——— МОРСКАЯ БИОЛОГИЯ ——

УДК 551.465

СОДЕРЖАНИЕ МИКРО- И УЛЬТРАМИКРОЭЛЕМЕНТОВ В ОТОЛИТАХ КЛЮВОРЫЛОЙ ANTIMORA ROSTRATA И МЕЛКОЧЕШУЙНОЙ A. MICROLEPIS AHTUMOP (MORIDAE, TELEOSTEI)

© 2020 г. Н. Б. Коростелев^{1, 2}, А. М. Орлов^{1, 3, 4, *}

¹Институт проблем экологии и эволюции им. А.Н. Северцова РАН, Москва, Россия ²Институт биологии развития им. Н.К. Кольцова РАН, Москва, Россия ³Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии, Москва, Россия ⁴Томский государственный университет, Томск, Россия *e-mail: orlov@vniro.ru Поступила в редакцию 19.02.2020 г. После доработки 17.03.2020 г. Принята к публикации 08.04.2020 г.

Исследовано содержанине 53 микро- и ультрамикроэлементов в отолитах двух глубоководных видов рыб — клюворылой антиморы *Antimora rostrata* из северо-западной Атлантики (СЗА) и мелкочешуйной антиморы *Antimora microlepis* из северо-восточной Пацифики (СВП). Максимальной концентрацией в отолитах данных видов характеризовались (в порядке убывания) стронций, никель, цинк, барий, хром, медь, литий, кобальт и цирконий. Содержание бария, вольфрама и лития было выше в отолитах первого вида, иттрия и урана — последнего. Это, вероятно, обусловлено различным химическим составом вод СЗА и СВП, а также различиями в линейных размерах рыб и изменением концентраций отдельных элементов в процессе онтогенеза. Проведено сравнение содержания свинца, мышьяка, цинка, меди, никеля в отолитах, почках, мыщцах и печени рыб из разных районов.

Ключевые слова: микроэлементы, ультрамикроэлементы, отолиты, клюворылая антимора *Antimora rostrata*, мелкочешуйная антимора *Antimora microlepis*, Северная Атлантика, Северная Пацифика **DOI:** 10.31857/S003015742005010X

Химический состав отолитов определяется физиологической активностью рыб и зависит от условий окружающей среды [27]. В некоторых случаях химический состав отолита позволяет судить о составе воды, в которой обитала рыба [7]. По этой причине в последние годы исследования элементного состава отолитов рыб получили широкое развитие [8, 10, 11]. По составу отолита можно судить об особенностях биологии рыб и изменении условий окружающей среды в процессе онтогенеза [8, 27]. Данные исследования в настояшее время проводятся в нескольких направлениях и нашли свое применение при изучении жизненных циклов рыб [3, 4, 8, 11], определении возраста радиометрическими методами [9, 15, 20, 28], изучении популяционной структуры [12] и мониторинге окружающей среды [5, 21]. Исследования элементного состава отолитов глубоководных рыб немногочисленны и направлены по большей части на понимание внутривидовой организации отдельных видов [6, 18, 22-24, 29, 30]. Чаще же всего в отношении глубоководных рыб приводятся данные о содержании небольшого числа элементов (преимущественно тяжелых металлов) в отдельных органах и тканях [13, 14, 25, 26, 31]. Публикации, в которых исследовано содержание широкого спектра элементов в отолитах и тканях глубоководных рыб, единичны [2, 29]. Для представителей глубоководных рыб рода *Antimora* в литературе имеются данные только о содержании отдельных элементов в мышцах, жабрах и печени клюворылой антиморы *A. rostrata* [13, 14, 25, 26, 31] и в мышечной ткани мелкочешуйной антиморы *A. microlepis* [1].

