УДК 547.514.72;547-327;546.492;544.18

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРОЕНИЯ АМИДИН-ИНИЛТЕТРАМЕТОКСИКАРБОНИЛ-ЦИКЛОПЕНТАДИЕНА И ЕГО Hg(II) И TI(I) КОМПЛЕКСОВ

© 2023 г. Г. А. Душенко^{1,*}, И. Е. Михайлов¹, О. И. Михайлова¹, Р. М. Миняев¹, В. И. Минкин¹

¹ Научно-исследовательский институт физической и органической химии Южного федерального университета, np. Стачки 194/2, Ростов-на-Дону, 344090 Россия *e-mail: gadushenko@sfedu.ru

> Поступило в редакцию 11 марта 2023 г. После доработки 20 марта 2023 г. Принято к печати 21 марта 2023 г.

Расчетами DFT CAM-B3LYP/6-311++G(d,p) и CAM-B3LYP/6-311++G(d,p)/SDD показано, что полидентатный амидинилтетраметоксикарбонилциклопентадиенильный лиганд и его Hg(II) и Tl(I) комплексы наиболее устойчивы в виде илидных изомеров, в которых атом водорода или металла связан с терминальным атомом азота амидиниевого фрагмента и в случае металлокомплексов дополнительно координирован π -системой циклопентадиенового кольца. Альтернативные изомеры, в которых атомы водорода или металла связаны с атомами углерода кольца циклопентадиена или с карбонильными атомами кислорода метоксикарбонильных заместителей энергетически менее устойчивы на ΔE_{TPF} 4.1–15.1 ккал/моль.

Ключевые слова: амидинилтетраметоксикарбонилциклопентадиен, полидентатные лиганды, Hg(II), Tl(I), квантово-химические расчеты

DOI: 10.31857/S0044460X23040133, EDN: AVQROK

Циклопентадиены с метоксикарбонильными заместителями в пятичленном кольце используются в качестве энантиоселективных кислотных органокатализаторов Бренстеда [1–4], для получения пуш-пульных хромофоров в органической фотовольтаике [5, 6], в синтезе комплексов с переносом заряда для нужд молекулярной электроники и создания полимерных ионных жидкостей [7–9]. Введение в циклопентадиеновое кольцо боковой цепи с концевым N-донорным заместителем позволяет получать лиганды с дополнительной внутримолекулярной координацией металла при образовании комплексов, использующихся в катализе и медицине [1, 10–13]. Комплексы Hg(II) применяются для создания координационных полимеров, металлоорганических функциональных материалов с люминесцентными и нелинейно-оптическими свойствами, получения биологически активных соединений [14–16]. Соединения Tl(I) служат в качестве стабильных и мягких реагентов, используемых в органическом, металлоорганическом и полимерном синтезах [17, 18].

Ранее нами были синтезированы N,N'-ди(*n*-толил)бензамидиний-N'-[2,3,4,5-тетраметоксикарбонилциклопентадиен-1-ил]илид 1 и его производные с широким рядом заместителей в амидиниевом

фрагменте [19-22]. При взаимодействии илида 1 с ацетатом арилртути или гидроокисью таллия в метаноле были получены N-арилртуть- и N-таллий-N,N'-ди(*п*-толил)бензамидиний-N'-[2,3,4,5-тетраметоксикарбонилциклопентадиен-1-ил]илиды **2** и **3** соответственно [19, 23]. Методами ЯМР ¹Н, ¹³С. ИК спектроскопии установлено, что соединения 1-3 обладают стабильной жесткой структурой, в которой атом водорода или металла связан с терминальным атомом азота триады NCN. Строение илида 1 и близкого по структуре к соединению 3 комплекса таллия(I) с заместителем 2-Me-6-Cl-C₆H₃ при углероде NCN триады подтверждено методом рентгеноструктурного анализа (РСА) [19, 23]. Для полидентатного лиганда 1 и его металлокомплексов 2 и 3 изомеры с координацией атома водорода или металла по углеродам кольца циклопентадиена или карбонильным кислородам метоксикарбонильных заместителей в продуктах реакции или после термической обработки соединений 1-3 не были найдены.

