—— МОРСКАЯ БИОЛОГИЯ —

УДК 551.465

ПЕРВЫЕ ДАННЫЕ О СТРУКТУРЕ ФИТОПЛАНКТОННЫХ СООБЩЕСТВ ВОСТОЧНО-СИБИРСКОГО МОРЯ

© 2021 г. И. Н. Суханова¹, М. В. Флинт^{1, *}, А. В. Федоров², Е. Г. Сахарова³, П. Н. Маккавеев¹, А. А. Полухин¹, А. А. Недоспасов¹, А. С. Щука¹

¹Институт океанологии им. П.П. Ширшова РАН, Москва, Россия ²Южное отделение Института океанологии им. П.П. Ширшова РАН, Геленджик, Россия ³Институт биологии внутренних вод им. И.Д. Папанина РАН, Борок, Ярославская обл., Россия *e-mail: m_flint@ocean.ru Поступила в редакцию 12.01.2021 г. После доработки 18.05.2021 г. Принята к публикации 19.08.2021 г.

Исследования структуры фитопланктонных сообществ Восточно-Сибирского моря выполнены в 69-м рейсе НИС "Академик Мстислав Келдыш" в рамках программы "Экосистемы морей Сибирской Арктики". Материал получен с 5 по 9 сентября 2017 г. на двух квазимеридиональных разрезах от районов внутреннего шельфа, прилежащих к устьям Индигирки и Колымы, к внешнему шельфу. Приведен список доминирующих групп и видов водорослей, даны оценки численности, биомассы и описаны особенности вертикального распределения фитопланктона в биотопах с различными условиями пелагической среды. Установлена значительная количественная бедность фитопланктона в выраженная в восточно-Сибирского моря по сравнению с морем Лаптевых в летне-осенний сезон, наиболее выраженная в восточной области бассейна. Численность водорослей на Индигирском разрезе менялась в пределах 11.9–66.3 × 10³ кл/л, биомасса – 16.4–339.1 мг/м³, соответствующие цифры для Колымского разреза составили 7.7–90.3 × 10³ кл/л и 9.4–42.1 мг/м³. Максимальные значения на обоих разрезах были отмечены в области внешней границы речного плюма при возрастании поверхностной солености до 21–25 PSU. Полученный материал позволяет констатировать существенные различия в структуре фитопланктонных сообществ западной и восточной областей Восточно-Сибирского моря, что является подтверждением его существенной зональной гетерогенности.

Ключевые слова: Восточно-Сибирское море, западный и восточный шельф, речной сток, условия среды, фитопланктон, доминирующие виды, численность, биомасса **DOI:** 10.31857/S0030157421060150

Несмотря на возрастающую активность исследований в эпиконтинентальных сибирских морях начиная с 2000-х гг., эта публикация традиционно начинается с констатации крайне низкой исследованности экосистемы Восточно-Сибирского моря по сравнению с другими районами арктического шельфа. Такое положение дел определяется, прежде всего, труднодоступностью бассейна и его высокой ледовитостью [1, 8, 26]. Наиболее масштабный сход сезонного льда здесь наблюдается в августе-самом начале сентября, когда открытую воду можно наблюдать на ~40% западной части акватории и на ~20% восточной [9]. И хотя в последнее время в бассейне наблюдается тенденция, связанная с общим снижением ледовитости в Арктике [24], она в малой степени проявляется во внутренней и срединной области огромного по площади (889 тыс. км²) и мелководного Восточно-Сибирского шельфа. Его средняя глубина менее 50 м, а глубины менее 30 м занимают половину района. Здесь скорее можно говорить об очень существенной межгодовой изменчивости площади акватории, освобождающейся летом от сезонного льда. Это наглядно иллюстрируют прекрасные арктические ледовые карты последнего десятилетия (http://www.aari.ru/clgmi/index.html; http://siows.solab.rshu.ru; https://nsidc.org). В частности, в августе 2018 г. в Восточно-Сибирском море была свободна ото льда лишь очень узкая прибрежная полоса шельфа, а в 2020 г. край постоянного ледяного поля в западной части бассейна наблюдался севернее континентального склона — севернее $77^{\circ} - 78^{\circ}$ с.ш. Все это указывает на существенные короткопериодные флуктуации сигнала, несущего климатическую составляющую, в этом районе эпиконтинентальной Сибирской Арктики.

Восточно-Сибирское море является областью и границей проникновения на запад вод тихоокеанского происхождения, что хорошо видно по характеру зонального распределения океанологических характеристик [23, 28, 31]. Это явление хорошо прослеживается на шельфе и приводит к разделению его на две области – западную и восточную, существенно различающиеся по океанографическим условиям, важным для развития пелагической биоты, прежде всего солености, температуре и характеру вертикальной стратификации водной толщи. По имеющимся оценкам [26] граница проходит примерно по 160° в.д., но полученные нами данные (см. ниже) говорят о том, что ее положение на срединном шельфе, при относительно малом опресняющем влиянии речного стока на этот район, может быть восточнее. Проникновение вод тихоокеанского происхождения на шельф Восточно-Сибирского моря важное явление, и его пространственно-временная изменчивость весьма вероятно может нести климатический сигнал, влияющий на параметры региональной экосистемы.

Немаловажное значение для многолетнего выпадения Восточно-Сибирского моря из числа ключевых объектов арктических исследований имело и малое (относительно других морей) воздействие континентального стока [22, 29], который рассматривается как мощнейший климатический сигнал в Арктику. Ежегодный речной сток в бассейн составляет около 10% всего стока в Сибирскую Арктику, он в три раза меньше, чем в море Лаптевых, и в шесть раз меньше, чем в Карском море [10, 22].

Имевшиеся сведения о низкой общей биологической продуктивности Восточно-Сибирского моря [5, 11, 12] также не стимулировали региональные исследования. Лишь в последние годы получены характеристики современного состава и биомассы основных компонентов пелагической экосистемы бассейна, прежде всего зоо- и ихтиопланктона [3, 4, 21].