В настоящей работе впервые приводятся сведения о содержании 53 микро- и ультрамикроэлементов в отолитах клюворылой и мелкочешуйной антимор.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом для данного сообщения послужили отолиты (сагитта) клюворылой антиморы *Antimora rostrata* (2 экз.) и мелкочешуйной антиморы *A. microlepis* (2 экз.). Отолиты первого вида были собраны в феврале 2016 г. в северо-западной Ат-

	Antimora rostrata		Antimora mirolepis	
Номер рыбы	1	2	1	2
Общая длина тела (<i>TL</i>), см	41.2	55.1	29.0	36.0
Масса тела, г	450	1460	120	280
Пол	Самец	Самка	Самец	Самец

Таблица 1. Биологические характеристики особей, от которых были взяты отолиты

лантике (46°50′-43°30′ с.ш., 49°01′-46°40′ з.д.) у побережья Ньюфаундленда (Большая Ньюфаундлендская банка) на глубинах 809–2089 м [17]. Отолиты второго вида собраны в ходе проведения донных траловых съемок в водах западного побережья США (West Coast Groundfish Bottom Trawl Survey) Северо-Западным Рыбохозяйственным Центром (Northwest Fisheries Science Center, Seattle, USA) в 2007 и 2010 гг. в районе, ограниченном координатами $32^{\circ}00'-47^{\circ}48'$ с.ш. и $117^{\circ}44' 125^{\circ}42'$ з.д., в диапазоне глубин 467–1256 м [16]. Биологические характеристики особей, от которых были взяты отолиты, приведены в табл. 1.

Определение микроэлементного состава производили в целом отолите по аналогии с подобными исследованиями отолитов других глубоководных видов рыб [29, 30]. Работы проведены в аналитическом сертификационном испытательном центре (АСИЦ, г. Москва) масс-спектральным с индуктивно-связанной плазмой (МС) и атомно-эмиссионным с индуктивно-связанной плазмой (АЭ) методами с помощью масс-спектрометра с индуктивно-связанной плазмой iCAP Qc ("Thermo Scientific", США) и атомноэмиссионного с индуктивно-связанной плазмой спектрометра ICPE-9000 ("Shimadzu", Япония). Результаты анализа приведены на воздушносухую пробу.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Из 53 микро- и ультрамикроэлементов, содержание которых в отолитах особей двух видов определено в ходе проведения исследований (табл. 2), наибольшей концентрацией (в порядке убывания, мкг/г) характеризовались стронций (1995.7– 2659.5), никель (20.2–25.8), цинк (3.6–13.4), барий (2.9–9.3), хром (1.7–2.8), медь (1.3–2.2), литий (0.7–1.9), кобальт (1.0–1.7) и цирконий (0.3– 1.7). Концентрации остальных элементов в отолитах антимор не превышали 1 мкг/г.

Сведения по содержанию микроэлементов в отолитах глубоководных рыб фрагментарны и крайне ограничены. В двух публикациях, в которых проводилось исследование популяционной структуры угольной сабли-рыбы *Арhanopus carbo* и незумии *Nezumia aequalis* [29, 30], определялось содержание целого ряда микроэлементов (до 30), однако конкретные значения измеренных концентраций не приводятся. Из данных, приведен-

ОКЕАНОЛОГИЯ том 60 № 6 2020

ных на графике одной из указанных работ [30], следует, что концентрации лития в отолитах незумии из Средиземного моря и северо-восточной Атлантики составляли 0.47–0.73 мкг/г, а стронция – 1350–1750 мкг/г. Эти данные вполне сопоставимы с полученными по указанным элементам нами в отолитах антимор – 0.65–1.89 мкг/г и 1996–2660 мкг/г соответственно.

Сравнение содержания микроэлементов в отолитах клюворылой и мелкочешуйной антимор показало некоторые различия в концентрациях. Содержание бария (5.7–9.3 против 2.9–3.5 мкг/г), вольфрама (0.07-0.11 против < 0.04 мкг/г) и лития (1.2-1.9 против 0.7-0.8 мкг/г) было заметно выше в отолитах первого вида, в то время как иттрия (0.022 против 0.025-0.035 мкг/г) и урана (0.015-0.022 против 0.023-0.032 мкг/г) - наоборот, у последнего. Поскольку накопление основных микроэлементов в отолитах морских рыб осуществляется за счет поступления из морской воды [19, 32], по всей видимости, обнаруженные различия в содержании отдельных элементов в отолитах двух видов антимор обусловлены различным химическим составом вод северо-восточной Пацифики и северо-западной Атлантики. Различия в содержании некоторых элементов у особей одного и того же вида глубоководных рыб в разных частях ареала отмечались ранее. Так, концентрации лития и стронция в отолитах угольной сабли-рыбы в разных районах Северной Атлантики заметно различались [29]. Содержание магния, стронция, марганца и меди в отолитах незумии из вод Средиземного моря и северо-восточной части Атлантического океана были также различными [30].