Данная работа посвящена исследованию при помощи расчетов методами теории функционала

плотности (DFT) САМ-ВЗLYР/6-311++G(d,p) и САМ-ВЗLYР/6-311++G(d,p)/SDD в газовой фазе электронной и пространственной структуры полидентатных амидинилтетраметоксикарбонилциклопентадиенильных лигандов и их Hg(II) и Tl(I) комплексов, способных к различным типам связывания атомов водорода или металла, и выявлению наиболее устойчивых изомеров, а также сравнению расчетных данных с имеющимися экспериментальными данными.

Согласно расчетам, в газовой фазе структуры амидинилциклопентадиенильных лигандов **1а–ж**, а также их комплексов ртути **2а–е** и таллия **За–**д, в которых атомы водорода, ртути и таллия связаны с терминальным атомом азота, либо с атомами углерода кольца циклопентадиена, либо с карбонильных заместителей отвечают минимумам на поверхности потенциальной энергии (схемы 1–3).

Лиганд **1а** более устойчив, чем его изомеры **16-ж** на $\Delta E_{ZPE} = 4.6-15.1$ ккал/моль, комплекс ртути **2а** энергетически выгоднее изомерных комплексов **26-е** на $\Delta E_{ZPE} = 7.1-15.0$ ккал/моль, а ком-

Таблица 1. Относительные энергии структур основных состояний лигандов **1а**-ж и комплексов **2а**-е и **3а**-д в газовой фазе, рассчитанные методами CAM-B3LYP/ 6-311++G(d,p) (**1а**-ж) и CAM-B3LYP/6-311++G(d,p)/ SDD (**2а**-е, **3а**-д)^{а-д}

Структура	ΔE , ккал/моль	$\Delta E_{\rm ZPE}$, ккал/моль	ω ₁ , см ⁻¹
1 a	0	0	11
16	4.3	4.6	11
1в	16.0	15.1	12
1г	13.7	12.8	14
1д	12.1	11.4	14
1e	11.4	9.8	13
1ж	15.2	13.8	14
2a	0	0	15
26	9.9	10.0	11
2в	7.6	7.1	13
2г	9.2	8.5	11
2д	15.2	15.0	10
2e	13.3	12.9	11
3 a	0	0	18
36	9.5	9.6	19
3в	11.6	11.4	11
3г	4.2	4.1	15
3д	8.2	8.0	11

^а Δ*E*, Δ*E*_{ZPE} – относительные энергии без учета и с учетом энергии нулевых гармонических колебаний; ω₁ – наименьшая величина гармонической колебательной частоты.

^б **1а**, $E_{\text{полн}}$ –2025.77487 а. е., E_{ZPE} –2025.16959 а. е.

^в **2а**, *E*_{полн} –2544.10417 а. е., *E*_{ZPE} –2543.34639 а. е.

^г **За**, *E*_{полн} –2027.19428 а. е., *E*_{ZPE} –2026.60193 а. е.

^д 1 а. е. = 627.5095 ккал/моль.

плекс таллия **3а** стабильнее изомерных комплексов **36**–д на $\Delta E_{ZPE} = 4.1-11.4$ ккал/моль (табл. 1), что согласуется с экспериментальными данными о существовании лиганда **1** и комплексов **2**, **3** только в одной форме [19, 20, 23].

По данным расчетов, в газовой фазе лиганд 1а обладает илидной структурой, в которой атом водорода связан с терминальным атомом азота амидиниевого фрагмента (рис. 1). В нем реализуется Z,E-конфигурация амидиниевого фрагмента с расположением группы $C_5(CO_2Me)_4$ и водорода по одну сторону триады NCN. Поляризация структуры проявляется в близости длин связей как Ср-кольца (1.391–1.427 Å), характерных для Ср-анионов, так и амидиниевого фрагмента (1.323, 1.327 Å), типичных для амидиниевых катионов. Рассчитанный суммарный заряд на тетраметоксикарбонилциклопентадиенильном фрагменте в **1а** отрицательный и составляет -0.605 e, а амидиниевый фрагмент с заместителями несет соответствующий положительный заряд. Плоскость амидиниевого фрагмента развернута относительно плоскости Ср-кольца (торсионный угол $C^2C^1N^1C^6$ 81.5°). В стерически перегруженном амидиниевом фрагменте арильные группы выведены из амидиниевой плоскости и находятся в пропеллерной конформации: торсионные углы равны $C^6N^1C^7C^8$ 122.0°, $N^1C^6C^9C^{10}$ 123.6°, $C^6N^2C^{11}C^{12}$ 128.3°. Рассчитанные геометрические параметры структуры **1а** соответствуют данным РСА [19].