Оценки состава, численности, биомассы фитопланктона и его продукции как наиболее динамичных характеристик состояния базовых трофических уровней экосистем являются ключевыми для оценки уровня и понимания механизмов климатической изменчивости арктических морей и их продуктивности. В этом отношении Восточно-Сибирское море следует считать критически недоисследованным. Оценки уровня первичной продукции в бассейне приведены в двух публикациях [6, 20]. При этом в [20] даны лишь данные измерений характеристик продуктивности автотрофного нанофитопланктона (0.5-7 мкм) на основании наблюдений в трех точках в северной части бассейна в области арктического континентального склона. [6] – единственное до настоящего времени исследование, основанное на массовых измерениях первичной продукции на шельфе Восточно-Сибирского моря с привлече-

ОКЕАНОЛОГИЯ том 61 № 6 2021

нием данных о концентрации хлорофилла и состоянии среды, включая подводную облученность. Эти работы выполнены параллельно с нашими наблюдениями, результаты которых представлены в настоящей статье.

В настоящее время данные о фитопланктоне Восточно-Сибирского моря содержатся только в трех доступных публикациях [2, 4, 27]. Материалы, представленные в [2, 4], имеют общее информационное значение, но при этом носят исключительно фрагментарный характер и не поддержаны необходимым для сегодняшних исследований описанием примененных методик, что лишает возможности использовать эти данные для сравнений. Даже наиболее полная на сегодня работа [27] содержит данные о фитоценозах лишь самой западной части Восточно-Сибирского моря и основана на материале, полученном на трех станциях на внутреннем шельфе южнее о. Новая Сибирь и пяти станциях севернее о. Котельный, т.е., по сути, на границе морей Восточно-Сибирского и Лаптевых. Пробы фитопланктона были собраны вертикальными ловами сетью Апштейна (ячея 20 мкм) и фиксированы 4% формальдегидом, что определяет недоучет важных размерных и таксономических компонентов фитоценозов и их ограниченную репрезентативность в части оценок численности и биомассы фитопланктона. Материалы по составу и количественным характеристикам фитопланктонных сообществ моря Лаптевых и восточной части Восточно-Сибирского моря рассмотрены авторами [27] в совокупности, что, в свою очередь, не позволяет говорить о специфике фитоценозов последнего района.

Настояшую работу можно считать первым исследованием фитопланктона шельфа Восточно-Сибирского моря, охватывающим западную и восточную части бассейна и основанным на современной методике, позволяющей максимально полно учесть все компоненты фитоценозов. Ее цель - оценить состав, количественные характеристики и особенности горизонтального и вертикального распределения фитопланктона, связать эти параметры с важнейшими условиями пелагической среды в разных по биотопическим условиям районах шельфа. Полученные данные сформируют базу для сравнительных оценок фитопланктонных сообществ с другими арктическими морями и дальнейших оценок возможной климатической изменчивости характеристик базового трофического компонента региональной экосистемы.

РАЙОН РАБОТ, МАТЕРИАЛ И МЕТОДЫ

Материал получен в 69-м рейсе НИС "Академик Мстислав Келдыш" в рамках программы "Экосистемы морей Сибирской Арктики". С 5 по 9 сентября 2017 г. на шельфе Восточно-Сибир-

Рис. 1. Схема расположения разрезов и станций в Восточно-Сибирском море. Пунктиром показано положение границы сезонного льда в период исследований.

ского моря было сделано два квазимеридиональных разреза (рис. 1). Южные станции разрезов располагались в районах, находящихся под влиянием стока Индигирки и Колымы, северные у кромки многолетнего льда. Расстояние между разрезами составило около 290 км. Индигирский разрез из 11 станций располагался между 71°28' и 76°09' с.ш. и имел протяженность 610 км. Фитопланктон на разрезе отобран на 8 станциях, на двух станциях 5602 и 5606 11 сентября были сделаны повторные наблюдения. Протяженность Колымского разреза составляла 550 км. На этом разрезе между 69°56' и 74°23' с.ш. было выполнено 9 станций, фитопланктон отобран на 6 станциях.

Пробы воды для анализа фитопланктона объемом 2 л отбирали из 5-литровых батометров Нискина комплекса "Розетта". Горизонты отбора были определены на основе данных предварительного зондирования температуры, солености и флуоресценции. Из верхнего перемешанного слоя получали 1–2 пробы, из слоя скачка плотности и максимума флюоресценции – 1–2 пробы и 1–2 пробы из слоя ниже пикноклина. На Индигирском разрезе было отобрано 38 проб, на Колымском разрезе — 22 пробы. Пробы для анализа фитопланктона и параллельных гидрохимических определений отбирали из одних и тех же батометров.

Концентрирование фитопланктона проводили с использованием лавсановых ядерных фильтров с размером пор 1 мкм на установках для мягкой обратной фильтрации. [13]. Объем полученного концентрата составлял 40-90 мл. Все пробы были обработаны без фиксации в живом состоянии сразу же после отбора проб или в течение одного-двух дней. Пробы хранили в холодильнике при температуре 2–3°С. Обработку проб вели в камерах Ножотта (объем 0.085 мл) при увеличении ×400 и Наумана (объем 1 мл) при увеличении ×200 на микроскопах Jena Lumar (Германия), Leica1000 (Швейцария) и МБИ-3 (Россия). Расчет сырой биомассы (объема) клеток делался на основе принципа геометрического подобия с использованием данных измерений линейных размеров. Содержание углерода в клетках рассчи-

Рис. 2. Распределение температуры и солености на Индигирском (а) и Колымском (б) разрезах.

тывали, используя соответствующие коэффициенты для разных таксономических и размерных групп [25, 30].

РЕЗУЛЬТАТЫ

В целом, виды водорослей, встреченные в фитопланктоне Восточно-Сибирского моря (табл. 1), характерны для всех арктических морей. Как и в других морях арктического региона, наибольшим видовым разнообразием характеризовались диатомеи и динофлагелляты. Следует подчеркнуть, что часть клеток, в основном мелкоразмерных динофлагеллят и жгутиковых, а также клетки разных стадий развития динофлагеллят при полевой обработке материала определить более детально не удалось. Очевидно, что встреченное нами видовое разнообразие фитопланктона определялось сезоном максимально открытой ото льда поверхности моря в период проведения исследований.