Кроме того, как показывают отдельные исследования [14, 30], в процессе онтогенеза происходит изменение концентраций отдельных элементов. В мышечной ткани клюворылой антиморы из вод Северной Каролины содержание цинка, меди, железа и марганца с увеличением линейных размеров уменьшалось, а ртути, наоборот, возрастало. Обнаруженные нами различия в содержании отдельных элементов в отолитах двух видов антимор, могут быть также отчасти связаны с различиями в линейных размерах рыб – клюворылая антимора (41–55 см) в наших пробах была заметно крупнее мелкочешуйной (29–36 см).

Сравнивая концентрации отдельных элементов в различных органах и тканях мелкочешуйной антиморы, можно констатировать, что в мышцах

КОРОСТЕЛЕВ, ОРЛОВ

Таблица 2. Содержание микроэлементов в отолитах антимор (мкг/г)

Элемент	Antimora rostrata		Antimora microlepis		Матаданализа
	1	2	1	2	тистод анализа
Барий	5.74	9.32	3.5	2.9	АЭ, МС
Бериллий	0.0054	< 0.004	0.0046	< 0.004	MC
Ванадий	< 0.8	< 0.8	< 0.8	< 0.8	AЭ
Висмут	< 0.03	< 0.03	< 0.03	< 0.03	MC
Вольфрам	0.11	0.073	< 0.04	< 0.04	МС
Гадолиний	< 0.003	< 0.003	0.0084	< 0.003	МС
Галлий	0.073	0.048	0.058	0.055	MC
Гафний	< 0.03	1.0	0.05	< 0.03	МС
Гольмий	< 0.001	< 0.001	< 0.001	< 0.001	MC
Диспрозий	< 0.002	< 0.002	0.0031	< 0.002	MC
Европий	< 0.002	< 0.002	< 0.002	< 0.002	MC
Золото	< 0.1	< 0.1	< 0.1	< 0.1	MC
Иридий	< 0.004	< 0.004	< 0.004	< 0.004	MC
Иттербий	< 0.002	< 0.002	< 0.002	< 0.002	MC
Иттрий	0.022	0.022	0.035	0.025	MC
Кадмий	< 0.005	0.007	0.009	0.0063	MC
Кобальт	1.07	1.7	0.98	1.13	АЭ, МС
Лантан	0.022	0.013	0.08	0.012	MC
Литий	1.24	1.89	0.78	0.65	АЭ, МС
Лютеций	< 0.002	< 0.002	< 0.002	< 0.002	MC
Медь	1.77	1.56	2.21	1.26	АЭ, МС
Молибден	0.26	0.27	0.42	0.27	MC
Мышьяк	< 0.2	< 0.2	0.23	< 0.2	MC
Неодим	0.0087	0.01	0.049	< 0.005	MC
Никель	21.7	25.8	20.2	22.4	АЭ, МС
Ниобий	< 0.02	0.19	0.058	< 0.02	MC
Олово	0.048	0.055	0.085	0.053	MC
Палладий	< 0.05	< 0.05	< 0.05	< 0.05	МС
Платина	< 0.006	< 0.006	< 0.006	< 0.006	MC
Празеодим	< 0.003	< 0.003	0.012	< 0.003	MC
Рений	< 0.002	< 0.002	< 0.002	< 0.002	MC
Родий	< 0.01	< 0.01	< 0.01	< 0.01	MC
Рубидий	0.078	0.11	0.092	< 0.07	MC
Самарий	< 0.002	< 0.002	0.0097	< 0.002	MC
Свинец	0.051	0.041	0.23	< 0.03	MC
Селен	< 0.1	< 0.1	< 0.1	< 0.1	MC
Серебро	< 0.05	< 0.05	< 0.05	< 0.05	MC
Скандий	0.41	0.76	0.57	0.51	MC
Стронций	2043.8	2128.6	1995.7	2659.5	АЭ, МС
Сурьма	0.052	0.067	0.064	0.07	MC
Таллий	< 0.008	< 0.008	< 0.008	< 0.008	MC
Тантал	< 0.03	0.38	0.043	< 0.03	MC
Теллур	< 0.02	< 0.02	< 0.02	< 0.02	MC
Тербий	< 0.002	< 0.002	< 0.002	< 0.002	MC
Торий	< 0.03	0.69	0.13	0.056	MC
Тулий	< 0.003	< 0.003	< 0.003	< 0.003	MC
Уран	0.022	0.015	0.032	0.023	MC
Хром	1.7	2.8	2.52	2.09	АЭ, МС
Цезий	< 0.006	< 0.006	0.021	< 0.006	MC
Церий	0.022	0.02	0.12	0.015	MC
Цинк	5.79	4.33	13.4	3.59	АЭ, МС
Цирконий	0.28	1.68	0.75	0.31	MC
Эрбий	< 0.002	< 0.002	< 0.002	< 0.002	MC

