH·2Et₂O температура реакционной массы поднимается до 45–50°С. После медленного прибавления и выдержки в течение 2 ч при перемешивании при комнатной температуре повышается вязкость реакционных смесей, но они остаются прозрачными. Однако уже на стадии отгонки эфира цвет реакционной массы в опыте с (EtO)₃SiAll начинает меняться на оранжевый, а при вакуумной разгонке весь кубовый остаток превращается в темно-оранжевую вязкую неперегоняемую массу. В опыте с (EtO)₃GeAll кубовый остаток остается прозрачным и бесцветным. Жидкие продукты в этих опытах выделить не удалось.

N⁰	Атом	δ _Н , м. д	Атом	δ _C , м. д. (¹ <i>J</i> _{CH} , Гц)				
3		Cl ₃ SiCH ₂ ¹ CH ₂ ² CH ₂ ³ GeCl ₃						
	H^1	1.58 м	C^1	25.58 (123.9)				
	H^2	2.07 м	C^2	16.88 (127.6)				
	H ³	2.16 м	C ³	34.07 (135.4)				
4		Me ₃ ⁴ SiCH ₂ ¹ CH ₂ ² CH ₂ ³ GeCl ₃						
	H^1	0.670 м	C^1	18.98 (117.8)				
	H^2	1.764 м	C^2	18.34 (129.0)				
	H ³	2.107 м	C ³	36.80 (134.5)				
	H^4	0.016 c	C^4	-1.83 (118.6)				
5		Me ₃ ⁴ SiCH ₂ ¹ CH ² GeCl ₃ CH ₃ ³						
	TT 1 TT 11	0.83 д. д (${}^{2}J_{\rm H}$ 1a _H 1b 14.5, ${}^{3}J_{\rm H}$ 1a _H 2 12.9 Гц), 1.15 д. д. к (${}^{2}J_{\rm H}$ 1a _H 1b 14.5,		10.12 (120.0)				
	H^{1a}, H^{1b}	${}^{3}J_{\rm H}1b_{\rm H}2\ 2.5,\ {}^{4}J_{\rm H}1b_{\rm H}3\ 0.5\ \Gamma\rm{H})$	C^1	18.13 (138.8)				
	H^2	2.37 д. к. д (³ J _H 1a _H 2 12.9, ³ J _H 1b _H 2 2.5, ³ J _H 2 _H 3 7.3 Гц)	C^2	38.01 (136.2)				
	H ³	1.38 д. д (${}^{3}J_{\mu}2_{\mu}3$ 7.3. ${}^{4}J_{\nu}1_{b\mu}3$ 0.5 Гц)	C ³	16.29 (128.7)				
	H^4	0.10 c	C ⁴	-0.84 (119.0)				
6		Cl ₂ GeCH ₂ ¹ CH ₂ ² CH ₂ ³ GeCl ₂	_					
-	$H^1 H^3$	2.17 м	$C^1 C^3$	32,78 (134,1)				
	H ²	2.19 м	C^2	28 09 (134 5)				
10		Me ₂ ⁴ SiCH ₂ ¹ CH ₂ ² CH ₂ ³ GeMe ₂ ⁵	U U					
10	H^1	0 56 м	\mathbf{C}^1	20.88 (117.2)				
	H ²	1 43 M	C^2	19.68 (125.5)				
	H ³	0 78 м	C^3	21 44 (123 5)				
	H ⁴	0.01 c	C^4	-1.47(118.3)				
	H ⁵	0.12 c	C^5	-2.13(124.4)				