Несмотря на то, что южные станции разрезов были сделаны вблизи эстуариев Индигирки и Колымы, нами не были встречены пресноводные виды, характерные для аналогичных шельфовых районов Карского моря и моря Лаптевых, непосредственно прилежащих к эстуариям крупных рек Оби, Енисея и Лены [14, 16, 17]. Наиболее вероятно, что ограничивающим фактором была со-

ОКЕАНОЛОГИЯ том 61 № 6 2021

леность. Соленость на южных станциях Индигирского и Колымского разрезов составляла 16— 18 PSU (рис. 2), а как показали наши предыдущие исследования в других эпиконтинентальных районах Арктики, подверженных воздействию речного стока, при солености >15 PSU пресноводные виды практически исчезают из планктона [14, 16, 17].

Индигирский разрез

Поверхностный опресненный слой с соленостью от 16 до 25 PSU, подстилаемый резким пикноклином, наблюдался на протяжении 330 км от дельты Индигирки вплоть до ст. 5604 (рис. 2а). На этом участке разреза толщина верхнего перемешенного слоя увеличивалась в мористом направлении от 5 до 10 м. Градиент солености в слое скачка при продвижении на север постепенно уменьшался от очень высоких значений 5.6– 7.1 PSU/м на самых южных станциях разреза до 1.4 PSU/м в его центральной части. Температура поверхностного слоя вблизи эстуария составляла 6.2°С и снижалась до 3.2 °С на ст. 5603 в центральной части разреза.

Во внешней части разреза между станциями 5606 и 5608 по мере продвижения на север соленость верхнего перемешенного слоя быстро увеличива-

Таблица 1. Список основных видов фитопланктона на станциях Индигирского и Колымского разрезов

-		
BACILLARIOPHYCEAE	DINOPHYCEAE	DICTYOCHOPHYCEAE
Actinocyclus ehrenbergii	Alexandrium tamarense	Apedinella radians
Attheya septentrionalis	Alexandrium sp.	Dictyocha speculum
Chaetoceros comressus	Amphidinium cf. fusiforme	Pseudopedinella pyriforme
C. convolutus	A. longum	
C. debilis	A. sphaenoides	CHRYSOPHYCEAE
C. decipiens	Cochlodinium citron	Ollicola vangoorii (W. Conrad)
C. diadema	C. helix	Vørs, 1992 (Calycomonas
C. furcellatus	С. рира	wulffii)
C. gracilis	Cochlodinium sp.	Dinobryon balticum
C. infolgianus	Dinophysis acuminata	D. faculiferum
C. socialis	D. acuta	Meringosphaera mediterranea
C. subtilis	D. arctica	M. tenerrima
C. tenuissimus	D. rotundata	
<i>C. teres</i>	Goniaulax scrippsae	PRASINOPHYCEAE
Cyclotella sp.	Goniaulax sp.	Nephroselmis sp.
Cylindrotheca closterium	Gymnodinium blax	Pyramimonas grossii
Fragilariopsis oceanica	G. abbreviatum	Pyramimonas sp.
Fragilariopsis sp.	G. gracile	
Gyrosigma cf. tenuirostrum	G. heterostriatum	EUGLENOPHYCEAE
Navicula directa	G. simplex	Eutreptiella sp.
N. distans	G. stellatum	
N. transitans	G. vitiligo	EBRIIDEA
Navicula sp.	G. wulffii	Ebria tripartite
Nitzschia frigida	<i>Gymnodinium</i> sp.	
N. longissima	Gyrodinium spirale	KINETOPLASTIDEA
Porosira glacialis	G. pingue	Leucocryptos marina
Pseudo-nitzschia delicatissima	<i>Gyrodinium</i> sp.	
P. seriata	Heterocapsa triquetra	
Rhizosolenia hebetata f.	Katodinium glaucum	
semispina	K. rotundatum	
Roperia tesselata	Lessardia elongata	
Skeletonema costatum	Nematodinium armatum	
Synedropsis hyperborea	Nematopsides vigilans	
Thalassiosira nordenskioeldii	Polykrikos schwarzii	
T. bioculata	Prorocentrum balticum	
Thalassiosira spp.	P. cordatum	
	Protoceratium reticulatum	
	Protoperidinium bipes	
	P. brevipes	
	P. depressum	
	P. ovatum	
	P. pallidum	
	P. pellucidum	
	Torodinium robustum	

Рис. 3. Распределение нитратного азота, аммонийного азота и растворенного кремния на Индигирском (а) и Колымском (б) разрезах.

лась и превысила 30 PSU. Параллельно возрастала и толщина верхнего перемешенного слоя: его нижняя граница на ст. 5604 располагалась на глубине 12 м, а на станциях 5606—5608 опустилась на глубину 22—27 м (рис. 2а). Градиент солености в пикноклине колебался от 0.6 до 1.2 PSU/м. Температура перемешенного слоя во внешней части разреза опускалась до 0.2°C (ст. 5608), на ст. 5607 непосредственно у края ледяного поля составляла -1.4°C.

На всех станциях Индигирского разреза концентрация нитратов в верхнем 15–20 м слое была ниже 0.5 µМ. Величин 3.0 µМ содержание NO₃ до-

солено-PSU/м. шней част. 5607 ст. 5607

Численность фитопланктона на разрезе в толще воды колебалась от 11.9×10^3 кл/л в среднем для столба воды $(1.3 \times 10^8 \text{ кл/м}^2)$ на ст. 5598 до 66.3×10^3 кл/л $(1.5 \times 10^9 \text{ кл/м}^2)$ на ст. 5602 (рис. 4a,

стигало только в придонном слое на станциях 5604

и 5607 (рис. 3а). Повышенное содержание аммо-

нийного азота (1.02–1.28 µМ) наблюдалось в районе, прилежащем к эстуарию, и на ст. 5604. Мак-

Рис. 4. Численность ($N \times 10^3$ кл/л), биомасса (B, мг/м³) фитопланктона, поверхностная ($S_{пов}$) и придонная ($S_{пp}$) соленость (PSU), глубина верхнего перемешанного слоя (BKC) на станциях Индигирского (a) и Колымского (б) разрезов.