В илидной структуре 16 атом водорода также связан с атомом азота, но она имеет Z,Z-конфигурацию амидиниевого фрагмента с расположением фрагмента С₅(СО₂Ме)₄ и водорода по противоположные стороны триады NCN. Структуры 1а и 1б достаточно близки по устойчивости: изомер 16 на $\Delta E_{\text{ZPE}} = 4.6$ ккал/моль менее стабильнее, чем изомер 1а (схема 1, табл. 1, рис. 1). Структуры 1в-д, в которых атом водорода связан с атомами углерода Ср-кольца, имеют значительно более низкую стабильность по сравнению с илидными структурами 1а, б и менее устойчивы, чем изомер 1а на $\Delta E_{\rm ZPE} = 12.8-15.1$ ккал/моль (схема 1, табл. 1, рис. 2, 3). Фульвеновые структуры 1е и 1ж, в которых атом водорода связан с карбонильным атомом кислорода метоксикарбонильной группы и дополнительно координирован карбонильным атомом кислорода соседнего заместителя [расстояния H…O 1.335 (1е) и 1.374 Å (1ж)], являются также значительно менее устойчивыми, чем изомер 1а на $\Delta E_{\text{ZPE}} = 9.8$ и 13.8 ккал/моль (схема 1, табл. 1, рис. 3).

Следует отметить, что родственный пентаметоксикарбонилциклопентадиен, по данным методов РСА, ЯМР и DFT-расчетов, в кристаллическом состоянии и растворах существует в форме фульвена, в которой атом водорода локализован на карбонильном атоме кислорода и дополнительно координирован карбонильным кислородом соседней группы, и в этой форме осуществляются внутримолекулярые круговые низкобарьерные 1,9-О,О'-сдвиги водорода с активационным барьером ~18–19 ккал/моль (Cl₂CDCDCl₂) в отличие от структурно жесткого илида **1а** [24–26].

Рис. 1. Рассчитанные методом CAM-B3LYP/6-311++G(d,p) геометрические параметры структур основных состояний **1***a*, **б** в газовой фазе. Здесь и далее атомы водорода при метильных и арильных группах не показаны, длины связей даны в Å.

Рис. 2. Рассчитанные методом CAM-B3LYP/6-311++G(d,p) геометрические параметры структур основных состояний **1**в, г в газовой фазе.

Рис. 3. Рассчитанные методом САМ-ВЗLYP/6-311++G(d,p) геометрические параметры структур основных состояний 1д-ж в газовой фазе.

Расчеты в газовой фазе показали, что комплексы ртути **2a** и таллия **3a** также как и лиганд **1a** являются илидными структурами, в которых атом металла связан с терминальным атомом азота амидиниевого фрагмента с Z,Z-конфигурацией и расположением группы $C_5(CO_2Me)_4$ и атома металла по одну сторону триады NCN (схемы 2, 3). Поляризация структур **2a** и **3a** проявляется в близости длин связей как Ср-кольца, так и амидиниевого фрагмента. Рассчитанные суммарные заряды на тетраметоксикарбонилциклопентадиенильном фрагменте в **2a** и **3a** отрицательны и составляют -0.610 и -0.659 *е* соответственно, а амидиниевый фрагмент с заместителями несет соответствующие положительные заряды.