Примечание: полужирным шрифтом выделены элементы, содержание которых у двух видов антимор заметно различается.

у особей из вод подводного Императорского хребта [1] и отолитах рыб из северо-восточной Пацифики (наши данные) содержание свинца находится в сравнимых пределах (0.11 против <0.03-0.23 мкг/г), мышьяка (0.40 против <0.20-0.23 мкг/г) и цинка (0.90 против 0.31-0.75 мкг/г) заметно больше, а меди (0.18 против 1.26-2.21 мкг/г) существенно меньше. У клюворылой антиморы из вод желоба Рокколл, северо-восточная Атлантика [31] в сравнении с рыбами из района Большой Ньюфаундлендской Банки (наши данные) содержание никеля в печени (0.03 мкг/г), жабрах (0.03 мкг/г) и мышцах (0.67 мкг/г) существенно меньше, чем в отолитах (21.7–25.8 мкг/г). В то же время содержание меди в отолитах (1.56-1.77 мкг/г) выше, чем в жабрах (0.50 мкг/г) и мышцах (0.26 мкг/г), но меньше, чем в печени (3.23 мкг/г). У особей данного вида из вод Северной Каролины, северо-западная Атлантика [14] в сравнении с рыбами из района Большой Ньюфаундлендской Банки (наши данные) в мышцах цинка (3.15 мкг/г) и меди (0.41 мкг/г) содержится меньше, чем в отолитах (4.33-5.79 и 1.56-1.77 мкг/г соответственно).

ЗАКЛЮЧЕНИЕ

Ввиду незначительной выборки и анализа микроэлементов в целом отолите, а не в каждой зоне годового прироста, говорить о закономерностях накопления микроэлементов в отолитах антимор в процессе онтогенза затруднительно. Полученные результаты предоставляют информацию о микро- и ультрамикроэлементном составе отолитов плохо изученных глубоководных представителей рода *Antimora*, которая может быть полезна в плане получения новых сведений о жизненном цикле рассматриваемых видов и их среде обитания. Присутствие в отолитах свинца предоставляет возможность изучения возраста антимор радиометрическим методом, основанным на соотношениях Pb-210/Ra-226 [9, 28].

Благодарности. Авторы благодарят своих коллег Рафаэля Байона (Rafael Bañon, Instituto de Investigaciones Marinas, Vigo, Spain), Питера Фрея (Peter Frey, Northwest Fisheries Science Center, Seattle, USA) за предоставленные в их распоряжение отолиты антимор, а также Л.А. Пельгунову (ИПЭЭ РАН, Москва, Россия) за ценные советы при подготовке данного сообщения.

СПИСОК ЛИТЕРАТУРЫ

- Давлетшина Т.А., Шульгина Л.В., Павель К.Г., Мальцев И.В. Технохимическая характеристика глубоководного объекта антиморы мелкочешуйной Antimora microlepis // Изв. ТИНРО. 2019. Т. 198. С. 230–238.
- 2. Орлов А.М., Артемов Р.В., Орлова С.Ю. Элементный состав стенки плавательного пузыря у некото-

ОКЕАНОЛОГИЯ том 60 № 6 2020

рых глубоководных рыб Северной Атлантики // Биол. моря. 2016. Т. 42. № 5. С. 381–386.