табл. 2). Ст. 5602 с максимальной численностью фитопланктона была сделана на внешней периферии области, существенно опресненной речным стоком, при солености верхнего перемешенного слоя 21.2 PSU (рис. 2а, 4а). 75% общей численности фитопланктона здесь приходилось на долю мелкоклеточного (объем клетки около 40 мкм³) миксотрофного вида Chrysophyceae Ollicola vangoorii (табл. 2). В поверхностном слое на ст. 5602, наряду с высоким обилием O. vangoorii, зарегистрирована высокая численность спор Chaetoceros socialis. Фитопланктон был в основном сконцен-

Таблица 2. Индигирский разрез. Численность (N × 10 ³ кл/л, %), биомасса (В, мг/м ³ , %) и биомасса в углерод	цe
$(B_c, M\Gamma/M^3, \%)$ основных видов/групп фитопланктона на горизонтах отбора проб. Численность $(N \times 10^3 \text{ кл/m}^2, \%)$),
биомасса (B, мг/м ² , %), биомасса в углероде (B_c , мг/м ² , %) в столбе воды	

			Bacillariophycea Chaetoceros Rhizosolenia				Ollicola		
Станция	Горизонт	N B	Chaetoceros (Bce)	Rhizosolenia hebetata	rest	Dynophyceae	vangoorii (Calycomonas wulffii)	Rest	Общая
5598	0	N	1312	_	-	2820	1500	2634	8266
			15.8%			34.1%	18.1%	31.9%	
		В	0.13	_	_	33.4	0.05	0.77	34.3
			0.4%			97.4%	0.1%	2.2%	
	6	N	236	_	_	17027	1707	1977	20947
			1.1%			81.4%	8.1%	9.4%	
		В	1.35	_	_	34.34	0.06	0.42	36.17
			3.7%			94.9%	0.2%	1.2%	
	9	N	_	_	756	3781	_	3083	7620
					9.9%	49.6%		40.5%	
		В	_	_	0.2	1.08	_	0.83	2.12
					9.9%	50.9%		39.1%	
	11	N	_	_	50	50	_	_	100
					50%	50%			
		В	_	_	0.02	0.11	_	_	0.13
					5.4%	84.6%			
		N	4998	_	1940	94584	12 181	17 570	131 273
			3.8%		1.5%	72.0%	9.3%	13.4%	
	Вслое	В	6.5	_	0.52	257.5	0.42	6.28	271.2
	Белос		2.4%		0.2%	95.0%	0.1%	2.3%	
		B _c	0.43	_	0.03	32.2	0.03	0.63	33.3
			1.3%		0.1%	96.7%	+	1.9%	
5599	0	N	1378	_	_	11850	10914	642	24784
			5.6%			47.8%	44.0%	2.6%	
		В	5.9	_	_	43.7	0.38	0.07	50.02
			11.7%			87.3%	0.8%	0.1%	
5600	0	N	336	_	_	504	20856	13 272	34968
			1.0%			1.4%	59.6%	37.9%	
		В	0.3	_	_	15.7	0.8	0.95	17.8
			1.7%			88.4%	4.5%	5.3%	
	6	N	688	_	_	2552	36646	1133	41019
			1.7%			6.2%	89.3%	2.8%	
		В	2.4	_	_	21.85	1.5	0.15	25.7
			9.3%			85.0%	5.0%	0.6%	
	9	N	96	_	48	1671	12254	605	14674
			0.6%		0.3%	11.4%	83.5%	4.1%	
		В	0.9	-	0.05	0.31	0.49	0.07	1.82
			49.5%		2.7%	17.0%	26.9%	3.8%	
	12	N	116	_	_	231	_	1778	2125
			5.5%			10.9%		83.7%	
		В	0.16	_	_	11.7	_	0.67	12.5
			1.3%			93.4%		5.4%	

Таблица 2. Продолжение

			Baci	llariophyceae			Ollicola		
Станция	Горизонт	N B	Chaetoceros (Bce)	Rhizosolenia hebetata	rest	Dynophyceae	vangoorii (Calycomonas wulffii)	Rest	Общая
		N	4566	_	144	18355	264237	49396	336698
			1.4%		+	5.4%	78.4%	14.8%	
	D	В	14.7	_	0.15	163.9	13.1	4.7	196.55
	вслое		7.5%		+	83.4%	6.7%	2.4%	
		B _c	1.0	_	0.01	20.5	1.1	0.5	23.1
			4.3%		+	88.7%	4.8%	2.2%	
5601	0	N	6320	45	_	8667	99757	21486	136275
			4.6%	+		6.4%	73.2%	15.8%	
		В	1.8	0.8	_	26.13	2.8	2.7	34.2
			5.2%	2.3%		76.4%	8.2%	7.9%	
5602	0	N	52256	850	25	8102	93720	9088	164016
			31.9%	0.5%	+	4.9%	57.1%	5.5%	
		В	3.5	46.4	+	19.5	6.6	0.9	77.0
			4.5%	60.2%	+	25.4%	8.6%	1.2%	
	5	N	_	1652		4766	112800	2950	122168
				1.4%		3.9%	92.3%	2.4%	
	16		_	29.6	_	13.4	4.0	1.42	48.4
			_	61.2%		27.7%	8.3%	2.9%	
			1430	228	325	845			2828
			50.6%	8.1%	11.5%	29.8%	_	_	
		В	3.04	5.23	0.05	0.54			8.86
			34.3%	59.0%	0.6%	6.1%	_	_	
	20	N		73		1570	2372	949	4964
			_	1.5%	_	31.6%	47.8%	19.1%	
		в		1.42		2.85	0.06	1.02	5.35
		_	_	26.5%	_	53.4%	1.1%	19.0%	
	23	N	59229	160	6320			131070	65709
	20	11	90.2%	0.2%	9.6%	—	_	—	05705
		р	16.57	2.02	55.0				73.6
		D	10.57	2.02	55.0 74 70%	—	—	—	75.0
		λŢ	22.0%	2.7%	12 290	70.21(1145000	40(42	152490(
		1	230209	1/ 54/	12280	/0216	1143002	49642	1524890
		-	15.1%	1.1%	0.8%	4.6%	75.2%	3.2%	
	В слое	В	56.5	400.0	83.0	170.0	48.7	17.2	775.4
			7.3%	51.6%	10.7%	21.9%	6.3%	2.2%	
		B _c	3.8	25.0	5.5	21.2	4.0	1.7	61.2
			6.2%	40.9%	9.0%	34.6%	6.5%	2.8%	
5603	0	N	121 875	8250	6000	5250	60000	7500	208875
			58.3%	3.9%	2.9%	2.5%	28.7%	3.6%	
		В	14.7	206.25	1.5	13.9	4.2	1.8	242.4
			6.1%	85.2%	0.6%	5.7%	1.7%	0.7%	