139		Cl_SiCH_ ¹ CH ² GeCl ₂ CH ₂ ³ GeCl ₂		2.15 (124.4)				
104		$2.02 \text{ m} \text{ m} (^2 L_1)_{\text{avel}} 16.2 ^3 L_1 \text{ avel} 7.3 \text{ Fu}) 2.16 \text{ m} \text{ m} (^2 L_1)_{\text{avel}} 16.2$						
	H ¹ a, H ¹ b	3 Lubu 2 6 5 Γ u)	C^1	25.96 (124.8)				
	H^2	3 01 M	C^2	34 00 (138 7)				
		2.52 π π (² L ₁ 3a ₁ 3b 14.6 ³ L ₁ 3a ₂ 3.8.0 Γ II) 2.65 π π (² L ₁ 3a ₂ 3b 14.6		5 1.00 (150.7)				
	H ^{3a} , H ^{3b}	$^{3}J_{\rm H}$ 3br2 5.7)	C ³	34.06 (135.2)				
		$C_{1}(CH_{2}^{5}CH_{2}^{4}O)SiCH_{2}^{1}CH^{2}(GeCl_{2})CH_{2}^{3}GeCl_{2}$		I				
136		1 75 л. π (² <i>I</i> ulaulb 15 9 ³ <i>I</i> ulau2 7 5 Ги) 1 86 л. π (² <i>I</i> ulaulb 15 9	- 1					
	H^{1a}, H^{1b}	$^{3}J_{\rm H}$ bu2 6.4 Γ II)	C^1	22.0 (123.8)				
	H^2	2.98 м	C^2	34.73 (139.2)				
		2.57 д. д. (² <i>J</i> ₁ 3 _a ₁ 3 _b 14.4, ³ <i>J</i> ₁ 3 _a ₁ 2 7.8 Гц), 2.62 (² <i>J</i> ₁ 3 _a ₁ 3 _b 14.4, ³ <i>J</i> ₁ 3 _b ₁ 2	~?					
	H ^{3a} , H ³⁰	6.8 Гц)	C	34.30 (134.2)				
	H^4	4.04 к (³ <i>J</i> _H 4 _H 5 7.0 Гц)	C^4	61.41 (146.0)				
	H^5	1.34 т (³ <i>J</i> _H 4 _H 5 7.0 Гц)	C^5	17.30 (126.9)				
14		Cl ₃ GeCH ₂ ¹ CH ² (GeCl ₃)CH ₃ ³						
	TT: TT:	2.29 д. д (${}^{2}J_{\rm H}$ la _H lb 13.6, ${}^{3}J_{\rm H}$ la _H 2 13.4 Гц), 2.53 д. д. к (${}^{2}J_{\rm H}$ la _H lb 13.6,						
	H^{1a}, H^{1b}	$^{3}J_{\rm H}$ 1b _H 2 2.6, $^{4}J_{\rm H}$ 1b _H 3 0.7 Гц)	C	33.99 (135.1)				
	H2	2.71 д. к. д (³ <i>J</i> _H 1a _H 2 13.4, ³ <i>J</i> _H 2 _H 3 7.3, ⁴ <i>J</i> _H 1b _H 3 0.7 Гц)	C^2	34.67 (137.6)				
	Н3	1.57 д. д (${}^{3}J_{\rm H}2_{\rm H}3$ 7.3, ${}^{4}J_{\rm H}1b_{\rm H}3$ 0.7 Гц)	C ³	15.17 (139.9)				
15		Cl ₃ GeCH ₂ ¹ CH ² (GeCl ₃)CH ₂ ³ GeCl ₃						
	H^{1a}, H^{3a}	2.54 д. д (² <i>J</i> _H 1a _H 1b 14.7, ³ <i>J</i> _H 1a _H 2 7.7 Гц), 2.65 д. д (² <i>J</i> _H 1a _H 1b 14.7,	- 1					
	H16 H36	${}^{3}J_{\rm H}{}^{1}{}^{b}{}^{H}{}^{2}$ 6.1 Γ µ)	$C^1, C^3 33.31 (135.6)$					
	H^2	3 13 м	C^2	$\frac{2}{34}$ 31 (139 2)				
			i v					