- 3. Павлов Д.С., Кузищин К.В., Груздева М.А. и др. Разнообразие жизненной стратегии мальмы Salvelinus malma (Walbaum) (Salmonidae, Salmoniformes) Камчатки: онтогенетические реконструкции по данным рентгенофлуоресцентного анализа микроэлементного состава регистрирующих структур // Докл. РАН. 2013. Т. 450. № 2. С. 240–240.
- 4. Павлов Д.С., Самойлов К.Ю., Кузищин К.В. и др. Разнообразие жизненных стратегий судака Sander lucioperca (L.) Нижней Волги (по данным анализа микроэлементного состава отолитов) // Биол. внутр. вод. 2016. № 4. С. 45–53.
- 5. Павлова Л.А., Павлов С.М. Особенности РСМА отолитов рыб как перспективного метода мониторинга окружающей среды // Методы и объекты хим. анализа. 2006. Т. 1. № 1. С. 48–53.
- 17. Ashford J.R., Arkhipkin A.I., Jones C.M. Can the chemistry of otolith nuclei determine population structure of Patagonian toothfish Dissostichus eleginoides? // J. Fish. Biol. 2006. V. 69. P. 708–721.
- 7. *Bath G.E., Thorrold S.R., Jones C.M. et al.* Strontium and barium uptake in aragonitic otoliths of marine fish // Geochimica et Cosmochimica Acta. 2000. V. 64. № 10. P. 1705–1714.
- Begg G.A., Campana, S.E., Fowler A.J., Suthers I.M. Otolith research and application: current directionsin innovation and implementation // Mar. Freshwat. Res. 2005. V. 56. P. 477–483.
- 9. Cailliet G.M., Andrews A.H., Burton E.J. et al. Age determination and validation studies of marine fishes: do deep-dwellers live longer? // Exp. Gerontol. 2001. V. 36. № 4–6. P. 739–764.
- Campana S.E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications // Mar. Ecol. Prog. Ser. 1999. V. 188. P. 263–297.
- Campana S.E. Otolith elemental composition as a natural marker of fish stocks // Stock Identification Methods / Eds. Cadrin et al. New York: Academic Press, 2005. P. 227–245.
- Campana S.E., Thorrold S.R. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? // Can. J. Fish. Aquat. Sci. 2001. V. 58. № 1. P. 30–38.
- Cronin M., Davies I.M., Newton A. et al. Trace metal concentrations in deep sea fish from the North Atlantic // Mar. Environ. Res. 1998. V. 45. P. 225–238.
- Cross F.A., Hardy L.H., Jones N.Y., Barber R.T. Relation between total body weight and concentrations of manganese, iron, copper, zinc, and mercury in white muscle of bluefish (*Pomatomus saltatrix*) and a bathydemersal fish Antimora rostrata // J. Fish. Res. Board Can. 1973. V. 30. P. 1287–1291.
- Fenton G.E., Short S.A. Radiometric analysis of blue grenadier, *Macrunonus novaezelandiae*, otolith cores // Fish. Bull. 1995. V. 93. №. 2. P. 391–396.
- Frey P.H., Keller A.A., Simon V. Dynamic population trends observed in the deep-living Pacific flatnose, Antimora microlepis, on the U.S. West Coast // Deep-Sea Res. Pt. I. 2017. V. 122. P. 105–112.

- Gordeev I., Sokolov S., Bañon R. et al. Parasites of the blue antimora, Antimora rostrata and slender codling, Halargyreus johnsonii (Gadiformes: Moridae), in the Northwestern Atlantic // Acta Parasit. 2019. V. 64. Iss. 3. P. 489–500.
- Higgins R., Isidro E., Menezes G., Correia A.T. Otolith elemental signatures indicate population separation in deep-sea rockfish, *Helicolenus dactylopterus* and *Pontinus kuhlii*, from the Azores // J. Sea Res. 2013. V. 83. P. 202–208.
- Hoff G.R., Fuiman L.A. 1995 Environmentally-induced variation in elemental composition of red drum (*Sciaenops ocellatus*) otoliths // Bull. Mar. Sci. V. 56. P. 578–591.
- Kastelle C.R., Kimura D.K., Nevissi A.E., Gunderson D.R. Using Pb-210/Ra-226 disequilibria for sablefish, Anoplopoma fimbria, age validation // Fish. Bull. 1994. V. 92. № 2. P. 292–301.
- Labonne M., Morize E., Kulbicki M. et al. Otolith chemical signature and growth of *Chaetodon speculum* in coastal areas of New Caledonia // Estuar. Coast. Shelf Sci. 2008. V. 78. № 3. P. 493–504.
- Longmore C., Fogarty K., Neat F.C. et al. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, *Coryphaenoides rupestris* // Environ. Biol. Fish. 2010. V. 89. P. 591–605.
- Longmore C., Trueman C., Neat F. et al. Otolith geochemistry indicates life-long spatial population structuring in a deep-sea fish, Coryphaenoides rupestris // Mar. Ecol. Prog. Ser. 2011. V. 435. P. 209–224.
- Longmore C., Trueman C.N., Neat F. et al. Ocean-scale connectivity and life cycle reconstruction in a deep-sea fish // Can. J. Fish. Aquat. Sci. 2014. V. 71. № 9.