Таблица 2. Продолжение

			Baci	llariophyceae			Ollicola		
Станция	Горизонт	N B	Chaetoceros (BCe)	Rhizosolenia hebetata	rest	Dynophyceae Vangoorii (Calycomonas wulffii)		Rest	Общая
5604	0	N	4640	14500	_	2926	5220	12760	40046
			11.5%	36.3%		7.3%	13.0%	31.9%	
		В	0.34	394.4	_	10.8	0.36	3.2	409.1
			+	96.4%		2.6%	+	0.8%	
	11	N	1050	22660	859	3988	6592	5768	40917
			2.6%	55.4%	2.1%	9.7%	16.1%	14.1%	
		В	1.59	354.9	1.0	8.94	0.23	1.03	367.7
			0.4%	96.5%	0.3%	2.4%	+	0.3%	
15		N	21648	1185	3317	2290	_	_	28440
			76.1%	4.2%	11.7%	8.0%			
		В	4.7	29.2	0.28	5.26	—	_	39.44
			11.9%	4.1%	0.7%	13.3%			
		Ν	76690	252070	13078	50583	78150	113440	584011
	В слое		13.1%	43.2%	2.2%	8.7%	13.4%	19.4%	
			23.2	4889.4	8.1	137.0	3.7	25.3	5086.7
Вслое			0.5%	96.1%	0.2%	2.7%	+	0.5%	
			1.6	326.0	0.5	17.1	0.3	2.5	348.0
			0.5%	93.8%	+	4.9%	+	0.7%	
5605	0	N	5120	4076	330	1436	3960	1708	16630
			30.8%	24.5%	2.0%	8.6%	23.8%	10.3%	
		В	1.0	102.1	0.25	5.03	0.28	0.83	109.5
			0.9%	93.2%	0.2%	4.6%	0.2%	0.8%	
	17	N	6765	8820	55	1485	_	_	17 125
			39.5%	51.5%	0.3%	8.7%			
		В	11.45	150.4	0.05	7.68	_	_	169.6
			6.7%	88.7%	+	4.5%			
	33	Ν	83205	237	631	39	-	_	84112
			98.9%	0.3%	0.7%	+			
		В	17.4	9.4	3.6	0.02	_	_	30.42
			57.2%	30.9%	11.8%	+			
		N	820782	182072	8760	37 0 2 0	33660	14518	1096812
			75.0%	16.6%	0.8%	3.3%	3.0%	1.3%	
	Dares	В	336.6	3424.6	31.7	169.6	2.4	7.0	3971.9
	в слое		8.5%	86.2%	0.8%	4.3%	+	0.2%	
		B _c	22.4	228.3	2.1	21.2	0.2	0.7	274.9
			8.1%	83.1%	0.8%	7.7%	+	0.2%	

Таблица 2. Продолжение

			Baci	llariophyceae			Ollicola		
Станция	Горизонт	N B	Chaetoceros (BCe)	Rhizosolenia hebetata	rest	Dynophyceae	vangoorii (Calycomonas wulffii)	Rest	Общая
5606	0	N	27118	1107	65	1302	_	8130	37722
			71.9%	2.9%	0.2%	3.4%		21.6%	
		В	20.9	32.1	0.05	5.1	_	0.92	59.1
			35.4%	54.3%	+	8.6%		1.6%	
	15	N	14470	376	965	750	697	6968	24226
			59.6%	1.6%	4.0%	3.1%	2.9%	28.8%	
		В	14.6	11.1	0.6	1.74	0.03	0.1	28.2
			51.8%	39.5%	2.1%	6.2%	0.1%	0.3%	
	33	Ν	18468	108	270	881	638	54	20419
			90.4%	0.5%	1.3%	4.3%	3.1%	0.3%	
		В	4.4	2.2	0.5	4.5	0.02	0.03	11.65
			37.8%	18.9%	4.3%	38.5%	0.2%	0.3%	
		Ν	608352	15478	18840	52209	17243	176433	888555
			68.5%	1.7%	2.1%	5.9%	1.9%	19.9%	
	В слое	В	437.3	443.7	14.8	107.5	0.7	8.8	
	DENOC		43.2%	43.8%	1.5%	10.6%	+	0.9%	1012.8
		B _c	29.2	29.6	1.0	13.4	0.06	0.9	
			39.4%	39.9%	1.3%	18.1%	+	1.2%	74.2
5608	0	Ν	20119	1023	1364	2728	_	2869	28103
			71.6%	3.6%	4.8%	9.7%		10.2%	
		В	29.1	22.1	1.0	27.7	_	0.71	80.6
			36.1%	27.4%	1.2%	34.4%		0.9%	
	8	N	43770	390	2114	754	_	-	47028
			93.1%	0.8%	4.5%	1.6%			
		В	72.8	12.4	1.8	6.5	_	_	93.5
			77.9%	3.2%	1.9%	7.0%			
	33	N	49658	_	248	1302	_	403	51611
			96.2%		0.5%	2.5%		0.8%	
		В	7.9	_	0.4	1.25	_	0.05	9.6
			82.3%		4.2%	13.0%		0.5%	
		N	1423406	10527	4343	38428		16514	1493218
			95.3%	0.7%	0.3%	2.6%	_	1.1%	
		В	1416.4	293.0	38.7	233.6		3.5	1985.2
	В слое		71.4%	14.7%	1.9%	11.8%	_	0.2%	
		B.	94.4	19.5	2.6	29.2		0.3	146.0
		- c	64.8%	13.4%	1.8%	20.0%	_	0.2%	