Таблица 3. Параметры спектров ЯМР ¹Н и ¹³С продуктов гидрогермилирования

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

554

Рис. 1. Возможные конформации β -аддуктов 5 (M = SiMe₃) и 14 (M = GeCl₃).

Рис. 2. Преимущественные конформации продуктов двойного гермилирования ($M = SiCl_3$, $SiCl_2(OEt)$ и GeCl₃): e_1 – заслоненная конформация в проекции по связи C^1-C^2 , e_2 – заслоненная конформация в проекции по связи C^3-C^2 .

Не удалось выделить аддукты и в аналогичных реакциях с Ме₃М-производными. Здесь также были получены лишь вязкие неперегоняемые массы.

Исследование методом ЯМР. Все продукты реакций гидрогермилирования, которые удалось выделить из реакционных смесей, были охарактеризованы данными ЯМР ¹Н. При этом следует отметить следующее. Спектры ЯМР ¹Н всех γ -аддуктов представляют собой набор сложных мультиплетов непервого порядка (двух или трех в зависимости от заместителей на концах пропановой цепи), детальный анализ мультиплетной структуры которых не входит в задачу настоящего исследования.

Напротив, протонные спектры β -аддуктов и продуктов двойного гермилирования имеют существенно более простую структуру мультиплетов и были нами расшифрованы полностью. Отнесение сигналов в спектрах ЯМР ¹Н и ¹³С было сделано с использованием двумерных спектров ЯМР COSY и HSQC [21]. В табл. 3 приведены результаты анализа спектров ЯМР ¹Н и ¹³С образовавшихся в данном процессе β -аддуктов и продуктов двойного гермилирования, а также соответствующих γ -аддуктов.

Из приведенных в табл. 3 данных особенный интерес представляют значения вицинальных КССВ между протонами метиленовой группы при С¹ или С³ и метиновым протоном при С². Метиленовые протоны являются химически неэквивалентными из-за наличия асимметрического центра при атоме углерода C², содержащем три разных заместителя (рис. 1, 2), и имеют разные химические сдвиги и разные константы спин-спинового взаимодействия с соседним метиновым протоном. Значения этих констант являются весьма информативными и позволяют охарактеризовать конформацию молекулы. Теоретическая зависимость значений вицинальных КССВ от двугранного угла во фрагменте Н-С-С-Н описывается уравнением Карплуса [22]. Соответствующая функция имеет два максимума: при значении двугранного угла 180° (14-16 Гц) и 0° (9-11 Гц). Минимальное значение наблюдается для двугранного угла в 90°.

Для соединений **5** и **14** теоретически возможны три конформера, различающиеся взаимным расположением металлоорганических групп (рис. 1). Сильнопольные протоны при C¹ в этих соединениях имеют константы с H² порядка 13.6–14.5 Гц, что свидетельствует об их *транс*-расположении

относительно метинового протона H^2 (конформеры g^+ и *t* на рис. 1). При этом конформация g^+ представляется менее вероятной, чем *t*, из-за существенного стерического и электростатического отталкивания двух металлоорганических групп в *гош*-положении. Таким образом, на основании анализа данных ЯМР ¹Н можно сделать вывод о том, что образовавшиеся в результате реакции гидрогермилирования β-аддукты **5** и **14** находятся преимущественно в конформации с *транс*-расположением металлоорганических групп.

В отличие от β -аддуктов значения вицинальных констант метиленовых протонов при C¹ и C³ с метиновым протоном H² в продуктах двойного гермилирования **13а**, **13б** и **15** имеют близкие значения (6–8 Гц), которые соответствуют двугранным углам 110–130°. Это свидетельствует о том, что как по связи C¹–C², так и по связи C³–C² в этих соединениях реализуются заслоненные конформации (рис. 2).

Важную информацию о характере элементоорганических заместителей могут дать прямые константы спин-спинового взаимодействия ${}^{13}C{}^{-1}H$ в алкильных группах, непосредственно связанных с элементом. Анализ литературных данных показывает [23], что величина константы зависит от электроотрицательности как самого элемента, так и заместителей при нем. При этом, чем больше суммарная электроотрицательность, тем больше значение прямой константы спин-спинового взаимодействия ${}^{13}C{}^{-1}H$. Из данных табл. 3 следует, что для метилов в группе SiMe₃ наблюдаются наименьшие по величине константы (117–119 Гц), а в группе GeMe₃ константы заметно увеличиваются (124.4 Гц в соединении **10**). Для CH₂- и CH-групп, непосредственно связанных с группой GeCl₃, прямые $^{13}C^{-1}H$ константы приобретают наибольшие значения (α -эффект, 134–139 Гц). Следует отметить, что влияние группы GeCl₃ распространяется даже на атомы углерода, удаленные от германия на две связи (β -эффект, 134–138 Гц). Наблюдаемые эффекты свидетельствуют о том, что совокупная электроотрицательность группы GeCl₃ заметно выше, чем группы GeMe₃.