В комплексе ртути 2a атом ртути линейно связан с амидиниевым атомом N^2 и атомом углерода C^{13} арильного кольца, при этом длины свя-

зей Hg-N² и Hg-C¹³ составляют 2.161 и 2.054 Å. Плоскость амидиниевого фрагмента развернута относительно плоскости Ср-кольца (торсионный угол $C^2C^1N^1C^6$ 74.6°), а атом Hg несколько выведен из амидиниевой плоскости (торсионный угол N¹C⁶N²Hg 14.9°), таким образом приближаясь к атомам С¹ и С² пятичленного цикла на расстояния 2.869 и 3.096 Å соответственно (схема 2, рис. 4). Короткие контакты $Hg \cdots C^1$ и $Hg \cdots C^2$, отклонение угла N²HgC¹³ (167.0°) от 180°, а также искажение плоского строения узла C¹ (атом N¹ выведен из данной плоскости на 10.3°) указывает на дополнительную координацию атома ртути с π-системой Ср-кольца (ŋ²-типа). Арильные группы амидиниевого фрагмента в структуре 2а занимают пропеллерную конформацию: торсионные углы равны C⁶N¹C⁷C⁸ 127.7°, N¹C⁶C⁹C¹⁰ 122.0°, C⁶N²C¹¹C¹² 123.0°.

 $R = CO_2Me, Ar = 4-MeC_6H_4, Ar' = 4-NMe_2C_6H_4.$

Схема 3.

 $R = CO_2Me$, $Ar = 4-MeC_6H_4$.

Рис. 4. Рассчитанные методом CAM-B3LYP/6-311++G(d,p)/SDD геометрические параметры структур основных состояний **2a**, **б** в газовой фазе.

Рис. 5. Рассчитанные методом CAM-B3LYP/6-311++G(d,p)/SDD геометрические параметры структур основных состояний **3a**, **б** в газовой фазе.

Отличительной чертой структуры комплекса таллия **За** является связь атома таллия с амидиниевым атомом азота N^2 (длина связи Tl– N^2 2.673 Å) и короткие расстояния между атомом таллия и

углеродами циклопентадиенового кольца (расстояния $TI \cdots C^1$ 3.017, $TI \cdots C^2$ 2.982, $TI \cdots C^3$ 3.128, $TI \cdots C^4$ 3.222, $TI \cdots C^5$ 3.168, $TI \cdots$ центр Ср-кольца 2.864 Å), указывающие на π -связывание η^5 -типа

Рис. 6. Рассчитанные методом CAM-B3LYP/6-311++G(d,p)/SDD геометрические параметры структур основных состояний **2**в, **г** в газовой фазе.

таллия с пятичленным кольцом (схема 3, рис. 5). При этом плоскость амидиниевого фрагмента развернута относительно плоскости Ср-кольца (торсионный угол $C^2C^1N^1C^6$ 104.3°). Арильные группы амидиниевого фрагмента в комплексе **3а** также имеют пропеллерную конформацию: торсионные углы равны $C^6N^1C^7C^8$ 118.7°, $N^1C^6C^9C^{10}$ 124.6°, $C^6N^2C^{11}C^{12}$ 120.5°. Рассчитанные геометрические параметры структуры **3а** очень близки данным РСА для подобной структуры с заместителем 2-Ме-6-СІС₆H₃ при углероде NCN триады [23].

В илидных изомерных структурах 26, 36 атом металла также связан с терминальным атомом азота, но в этих случаях имеет место Z, Е-конфигурация амидиниевого фрагмента с расположением фрагмента С₅(СО₂Ме)₄ и металла по противоположные стороны триады NCN (схемы 2, 3, табл. 1, рис. 4, 5). В комплексе ртути 26 атом ртути линейно связан с атомом N² и арильным атомом углерода (длины связей Hg-N² и Hg-C 2.105 и 2.046 Å, угол N²HgC 177.5°). В таллиевом комплексе 36 атом таллия координирован по азоту N² и по карбонильному кислороду ближайшей метоксикарбонильной группы, выведенной из плоскости кольца Ср (расстояния Tl-N² 2.520, Tl-O 2.634 Å). Существенно меньшую устойчивость структур 26, 36 на $\Delta E_{\text{ZPE}} = 10.0$ и 9.6 ккал/моль соответственно по

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

сравнению с комплексами 2a, 3a можно объяснить дополнительной координацией атома металла с π -системой Ср-кольца в комплексах 2a, 3a.