Таблица 2. Продолжение

			Baci	llariophyceae			Ollicola		
Станция	Горизонт	N B	Chaetoceros (Bce)	Rhizosolenia hebetata	rest	Dynophyceae	vangoorii (Calycomonas wulffii)	Rest	Общая
5607	0	N	14314	_	33	3478	3081	15570	36476
			39.3%		+	9.5%	8.4%	42.7%	
		В	11.6	_	0.02	19.0	0.07	1.9	32.6
			35.6%		+	58.3%	0.2%	5.8%	
	10	N	3822	260		2472	_	1618	8172
			46.8%	3.2%		30.2%		19.8%	
		В	6.5	5.6	_	10.8	_	0.5	23.4
			27.9%	23.9%		46.1%		2.1%	
	20	N	1705	_	341	2728	341	4092	9207
			18.5%		3.7%	29.7%	3.7%	44.4%	
		В	0.2	_	0.1	6.5	0.02	4.3	11.1
	30 N B		1.8%		0.9%	58.5%	0.2%	38.6%	
			448	56	_	744	_	1018	2266
			19.8%	2.5%		32.8%		44.9%	
			1.05	0.75	_	2.6	_	0.4	4.8
			21.9%	15.6%		54.2%		8.3%	
			129080	2880	3575	73 110	_	140040	367 500
			35.1%	0.8%	1.0%	9.9%		8.1%	
	В слое	В	130.3	63.5	1.1	281.0	_	59.5	525 4
		р	24.3%	11.9%	0.2%	32.3%		11.0%	535.4
		B _c	8.6	4.2	0.07	31.2	—	6.0	50.1
		٦T	17.2%	8.4%	0.1%	02.2%	12140	12.0%	50.1
5602-2	0	Ν	1204	10014	_	11 160	42140	150/7	79595
			1.5%	12.7%		14.0%	52.9%	18.9%	
		В	0.12	200.3	_	44.0	2.9	6.4	253.7
			+	79.0%		17.3%	1.1%	2.5%	
	10	N	_	924	2600	1882	1032	2164	8602
				10.8%	30.2%	21.8%	12.0%	25.2%	
		В	_	18.5	1.3	1.2	0.05	0.15	21.2
				87.3%	6.1%	5.7%	0.2%	0.7%	
	20	N	350	100	25	25		1325	1824
			19.2%	5.5%	1.4%	1.4%		72.5%	
		В	0.21	2.0	0.01	0.015		0.16	2.4
		D	8.8%	2.0 83.4%	0.01	0.6%	_	6.7%	2
		λŢ	7770	50.910	26125	74745	221.020	102650	402120
		11	1//0	12 10	20123	15 20%	221020	103030	493120
		F	1.0%	12.1%	3.3%	15.2%	44.8%	21.0%	1000 5
	В слое	В	1.65	1226	13.5	232.1	15.0	34.3	1522.6
			0.1%	80.5%	0.9%	15.2%	1.0%	2.2%	
		B _c	0.1	81.7	0.9	29.0	1.25	3.4	116.5
			+	70.3%	0.8%	24.9%	1.1%	2.9%	

			Baci	llariophyceae			Ollicola		
Станция	Горизонт	N B	Chaetoceros (BCe)	Rhizosolenia hebetata	rest	Dynophyceae	vangoorii (Calycomonas wulffii)	Rest	Общая
5606-2	0	N	9860	2926	1414	870	1160	2056	18322
			53.9%	16.0%	7.7%	4.9%	6.3%	11.2%	
		В	30.0	58.5	1.0	1.5	0.08	1.3	92.4
			32.5%	3.3%	1.1%	1.6%	+	1.4%	
	10 N		7816	1196	3901	1880	1625	997	17415
			44.9%	6.9%	2.4%	10.8%	9.3%	5.7%	
		В	6.8	23.9	0.74	10.7	0.08	0.34	42.6
			16.0%	56.1%	1.7%	25.1%	0.2%	0.8%	
	33	N	33200	240	_	825	_	35	34300
			96.8%	0.7%		2.4%		0.1%	
		В	7.4	4.8	_	1.2	_	0.09	13.5
			54.8%	35.6%		8.9%		0.7%	
	N В слое В		560064	37 124	71437	17257	36612	27 133	749627
			74.8%	4.9%	9.5%	2.3%	4.9%	3.6%	
			347.3	742.1	25.7	197.8	1.3	16.0	1330.2
			26.1%	55.8%	1.9%	14.9%	0.1%	1.2%	
		B _c	23.2	49.5	1.7	24.7	0.1	1.5	100.7
			23.0%	49.2%	1.7%	24.5%	0.1%	1.5%	

Таблица 2. Окончание

+ менее 0.1%.

трирован в верхнем перемешенном слое (рис. 5). В придонном слое той же станции помимо спор *C. socialis* (58% от общего числа клеток Chaetoceros), 21% составляли споры *C. debilis* и 21% приходился на долю спор *C. furcellatus*, *C. Compressus* и *C. diadema*. *O. vangoorii*, иногда в сочетании с *Katodinium rotundatum* (объем клетки ~200 мкм³), определял численность фитопланктона на всех станциях южной части разреза (5598–5602).

К северу от ст. 5602 во внешней части шельфа вплоть до кромки льда численность фитопланктона уменьшалась. В этом районе по численности доминировали разные виды *Chaetoceros: C. diadema* (объем клетки от 1000 до 6000 мкм³), *C. debilis* (от 300 до 2500 мкм³), *C. compressus* (1000–2000 мкм³), *C. socialis* (100–200 мкм³) и др. (табл. 2). Все виды *Chaetoceros* были представлены вегетативными клетками, клетками на разных стадиях спорообразования и спорами. Клетки, готовые к спорообразованию, и споры составляли от 40 до 100% численности и концентрировались, как правило, в нижних слоях водной толщи (рис. 5, табл. 2).

Исключением из общей картины была ст. 5604 в центральной части разреза, где соленость в верхнем слое возрастала до значений >25 PSU, что можно рассматривать как внешнюю границу области речного плюма. Здесь доминировала *Rhi*- *zosolenia hebetata* f. *semispina* со средним объемом клеток \sim 19000 мкм³ (табл. 2), ее вклад в общую численность фитопланктона достигал 44%.

Изменения биомассы фитопланктона на разрезе были более резко выражены, чем колебания численности и составляли от 16.4 до 339.1 мг/м³. Низкая биомасса (16–20 мг/м³, ~550 мг/м²) была связана с областью сильно выраженного воздействия речного стока и доминирования мелкоклеточного фитопланктона (южнее ст. 5602), а также отмечена на самой северной станции разреза 5607, сделанной непосредственно у границы многолетнего льда (рис. 4а, табл. 2).

Основной вклад в биомассу на южных станциях вблизи эстуария Индигирки вносили малочисленные крупноразмерные динофлагелляты: *Dinophysis acuminata*, *D. arctica* (средний объем клеток 24000 и 14000 мкм³ соответственно), *Prorocentrum baltica* (2000–2500 мкм³).