Масс-спектрометрическое исследование. Состав продуктов реакции 4–12 подтвержден данными масс-спектрометрии. Анализ соединений 4 и 5 показал их совпадение по катионам m/z 279 и 259. Отличительной особенностью масс-спектра аддукта 5 является фрагментация по схеме 8, приводящая к образованию высокой интенсивности катиона m/z 115, что не наблюдается для соединения 4.

Для соединений **8**, **10**, **11** и **12** характерным является образование катиона максимальной интенсивности Me_3Ge^+ с m/z 119, не зависящее от присутствия на втором конце молекулы атомов хлора, метильных или этоксигрупп при атомах кремния или германия. В то же время образование m/z 119 не характерно для соединения **9**.

При фрагментации соединений 9 и 11 в условиях электронной ионизации (ЭИ) в масс-спектрах наблюдается несколько наборов катионов. Каждый набор содержит большое число масс-спектральных линий (от 11 до 15), что напрямую связано не только с присутствием пяти стабильных изотопов германия, но и с лабильными свойствами этих молекул. Наиболее интенсивными в каждом наборе являются, как правило, катионы, содержащие изотоп ⁷⁴Ge, и по ним исследовали масс-спектры.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

OEt

Необходимо особо отметить фрагментацию соединений 9 и 11, содержащих этоксигруппы. Фрагментация соединения 9 с тремя этоксигруппами при атоме кремния после отрыва радикала СН₂ приводит к появлению катиона *m/z* 309 (100%), а при последующем элиминировании С₂Н₄ - к катиону *m/z* 281 (29%). При дальнейшем элиминировании одной CH₃-группы от Ge из *m/z* 281 и второй от этоксигруппы образуется циклический катион с *m/z* 251 (схема 9).

Для соединения 11 катион *m/z* 355 образуется из молекулярного иона *m/z* 370 в результате отрыва метильного радикала (схема 10). Параллельный отрыв от m/z 370 атома водорода приводит к образованию неустойчивого катиона m/z 369, который фрагментирует по двум направлениям: до катио-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

на Me₃Ge⁺ с *m/z* 119 после элиминирования цикла массой 250 Да и до циклического катиона с *m/z* 353 после выброса СН₄ (схема 10). Таким образом, наличие этоксигрупп в изучаемых аддуктах делает их лабильными в условиях электронной ионизации и способствует образованию циклических катионов.

В настоящей работе установлено, что в каталитических реакциях гидрогермилирования аллилсиланов и -германов образуются исключительно у-аддукты. При этом увеличение электроотрицательности силильной (гермильной) группы в исходных олефинах существенно снижает их реакционную способность. В некаталитических реакциях с трихлоргерманом возможно образование β-аддуктов. В данном случае выходы продуктов присоединения HGeCl₃ снижаются при переходе от Cl₃M к Me₃M и в той же последовательности увеличиваются количества полимеров. При наличии в исходных олефинах группировки (EtO)₃M образование аддуктов имеет место только в реакциях с триметилгерманом. Показано, что реакции аллильных производных ≡MCH₂CH=CH₂ (M = Si, Ge) с эфиратом трихлоргермана неселективны и приводят в основном к образованию полимерных продуктов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Количественное определение исходных соединений и продуктов реакции проводили методом ГЖХ на приборе Хроматэк-Кристалл 5000.2 в изотермических условиях при температуре 110°С капиллярной колонки HP-1 (30 × 0.32 × 0.25) и температуре 230°С испарителя и детектора по теплопроводности. Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре Bruker AVANCE 600 с рабочей частотой 600.03 МГц для ядер ¹Н при 303 К для растворов в дейтерохлороформе. В качестве внутреннего стандарта использовали тетраметилсилан. Для исследований методом ЯМР было использовано оборудование Центра коллективного пользования Государственного научно-исследовательского института химии и технологии элементоорганических соединений.

Для идентификации полученных соединений использовали также хромато-масс-спектрометр с ионной ловушкой 240 Ion Trap GC/MS Agilent Technologies и энергией ионизирующих электронов 70 эВ (метод ХМС). Для разделения компонентов использовали капиллярную колонку DB-1 $(25 \text{ м} \times 0.32 \text{ мм} \times 0.25 \text{ мкм})$. Соединения растворяли в гексане. Навеску образца в количестве 3 мг вносили в 1 мл растворителя и с помощью автосэмплера вводили 1 мкл пробы в испаритель хроматографа при 240°С. Разделение газового потока составляло 1:30, скорость газа-носителя (гелий марки 6.0) 1 мл/мин. Анализ начинали при температуре 50°С в изотерме 0.5 мин, затем нагревали до 200°С со скоростью 10 град/мин. Для идентификации исследуемых соединений использовали электронную библиотеку масс-спектров NIST 11 [24].