P. 1312-1323.

https://doi.org/10.1139/cjfas-2013-0343

- Martins I., Costa V., Porteiro F.M. et al. Mercury concentrations in fish species caught at Mid-Atlantic Ridge hydrothermal vent fields // Mar. Ecol. Prog. Ser. 2006. V. 320. P. 253–258.
- Mormede S., Davies I.M. Heavy metal concentrations in commercial deepsea fish from the Rockall Trough // Cont. Shelf Res. 2001. V. 21. № 8–10. P. 899–916.
- Radtke R.L., Shafer D.J. Environmental sensitivity of fish otolith microchemistry // Mar. Freshwat. Res. 1992. V. 43. №. 5. P. 935–951.
- Smith J.N., Nelson R., Campana, S.E. The use of Pb-210/Ra-226 and Th-228/Ra-228 dis-equilibria in the ageing of otoliths of marine fish // Radionuclides in the study of marine processes. / Eds. Kershaw P.J., Woodhead D.S. New York: Elsevier, 1991. P. 350–359.
- Swan S.C., Gordon J.D.M., Shimmield T. Preliminary investigations on the uses of otolith microchemistry for stock discrimination of the deep-water black scabbardfish (*Aphanopus carbo*) in the North East Atlantic // J. Northwest Atl. Fish. Sci. 2003. V. 31. P. 221–231.
- Swan S. C., Gordon J. D. M., Morales-Nin B. et al. Otolith microchemistry of Nezumia aequalis (Pisces: Macrouridae) from widely different habitats in the Atlantic and Mediterranean / J. Mar. Biol. Assoc. UK. 2003. V. 83. P. 883–886.
- 31. Vas P., Gordon J.D.M., Fielden P.R., Overnell J. The trace metal ecology of the Ichthyofauna in the Rockall Trough, North-Eastern Atlantic // Mar. Pollut. Bull. 1993. V. 26. № 11. P. 607–612.
- Walther B., Thorrold S.R. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish // Mar. Ecol Prog. Ser. V. 311. P. 125–130.

Micro- and Ultramicroelemental Content in the Otoliths of Blue Hake Antimora rostrata and Pacific Flatnose A. microlepis (Moridae, Teleostei)

N. B. Korostelev^{a, b}, A. M. Orlov^{a, c, d, #}

^aSevertsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia ^bKoltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia ^cRussian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia ^dTomsk State University, Tomsk, Russia [#]e-mail: orlov@vniro.ru

The content of 53 micro- and ultramicroelements in otoliths of two deep-sea fish species, the blue antimora *Antimora rostrata* from the North-West Atlantic (NWA) and the Pacific flatnose *Antimora microlepis* from the North-East Pacific (NEP) was studied. The maximum concentration in otoliths of these species was characterized (in descending order) by strontium, nickel, zinc, barium, chromium, copper, lithium, cobalt and zirconium. The content of barium, tungsten, and lithium was higher in the otoliths of the former species, while yttrium and uranium were higher in the latter one. This is probably due to the different chemical composition of the waters of the NWA and NEP, as well as to differences in the linear size of fish and changes in the concentrations of individual elements during ontogenesis. The content of lead, arsenic, zinc, copper, and nickel in otoliths, kidneys, muscles and liver of fish from different regions was compared.

Keywords: microelements, ultramicroelements, otoliths, blue antimora *Antimora rostrata*, Pacific flatnose *Antimora microlepis*, North Atlantic, North Pacific