Самая высокая биомасса фитопланктона, 339.1 мг/м³ (5086 мг/м²), зарегистрирована в центральной области шельфа (ст. 5604) и определялась массовым развитием *Rhizosolenia hebetata* f. *semispina*. Вклад вида в общую биомассу составлял 96.1%. Этот же вид вносил наибольший вклад в биомассу на соседних станциях 5602, 5603, 5605 южнее и севернее (табл. 2). Основная часть его

Рис. 5. Вертикальное распределение солености (*S*, PSU), нитратного азота (NO₃, μ M) численности ($N \times 10^3$ кл/л) и биомассы (B, мг/м³) фитопланктона на станциях Индигирского (ст. 5602, 5608) и Колымского (ст. 5612, 5617, 5619) разрезов.

популяции была сконцентрирована в верхнем перемешенном слое и в верхней части пикноклина (рис. 6). На станциях 5604 и 5606 равнозначный вклад в биомассу наряду с *R. hebetata* f. semispina вносили несколько видов *Chaetoceros* (рис. 6). На ст. 5608 виды рода *Chaetoceros* доминировали в биомассе, также как и в численности. На ст. 5607 у кромки льда увеличилась численность крупных гетеротрофных динофлагеллят родов *Protoperidinium* и *Gyrodinium*, вклад которых в общую биомассу фитопланктона в столбе воды составлял 52.5% (табл. 2).

Между станциями 5607 и 5608 в воде, свободной ото льда, была отобрана проба из поверхностного слоя. Здесь, так же как на ст. 5608, в фитоцене и по числу клеток, и по биомассе доминировали виды рода *Chaetoceros*, при этом 87% общей численности и 90.2% общей биомассы фитопланктона приходилось на долю *C. diadema*. По состоянию клеток *C. diadema* было очевидно, что популяция находилась в начале перехода в покоящуюся стадию: более 40% клеток вида находились в состоянии спорообразования и в виде спор. В пробах в большом количестве встречены мертвые клетки *C. diadema*. Подобное соотношение вегетативных клеток и спор также наблюдалось в популяции *C. debilis*.

На двух станциях Индигирского разреза (5602 и 5606) отбор проб был проведен дважды с интервалом в 5 сут, что позволило оценить возможные изменения структурных параметров фитоцена в этих точках.

На ст. 5602_2 общая численность фитопланктона по сравнению с первыми наблюдениями уменьшилась в три раза в основном за счет пятикратного сокращения численности Ollicola vangoorii. При этом вид сохранял доминирование по численности и составлял 44.8% общего числа

Рис. 6. Вертикальное распределение солености (*S*, PSU), нитратного азота (NO₃, μ M) общей численности ($N \times 10^3$ кл/л) и биомассы (B, мг/м³) фитопланктона (a), численности ($N_{\rm Rh} \times 10^3$ кл/л) и биомассы (B_{Rh}, мг/м³) видов рода *Rhizosolenia* (б), численности ($N_{\rm Ch} \times 10^3$ кл/л) и биомассы (B_{Ch}, мг/м³) видов рода *Chaetoceros* (в) на ст. 5604 Индигирского разреза.

клеток водорослей (табл. 2) На фоне снижения численности водорослей биомасса фитопланктона увеличилась в два раза, что определялось более чем трехкратным возрастанием обилия крупноразмерного вида *Rhizosolenia hebetata* f. *semispina*. Максимум численности вида был приурочен к верхнему перемешенному слою и верхней части пикноклина.

Повторные наблюдения на ст. 5606 (ст. 5606_2) выявили незначительное (в 1.2 раза) уменьшение общей численности фитопланктона, в основном связанное с сокращением численности динофлагеллят и жгутиковых. Численность *Chaetoceros* практически не изменилась, и они составляли 74.7% общей численности фитопланктона. Доминирующие виды *Chaetoceros diadema*, *C. debilis* и *C. socialis* были представлены главным образом в виде спор. Основная часть популяций этих видов концентрировалась в нижнем слое водной толщи. На горизонте 33 м виды рода *Chaetoceros* составляли 96.8% общей численности и 55% общей биомассы фитопланктона.

Параллельно со снижением численности водорослей на ст. 5606_2 по сравнению со ст. 5606 было зарегистрировано увеличение их биомассы в 1.3 раза. Это определялось ростом обилия крупноклеточного вида *Rhizosolenia hebetata* f. *emispina*. Вид занял доминирующее положение в биомассе фитопланктона (55.8% общей биомассы фитоцена, табл. 2) и был сконцентрирован, как и в первоначальных наблюдениях, в верхнем перемешенном слое и в верхней части пикноклина.

Наблюдаемые изменения фитопланктонных сообществ на станциях 5602 и 5606 скорее следует рассматривать как следствие пространственной неравномерности структурных характеристик фитоценоза и адвекции, чем как показатели возможных временных перестроек.

Колымский разрез

В районе, прилежащем к эстуарию Колымы, при поверхностной солености 17-19 PSU и температуре 6.0-6.8°С наблюдалась четко выраженная стратификация водной толщи (рис. 2б). Верхняя граница скачка плотности лежала на глубине 3-6 м. Градиент солености составлял от 1 до 1.6 PSU на метр. Область, занятая речным плюмом (за его внешнюю границу принята поверхностная соленость 25 PSU), на Колымском разрезе имела в два раза меньшую широтную протяженность, чем на Индигирском – 150 и 300 км, соответственно. Между станциями 5617 и 5618 поверхностная соленость возрастала на 4 PSU. Далее по разрезу гидрофизические условия становились специфичными, существенно отличными от других районов сибирского арктического шельфа [14-17]. На ст. 5617 верхний однородный слой отсутствовал, слой скачка начинался непосредственно у поверхности и занимал верхние 10 м. Градиент солености в слое скачка не превышал 0.5 PSU на метр. Севернее ст. 5617 на участке акватории широтной протяженностью почти 200 км (станции 5614-5616) вся толща воды от поверхности до дна представляла собой однородный слой с соленостью около 28 PSU (рис. 2б). Практически однородным в этой области было и вертикальное распределение температуры, которая снижалась от 6°С на юге до 3°С на севере. Только на ст. 5613

на глубине 15 м появлялся слой скачка солености и температуры, в котором соленость повышалась на 2.4 PSU, температура понижалась с +3.2 до -0.5° C. На станции 5612, ближайшей к кромке льда, слой скачка солености был выражен очень слабо, температура в верхнем перемешанном слое снижалась до $<1^{\circ}$ C (рис. 26).