Аллилтрихлорсилан 1а получали по методике [25], аллилтриметилсилан 1в – по методике [26],

но в качестве реактива Гриньяра использовали MeMgCl. Аллилтрихлоргерман **2a** получали по методике [27], аллилтриметилгерман **2b** – по методике [28]. Триэтоксипроизводные **16** и **26** получали этоксилированием соответствующих хлорпроизводных **1a** и **2a**. В качестве акцептора хлористого водорода использовали триэтиламин [29].

1-Трихлорсилил-3-трихлоргермилпропан (**3**). Выход 72.1%, т. кип. 115–117°С (5 мм рт. ст.) {т. кип. 74–75°С (1.5 мм рт. ст.) [24]}, n_D^{20} 1.5042 (n_D^{20} 1.5040 [24]). Масс-спектр, m/z ($I_{\text{отн}}$, %): 354 (0) [M]⁺, 323(6), 321 (7.5), 319 (9) [M – Cl]⁺, 179 (17), 178 (38), 177 (45), 176 (100), 174 (85) [M – 180]⁺, 135 (23), 133 (18), 117 (8.5), 115 (13.5), 42 (12), 39 (11).

1-Триметилсилил-3-трихлоргермилпропан (4). Выход 44.4% (ГЖХ, ЯМР ¹Н), т. кип. смеси βи γ-изомеров 58–60°С (2–3 мм рт. ст.), n_D^{20} 1.4751. Macc-спектр, m/z ($I_{\text{отн}}$, %): 294 (0) [M]⁺, 279 (100) [M – CH₃]⁺, 259 (50) [M– Cl]⁺, 223 (8) [259 – HCl]⁺.

1-Триметилсилил-2-трихлоргермилпропан (5). Выход 9.7% (ГЖХ, ЯМР ¹Н). Масс-спектр, *m/z* (*I*_{отн}, %): 294 (0) [*M*]⁺, 279 (15) [*M* – CH₃]⁺, 259 (8) [*M* – Cl]⁺, 115 (92), 89 (31), 73 (100) [Me₃Si]⁺.

1,3-Бис(трихлоргермил)пропан (6). Выход 67.3%, т. кип. 120°С (3 мм рт. ст.), n_D^{20} 1.5305. Масс-спектр, m/z ($I_{\text{отн}}$, %): 400 (0) [M]⁺, 365 (100) [M - Cl]⁺, 220 (43.1) [$M - \text{HGeCl}_3$]⁺.

1-Триметилгермил-3-трихлоргермилпропан (7). Выход 42.7%, т. кип. 77°С (1–2 мм рт. ст.), n_D^{20} 1.4883. Спектр ЯМР ¹Н, δ , м. д.: 0.18 с (9H, Me₃Ge), 0.85–0.92 м (2H, CH₂GeMe₃), 1.78–1.92 м (2H, CH₂CH₂CH₂), 2.08–2.15 м (2H, CH₂GeCl₃). Macc-спектр, m/z ($I_{\text{отн}}$, %): 340 (0) [M]⁺, 325 (12) [M – CH₃]⁺, 179 (6,7) [M – Me₂Ge(CH₂)₃]⁺, 159 (1.2) [179 – Cl + Me]⁺, 139 (15.6) [159 – Cl + Me]⁺, 119 (100) [GeMe₃]⁺, 105 (7.5) [HGeMe₂]⁺, 89 (19.9) [CH₂=GeH]⁺.