Структуры 2в и 2г, в которых атом ртути связан σ-связью с *sp*³-гибридизованным атомом углерода Ср-кольца [длины связей Hg-C_{sp}3 2.290 (2в) и 2.206 (2г) Å], а в комплексе 2в дополнительно координирован терминальным атомом азота амидиниевого фрагмента (расстояние Hg…N 2.748 Å), менее стабильны по сравнению с илидной структурой **2а** на $\Delta E_{\text{ZPE}} = 7.1$ и 8.5 ккал/моль соответственно, но наиболее близки к ней по устойчивости по сравнению с остальными изомерами (схема 2, табл. 1, рис. 6). Фульвеновые структуры 2д, е, в которых атом ртути связан с карбонильным кислородом метоксикарбонильной группы [длины связей Hg–O 2.168 (2д) и 2.176 (2e) Å] и дополнительно координирован карбонильным атомом кислорода соседнего заместителя [расстояния Hg…O 2.479 (2д) и 2.519 (2е) Å], существенно менее устойчивы, чем комплекс **2a** на $\Delta E_{\text{ZPE}} = 15.0$ и 12.9 ккал/моль соответственно (схема 2, табл. 1, рис. 7).

В талиевом комплексе **3**в амидинильная группа отвернута так, что терминальный атом азота амидиниевого фрагмента и атом Tl находятся по разные стороны плоскости Cp-кольца, и атом Tl

Рис. 7. Рассчитанные методом CAM-B3LYP/6-311++G(d,p)/SDD геометрические параметры структур основных состояний **2**д, е в газовой фазе.

координирует только с π -системой циклопентадиенового кольца (расстояние Tl···центр Ср-кольца 2.739 Å), тогда как атом азота не служит координационным центром. Такой изомер **3в** значительно менее стабилен по сравнению с илидной структурой **3a** на $\Delta E_{ZPE} = 11.4$ ккал/моль (схема 3, табл. 1, рис. 8). Структуры талиевых комплексов **3г**, **д**, **в** которых атом таллия координирован по карбонильным кислородам соседних метоксикарбонильных групп [расстояния Tl–O 2.779, 2.811 (**3г**) и 2.578, 2.580 (**3д**) Å] менее энергетически устойчивы по сравнению с илидной структурой **3a** на $\Delta E_{ZPE} =$ 4.1 и 8.0 ккал/моль соответственно, но по сравнению с изомерами **3б**, **в** более близки к комплексу **3a** по устойчивости (схема 3, табл. 1, рис. 8).

В ранее описанных циклопентадиенильных производных ртути(II) $(H_5C_5)_2Hg$, $(Me_5C_5)_2Hg$, $(t-Bu_3C_5H_2)_2Hg$, $[(4-i-Pr-C_6H_4)_5C_5]_2Hg$, H_5C_5HgCl , Me_5C_5HgCl и Cl_5C_5HgR [R = Ph, C_6Me_5, 2,4,6-(CMe_3)_3C_6H_2] атом ртути связан σ -связью с sp^3 -гибридизованным атомом углерода Ср-кольца [27–29]. В отличие от ртутного комплекса **2a** такие соединения являются структурно нежесткими вследствие очень быстрых миграций остатка HgCp или HgAr по периметру пятичленного кольца как в растворах, так и в твердом состоянии [30, 31]. Быстрые N,N'-миграции арилртутных групп также осуществляются в соответствующих производных амидинов [32].

В противоположность талиевому комплексу **3a** в родственном пентаметоксикарбонилциклопентадиениде таллия атом таллия является пятикоординированным: с двумя вицинальными карбонильными кислородами от одного аниона и тремя от других анионов [24]. В ранее полученных нами комплексах золота(I) и калия с амидинилтетраметоксикарбонилциклопентадиенильными лигандами атомы металла имеют типы связывания, подобные таковым в комплексах ртути **2a** и таллия **3a** [33–35].

Таким образом, квантово-химическими расчетами DFT CAM-B3LYP/6-311++G(d,p) и CAM-B3LYP/6-311++G(d,p)/SDD показано, что полидентатный амидинилтетраметоксикарбонилциклопентадиенильный лиганд и его комплексы с арилртутью и таллием(I) наиболее устойчивы в виде илидных изомеров, в которых атом водорода или металла связан с терминальным атомом азота

Рис. 8. Рассчитанные методом CAM-B3LYP/6-311++G(d,p)/SDD геометрические параметры структур основных состояний **3**в–д в газовой фазе.