1-Трихлорсилил-3-триметилгермилпропан (8). Выход 52.5%, т. кип. 88–89°С (12 мм рт. ст.), n_D^{20} 1.4612. Спектр ЯМР ¹Н, δ, м. д.: 0.17 с (9H, Me₃Si), 0.83–0.90 м (2H, CH₂Ge), 1.45–1.52 м (2H, CH₂Si), 1.67–1.74 м (2H, CH₂<u>CH₂</u>CH₂). Массспектр, *m/z* ($I_{\text{отн}}$, %): 294 (0) [*M*]⁺, 279 (15.4) [*M* – 15]⁺, 119 (100) [GeMe₃]⁺, 105 (28.6) [HGeMe₂]⁺, 89 (13.5) [CH₂=GeH]⁺.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

1-Триэтоксисилил-3-триметилгермилпропан (9). Выход 70.2%, т. кип. 102–103°С (2 мм рт. ст.), n_D^{20} 1.4263. Спектр ЯМР ¹Н, δ , м. д.: 0.09 с (9H, Me₃Ge), 0.65–0.70 м [2H, CH₂Si(OEt)₃], 0.75–0.82 м (2H, CH₂GeMe₃), 1.45–1.56 м (2H, CH₂CH₂CH₂), 1.18–1.25 м (CH₃CH₂O), 3.77–3.85 м (CH₃CH₂O). Macc-спектр, *m/z* ($I_{\text{отн}}$, %): 324 (0.3) [*M*]⁺, 309 (100) [*M* – 15]⁺, 281 (28.8) [309 - 28]⁺, 251 (9.1), 205 (16.3), 177 (8.8), 117 (7.1).

1-Триметилсилил-3-триметилгермилпропан (**10**). Выход 84.0%, т. кип. 74°С (15 мм рт. ст.), n_D^{20} 1.4370. Масс-спектр, m/z ($I_{\text{отн}}$, %): 234 (0) [M]⁺, 219 (12.4) [M – 15]⁺, 119 (100) [Me₃Ge]⁺, 89 (18.6) [CH₂=GeH]⁺, 73 (74.2) [Me₃Si]⁺.

1-Триэтоксигермил-3-триметилгермилпропан (11). Выход 20.7%, т. кип. 105–106°С (2 мм рт. ст.), n_D^{20} 1.4432. Спектр ЯМР ¹H, δ , м. д.: 0.10 с (9H, Me₃Ge), 0.76–0.82 м (2H, CH₂GeMe₃), 1.28–1.34 м [2H, CH₂Ge(OEt)₃], 1.62–1.70 м (2H,CH₂CH₂CH₂), 1.20–1.25 м (CH₃CH₂O), 3.82–3.90 м (CH₃CH₂O). Масс-спектр, m/z ($I_{\text{отн}}$, %): 370 (0) [M]⁺, 355 (28.3) [M–15]⁺, 353 (37.4) [M–H–CH₄]⁺, 351 (34.9), 349 (15.5), 307 (16.8), 281 (40.4), 119 (100) [Me₃Ge]⁺, 105 (10.9) [HGeMe₂]⁺, 89 (3.2) [CH₂=GeH]⁺.

1,3–Бис(триметилгермил)пропан (12). Выход 74.3%, т. кип. 76–77°С (15 мм рт. ст.), n_D^{20} 1.4515. Спектр ЯМР ¹H, δ , м. д.: 0.13 с (18H, Me₃Ge), 0.75– 0.81 м (4H, CH₂Ge), 1.46–1.55 м (2H, CH₂<u>CH₂CH₂</u>). Масс-спектр, m/z ($I_{\text{отн}}$, %): 280 (0) [M]⁺, 265 (1.3) [M–15]⁺, 145 (36.7), 119 (100) [Me₃Ge]⁺, 104 (12.0), 89 (24).

1-Трихлорсилил-2,3-бис(трихлоргермил)пропан (13а) и 1-этоксидихлорсилил-2,3бис(трихлоргермил)пропан (13б). Выход 5.7% (ГЖХ, ЯМР ¹Н).

1,2-Бис(трихлоргермил)пропан (14). Выход 6.7% (ГЖХ, ЯМР ¹Н).

1,2,3-Трис(трихлоргермил)пропан (15). Выход 9.4% (ГЖХ, ЯМР ¹Н).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

СПИСОК ЛИТЕРАТУРЫ

- Лахтин В.Г., Ефименко Д.А., Филиппов А.М., Шулятьева Т.И., Сокольская И.Б., Семяшкина И.А., Комаленкова Н.Г., Стороженко П.А. // ЖОХ. 2021. Т. 91. Вып. 1. С. 102. doi 10.31857/S0044460X21010108; Lakhtin V.G., Efimenko D.A., Filippov A.M., Shulyatieva T.I., Sokolskaya I.B., Semyashkina I.A., Komalenkova N.G., Storozhenko P.A. // Russ. J. Gen. Chem. 2021. Vol. 91. N 1. P. 77. doi 10.1134/S1070363221010084
- Лахтин В.Г., Ефименко Д.А., Филиппов А.М., Сокольская И.Б., Шестокова А.К., Шулятьева Т.И., Комаленкова Н.Г., Стороженко П.А. // ЖОХ. 2022. Т. 92.
 Вып. 5. С. 746. doi 10.31857/S0044460X22050109; Lakhtin V.G., Efimenko D.A., Filippov A.M., Sokolskaya I.B., Shestakova A.K., Shulyatieva T.I., Komalenkova N.G., Storozhenko P.A. // Russ. J. Gen. Chem. 2022. Vol. 92. N 5. P. 811. doi 10.1134/S1070363222050103
- Джуринская Н.Г., Миронов В.Ф., Петров А.Д. // Докл. АН СССР. 1961. Т. 138. № 5. С. 1107.
- Миронов В.Ф., Джуринская Н.Г., Гар Т.К., Петров А.Д. // Изв. АН СССР. Сер. хим. 1962.
 Вып. З. С. 460; Mironov V.F., Dzhurinskaya N.G., Gar T.K., Petrov A.D. // Bull. Acad. Sci. USSR. Div. Chem. Sci. 1962. Vol. 11. N 3. P. 425. doi 10.1007/ BF00909535
- Mazerolles P., Lesbre M. // C.r. Acad. Sci. 1959. Vol. 248. N 13. P. 2018.
- Gilman H., Gerow C.W. // J. Am. Chem. Soc. 1957.
 Vol. 79. N 2. P. 342. doi 10.1021/ja01559a027
- Meen R.H., Gilman H. // J. Org. Chem. 1957. Vol. 22. N 6. P. 684. doi 10.1021/jo01357a601
- Воронков М.Г., Адамович С.Н., Кудяков Н.Н., Храмцова С.Ю., Рахлин В.И., Мирсков Р.Г. // Изв. АН СС-СР. Отд. хим. наук. 1986. № 2. С. 488; Voronkov M.G., Adamovich S.N., Kudyakov N.M., Khramtsova S.Yu., Rakhlin V.I., Mirskov R.G. // Bull. Acad. Sci. USSR. Div. Chem. Sci. 1986. Vol. 35. N 2. P. 451. doi 10.1007/ BF00952952
- H.Schumann, Y.Aksu // Organometallics. 2007. Vol. 26. N 2. P. 397. doi 10.1021/om0608531
- Нефедов О.М., Колесников С.П., Шейченко В.И., Шейнкер Ю.Н. // Докл. АН СССР. 1965. Т. 162. Вып. 3. С. 589.
- Нефедов О.М., Колесников С.П. // Изв. АН СССР, Отд. хим. наук. 1966. № 2. С. 201.
- Нефедов О.М., Колесников С.П. // Изв. АН СССР, Отд. хим. наук. 1963. № 11. С. 2068.
- Лахтин В.Г., Князев С.П., Павлов К.В., Гусельников Л.Е., Буравцева Е.Н., Куянцева Н.А., Паршкова Л.А., Мидько А.А., Быковченко В.Г., Кисин А.В., Чернышев Е.А. // ЖОХ. 2008.

T. 78. Вып. 5. С. 756; Lakhtin V.G., Knyazev S.P., Pavlov K.V., Gusel'nikov L.E., Buravtseva E.N., Kuyantseva N.A., Parshkova L.A., Mid'ko A.A., Bykovchenko V.G., Kisin A.V., Chernyshev E.A. // Russ. J. Gen. Chem. 2008. Vol. 78. N 5. C. 756. doi 10.1134/S1070363208050101