амидиниевого фрагмента и в случае металлокомплексов дополнительно координирован π -системой циклопентадиенового кольца (координация η^2 -типа – для ртутного производного или η^5 -типа для таллиевого комплекса). Альтернативные изомеры, в которых атомы водорода или металла связаны с атомами углерода кольца циклопентадиена или с карбонильными атомами кислорода метоксикарбонильных заместителей энергетически значительно менее устойчивы на $\Delta E_{ZPE} = 4.1 - 15.1$ ккал/моль, что согласуется с экспериментальными данными о существовании лиганда и его комплексов только в одной форме.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Квантово-химические расчеты выполняли методами DFT [36] в газовой фазе с использованием функционала CAM-B3LYP, базиса 6-311++G(d,p)

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 93 № 4 2023

для соединений 1a-ж и комбинированного базиса (Gen) для соединений 2a-е и 3a-д: для атомов Hg и Tl – SDD с эффективным остовным псевдопотенциалом, для остальных атомов – валентно-расщепленного базиса 6-311++G(d,p) при помощи программного пакета Gaussian-09 [37]. Идентификацию всех стационарных точек осуществляли путем расчета матрицы Гессе. Заряды на атомах рассчитаны по схеме NBO.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Душенко Галина Анатольевна, ORCID: http:// orcid.org/0000-0002-5455-8419

Михайлов Игорь Евгеньевич, ORCID: http:// orcid.org/0000-0003-1820-4012

Миняев Руслан Михайлович, ORCID: https:// orcid.org/0000-0001-9563-736X Минкин Владимир Исаакович, ORCID: http:// orcid.org/0000-0001-6096-503X

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (государственное задание в сфере научной деятельности, проект № FENW-2023-0017).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Михайлов И.Е., Душенко Г.А., Минкин В.И. // ЖОрХ.
 2021. Т. 57. Вып. 11. С. 1505; Mikhailov I.E., Dushenko G.A., Minkin V.I. // Russ. J. Org. Chem. 2021.
 Vol. 57. N 11. P. 1757. doi 10.1134/S1070428021110014
- Gheewala C.D., Collins B.E., Lambert T.H. // Science. 2016. Vol. 351. P. 961. doi 10.1126/science.aad0591
- Gheewala C.D., Radtke M.A., Hui J., Hon A.B., Lambert T.H. // Org. Lett. 2017. Vol. 19. P. 4227. doi 10.1021/acs.orglett.7b01867
- Gheewala C.D., Hirschi J.S., Lee W.-H., Paley D.W., Vetticatt M.J., Lambert T.H. // J. Am. Chem. Soc. 2018. Vol. 140. P. 3523. doi 10.1021/jacs.8b00260
- Salikov R.F., Trainov K.P., Platonov D.N., Davydov D.A., Lee S., Gerasimov I.S., Medvedev M.G., Levina A.A., Belyy A.Yu., Tomilov Yu.V. // Dyes Pigments. 2019. Vol. 161. P. 500. doi 10.1016/j. dyepig.2018.09.040
- Trainov K.P., Salikov R.F., Platonov D.N., Tomilov Yu.V. // Mendeleev Commun. 2020. Vol. 30. P. 647. doi 10.1016/j.mencom.2020.09.032
- 7. Jayanty S., Kumar D.B.K., Radhakrishnan T.P. // Synth. Met. 2000. Vol. 114. P. 37. doi 10.1016/S0379-6779(00)00204-6
- Griffin P.J., Freyer J.L., Han N., Geller N., Yin X., Gheewala C.D., Lambert T.H., Campos L.M., Winey K.I. // Macromolecules. 2018. Vol. 51. P. 1681. doi 10.1021/ acs.macromol.7b02546
- Jayanty S., Radhakrishnan T.P. // J. Mater. Chem. 1999. Vol. 9. P. 1707. doi 10.1039/a901661i
- Müller C., Vos D., Jutzi P. // J. Organomet. Chem. 2000. Vol. 600. P. 127. doi 10.1016/S0022-328X(00)00060-7
- Moxey G.J., Ortu F., Sidley L.G., Strandberg H.N., Blake A.J., Lewis W., Kays D.L. // Dalton Trans. 2014. Vol. 43. P. 4838. doi 10.1039/c3dt53234h
- Kalz K.F., Hausmann A., Dechert S., Meyer S., John M., Meyer F. // Chem. Eur. J. 2016. Vol. 22. P. 18190. doi 10.1002/chem.201603850