- Лахтин В.Г., Волкова В.В., Гусельников Л.Е., Паршкова Л.А., Буравцева Е.Н., Мокшанов А.Н., Мидько А.А., Чернышев Е.А. Деп. ВИНИТИ. М., 2005. № 1730-В2005.
- 15. *Власенко С.Д.* Автореф. дис. ... канд. хим. наук. М., 1983. 177 с.
- 16. Satge J. // Ann. Chim. 1961. Vol. 6. P. 519.
- 17. Колесников С.П., Нефедов О.М., Шейченко В.И. // Изв. АН СССР. Сер. хим. 1966. Т. 3. С. 443.
- 18. *Миронов В.Ф., Гар Т.К.* Органические соединения германия. М.: Наука, 1967. С. 45.
- Deleris G., Pillot J.P., Rayex J.G. // Tetrahedron. 1980. Vol. 36. N 15. P. 2215. doi 10.1016/0040-4020(80)80114-1
- 20. Лебр М., Мазероль П., Сатже Ж. Органические соединения германия. М.: Мир, 1974. С. 269.
- 21. Chertkov, V.A., Davydov, D.V., Shestakova, A.K. // XΓC. 2011. № 1. C.63; Chertkov V.A., Davydov D.V.,

Shestakova A.K. // Chem. Heterocycl. Compd. 2011. Vol. 47. N 1. P. 45. doi 10.1007/s10593-011-0718-z

- 22. *Gunther H.* NMR. Spectroscopy, Basic Principles, Concepts and Applications in Chemistry. Weinheim: Wiley-VCH, 2013.
- 23. Сергеев Н.М., Чертков В.А. // Докл. АН СССР, 1986. Т. 286. С.1186.
- 24. Mass Spectral Data Base NIST 11. NIST/EPA/NIH (NIST 11). 2011.
- Furuya N., Sukawa T. // J. Organomet. Chem. 1975. Vol. 96. N 1. P. C1. doi 10.1016/S0022-328X(00)86430-X
- Burchard C.A. // J. Am. Chem. Soc. 1950. Vol. 72. N 3. P. 1078. doi 10.1021/ja01159a007
- 27. Наметкин Н.С., Королев В.К., Кузьмин О.В. // Докл. АН СССР. 1972. Т. 205. № 5. С. 1111.
- Петров А.Д., Миронов В.Ф., Долгий И.Е. // Изв. АН СССР. Сер. хим. 1956. № 9. С. 1146; Petrov A.D., Mironov V.F., Golgy I.E. // Bull. Acad. Sci. USSR. Div. Chem. Sci. 1956. Vol. 5. N 9. P. 1169. doi 10.1007/ BF01177372
- Faller J.W., KultyshevR. G., Parr J. // J. Organometal. Chem. 2004. Vol. 689. N 15. P. 2565. doi 10.1016/j. jorganchem.2004.05.011

Hydrogermylation of Allylsilanes and -Germanes

V. G. Lakhtin^{*a*,*}, D. A. Efimenko^{*a*}, A. K. Shestakova^{*a*}, A. M. Filippov^{*a*}, I. B. Sokolskaya^{*a*}, N. I. Kirilina^{*a*}, and P. A. Storozhenko^{*a*}

^a State Research Institute of Chemistry and Technology of Organoelement Compounds, Moscow, 105118 Russia *e-mail: vlachtin@rambler.ru

Received March 14, 2023; revised March 14, 2023; accepted March 28, 2023

The reactions of hydrogermylation of allylsilanes and -germanes R_3MAll (M = Si, Ge; R = Cl, EtO, Me) by hydridgermanes R_3GeH (R = Cl, Me) and trichlorogermane ether $2Et_2O$ ·HGeCl₃ were studied. It has been established that small amounts of mono- (β - and γ -adducts) and double germylation products and, mainly, polymers are formed in reactions with ether. During hydrogermylation of Me₃SiAll with trichlorogermane, insignificant amounts of β -adduct were recorded, but mainly in the entire series of experiments with Cl₃GeH, γ -adducts are formed. In the catalytic reactions of allylsilanes and -germanes with trimethylgermane, exclusively γ -adducts are formed regardless of the framing of silicon and germanium atoms. A scheme of the possible course of the studied reactions is proposed. The identification of synthesized compounds was carried out using the methods of gas-liquid chromatography, ¹H, ¹³C NMR spectroscopy and chromatography-mass spectrometry

Keywords: allylsilane, allylgermane, hydride germane, hydrogermylation, Karstedt catalyst, chromatography-mass spectrometry