- Минкин В.И., Михайлов И.Е., Душенко Г.А., Жунке А. // Усп. хим. 2003. Т. 72. № 10. С. 978; Minkin V.I., Mikhailov I.E., Dushenko G.A., Zschunke A. // Russ. Chem. Rev. 2003. Vol. 72. N 10. P. 867. doi 10.1070/RC2003v072n10ABEH000848
- Morsalia A., Masoomi M.Y. // Coord. Chem. Rev. 2009. Vol. 253. P. 1882. doi 10.1016/j.ccr.2009.02.018
- Wong W.-Y. // Coord. Chem. Rev. 2007. Vol. 251. P. 2400. doi 10.1016/j.ccr.2007.01.006
- Beheshti A., Mousavifard E.S., Kubicki M., Grześkiewicz A., Rezatofighi S.E. // Inorg. Chim. Acta. 2021. Vol. 514. P. 120010. doi 10.1016/j.ica.2020.120010
- Janiak C. // Coord. Chem. Rev. 1997. Vol. 163. P. 107. doi 10.1016/S0010-8545(97)00011-8
- Blockhaus T., Sunkel K. // Z. anorg. allg. Chem. 2021. Vol. 647. P. 1849. doi 10.1002/zaac.202100244
- Dushenko G.A., Mikhailov I.E., Kompan O.E., Zschunke A., Reck G., Schulz B., Mugge C., Minkin V.I. // Mendeleev Commun. 1997. Vol. 7. N 4. P. 127. doi 10.1070/MC1997v007n04ABEH000761
- Душенко Г.А., Михайлов И.Е., Reck G., Schulz B., Zschunke A., Харабаев Н.Н., Минкин В.И. // ЖОрХ. 2002. Т. 38. Вып. 7. С. 1024; Dushenko G.A., Mikhailov I.E., Reck G., Schulz B., Zschunke A., Kharabaev N.N., Minkin V.I. // Russ. J. Org. Chem. 2002. Vol. 38. N 7. P. 982. doi 10.1023/A:1020897411534
- Mikhailov I.E., Kompan O.E., Dushenko G.A., Minkin V.I. // Mendeleev Commun. 1991. Vol. 1. N 4. P. 121. doi 10.1070/MC1991v001n04ABEH000074
- 22. Minkin V.I., Mikhailov I.E., Dushenko G.A. // J. Chem. Soc. Chem. Commun. 1988. N 17. P. 1181. doi 10.1039/ C39880001181
- Душенко Г.А., Михайлов И.Е., Reck G., Schulz B., Zschunke A., Минкин В.И. // Изв. АН. Сер. хим. 2001. Т. 50. № 5. С. 852; Dushenko G.A., Mikhailov I.E., Reck G., Schulz B., Zschunke A., Minkin V.I. // Russ. Chem. Bull. 2001. Vol. 50. N 5. P. 890. doi 10.1023/A:1011323629390
- 24. *Bruce M.I., White A.H.* // Aust. J. Chem. 1990. Vol. 43. P. 949. doi 10.1071/CH9900949
- Lei Y.X., Cerioni G., Rappoport Z. // J. Org. Chem. 2000. Vol. 65. P. 4028. doi 10.1021/jo000046a
- Душенко Г.А., Михайлов И.Е., Михайлова О.И., Миняев Р.М., Минкин В.И. // Докл. АН. 2017. Т. 476. С. 648; Dushenko G.A., Mikhailov I.E., Mikhailova O.I., Minyaev R.M., Minkin V.I. // Dokl. Chem. 2017. Vol. 476. P. 230. doi 10.1134/S0012500817100020
- 27. Schulte Y., Weinert H., Wolper C., Schulz S. // Organometallics. 2020. Vol. 39. P. 206. doi 10.1021/ acs.organomet.9b00741
- Sitzmann H., Wolmershäuser G. // Z. anorg. Allg. Chem. 1995. Vol. 621. P. 109. doi 10.1002/zaac.19956210120

- 29. Razavi A., Rausch M.D., Alt H.G. // J. Organomet. Chem. 1987. Vol. 329. P. 281. doi 10.1016/0022-328X(87)80061-X
- Wulfsberg G.P., Frye J.S., Buchanan A.C., Weiss A., Jui C.C.C., Davis D.A., Bass K., Todd R.W. // Organometallics. 1987. Vol. 6. P. 2363. doi 10.1021/ om00154a016
- Weiden N., Weiss A., Wulfsberg G., Ilsley W., Benner K., Wourster W. // Zeit. Naturforsch. (A). 1990. Vol. 45. P. 503. doi 10.1515/zna-1990-3-450
- Душенко Г.А., Михайлов И.Е., Михайлова О.И., Миняев Р.М., Минкин В.И. // Докл. АН. 2018. Т. 482. С. 292; Dushenko G.A., Mikhailov I.E., Mikhailova O.I., Minyaev R.M., Minkin V.I. // Dokl. Chem. 2018. Vol. 482. P. 189. doi: 10.1134/S0012500818090069.
- Dushenko G.A., Mikhailov I.E., Zschunke A., Reck G., Schulz B., Mugge C., Minkin V.I. // Mendeleev Commun. 1999. Vol. 9. N 2. P. 67. doi 10.1070/ mc1999v009n02abeh001064
- 34. Душенко Г.А., Михайлов И.Е., Михайлова О.И., Миняев Р.М., Минкин В.И. // Изв. АН. Сер. хим. 2022. Т. 71. № 9. С. 1847; Dushenko G.A., Mikhailov I.E., Mikhailova O.I., Minyaev R.M., Minkin V.I. // Russ. Chem. Bull. 2022. Vol. 71. N 9. P. 1847. doi 10.1007/s11172-022-3601-4
- 35. Михайлов И.Е., Душенко Г.А., Минкин В.И. // Докл. AH. 2007. T. 412. C. 645; Mikhailov I.E., Dushen-

ko G.A., Reck G., Schulz B., Zschunke A., Minkin V.I. // Dokl. Chem. 2007. Vol. 412. P. 49. doi 10.1134/ S0012500807020073

- Foresman J.B., Frisch E., Exploring Chemistry with Electronic Structure Methods, Pittsburg: Gaussian Inc., 1996. 302 p.
- 37. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Ivengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazvev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09. Revision E.01. Wallingford CT: Gaussian, Inc. 2013.

Quantum-Chemical Study of the Structure of Amidinyltetramethoxycarbonylcyclopentadiene and Its Hg(II) and Tl(I) Complexes

G. A. Dushenko^{a,*}, I. E. Mikhailov^a, O. I. Mikhailova^a, R. M. Minyaev^a, and V. I. Minkin^a

^a Institute of Physical and Organic Chemistry of Southern Federal University, Rostov-on-Don, 344090 Russia *e-mail: gadushenko@sfedu.ru

Received March 11, 2023; revised March 20, 2023; accepted March 21, 2023

DFT CAM-B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p)/SDD calculations showed that the polydentate amidinyltetramethoxycarbonylcyclopentadienyl ligand and its Hg(II) and Tl(I) complexes are the most stable in the form of ylide isomers, in which the hydrogen or metal atom is bonded to the terminal nitrogen atom of the amidinium fragment and in the case of metal complexes, it is additionally coordinated by the π -system of the cyclopentadiene ring. Alternative isomers in which hydrogen or metal atoms are bonded to carbon atoms of the cyclopentadiene ring or to carbonyl oxygen atoms of methoxycarbonyl substituents are energetically less stable at $\Delta E_{ZPE} = 4.1-15.1$ kcal/mol.

Keywords: amidinyltetramethoxycarbonylcyclopentadiene, polydentate ligands, Hg(II), Tl(I), DFT