Зарегистрированная гидрофизическая структура на Колымском разрезе позволяет говорить о том, что он пересекал характерную для Восточно-Сибирского шельфа специфическую восточную область, находящуюся под существенным воздействием адвекции вод с востока.

Содержание нитратного азота в верхнем двадцатиметровом слое на Колымском разрезе было значительно ниже, чем на Индигирском разрезе, и варьировало, в основном, от 0.1 до 0.3 μ M. (рис. 3б). Концентрация кремния, напротив, была повсеместно выше и изменялась в пределах от 10 до 28 μ M (рис. 3б). Максимальные концентрации были отмечены в самой южной части разреза в зоне воздействия стока р. Колымы. Концентрации аммонийного азота в верхнем 20-метровом слое варьировали от 0.2 до 0.8 μ M.

Изменения численности фитопланктона на Колымском разрезе превышали порядок величин — от 7.7×10^3 кл/л на ст. 5615 до 90.9×10^3 кл/л на ст. 5619. Величины биомассы варьировали в меньших пределах — от 9.4 мг/м³ на ст. 5613 до 42.1 мг/м³ на ст. 5617 (рис. 46).

Высокими численностью и биомассой водорослей характеризовался район шельфа, прилежащий к эстуарию Колымы, с соленостью от 17.0 до 19.3 PSU (станции 5618—5620, рис. 26, 46). Основу численности здесь составляли три мелкоклеточных вида: Ollicola vangoorii, Skeletonema costatum и Cylindroteca closterium. Наибольший вклад в биомассу вносили несколько видов динофлагеллят родов Gymnodinium и Dynophisis.

Резкие изменения видового состава и биомассы фитопланктона наблюдались сразу же за внешней границей области, в наибольшей степени опресненной стоком Колымы, где соленость возрастала на 4 PSU и практически исчезала вертикальная стратификация водной толщи. На самой внешней границе опресненной области (ст. 5617) зарегистрирована наиболее высокая на разрезе биомасса водорослей — от 42.1 мг/м³ в среднем для столба воды (рис. 46, табл. 3). По численности и биомассе на ст. 5617 доминировала Dyctiocha spec*ulum* – вид-космополит, характерный и для прибрежных, и для открытых вод, редко образующий высокие по плотности скопления. Максимальная численность вида ($5.9 \times 10^3 - 9.1 \times 10^3$ кл/л) зарегистрирована на горизонтах 8 и 13 м при солености 26-28 PSU и температуре 5.5-6.0°С. (рис. 5, табл. 3). Далее к северу в области шельфа, где отсутствовала или была слабо выражена стратификация водной толщи, численность и биомасса фитопланктона были существенно ниже. Биомассу определяли малочисленные крупные гетеротрофные виды динофлагеллят. Во всех пробах наблюдалось большое количество мелких гетеротрофных жгутиковых, часто концентрирующихся на отмирающих клетках водорослей. В нижнем слое были обнаружены солоноватоводные виды *Actinocyclus octonarius, Navicula distans, N. directa, Gyrosigma macrum.*

Область с относительно высокими количественными характеристиками фитопланктона была отмечена вблизи кромки льда (ст. 5612). (рис. 46, табл. 3). Здесь основным компонентом фитопланктона были несколько видов рода Chaetoceros (C. diadema, C. debilis, C. gracilis, C. socialis). Также как на Индигирском разрезе в популяциях всех видов *Chaetoceros* (за исключением *C. gracilis*) наблюдалось большое число спор и мертвых клеток (до 48% от общего числа живых и мертвых клеток). Максимальная численность и биомасса водорослей рода *Chaetoceros* зарегистрированы в нижних слоях водной толщи. Появление в фитоцене значительного числа C. gracilis – один из показателей отмирания более крупноразмерных видов, на которых часто поселяются одиночные клетки C. gracilis.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Анализ состава фитопланктона западной и восточной частей Восточно-Сибирского моря в первой декаде сентября показал, что он типичен для Сибирских Арктических морей в летне-осенний сезон [14—19, 27]. Наиболее разнообразными по таксономическом составу группами были динофлагелляты и диатомеи (табл. 1). В [27] отмечено очевидное преобладание диатомовых водорослей в фитоценозах западной части Восточно-Сибирского моря, что, вероятнее всего, связано с использованными методами отбора и фиксации материала.

По численности и биомассе практически повсеместно, кроме области внутреннего шельфа, доминировали диатомеи (табл. 2, 3). Характерным для двух квазимеридональных разрезов, пересекающих области внутреннего и внешнего шельфа в западной и восточной частях бассейна, было доминирование на мелководье вблизи эстуариев Индигирки и Колымы мелкоклеточного фитопланктона, основу которого составляли Ollicola vangoorii (класс Chrvsophyceae). Katodinium rotundata (класс Dinophyceae) и мелкая диатомовая водоросль Sceletonema costatum. Эта структурная особенность фитоценоза наблюдалась на фоне солености от 16-18 до 23-24 PSU, резко выраженного слоя скачка плотности/солености на глубине 3-6 м, низкого содержания биогенных элементов и высокой концентрации взвеси. Пресно-

СУХАНОВА и др.

Таблица 3. Колымский разрез. Численность (N, кл/л, %), биомасса (B, мг/м³, %), биомасса в углероде (B_c , мг/м³, %) основных видов/групп фитопланктона на горизонтах отбора проб. Численность ($N \times 10^3$ кл/м², %), биомасса (B, мг/м², %) и биомасса в углероде B_c (мг/м², %) в столбе воды. *Ollicola vangoorii* (W. Conrad) Vørs, 1992 (*Calycomonas wulffii*)

			H	Bacillario	phyceae		D	0.11	Ollicola		
Станции	Горизонт		Chaetoceros	Skeleto- nema	Cylindro- teca	rest	Dyno- phyceae	Silico- phyceae	(Calyco- monas)	Rest	Общая
5(12	0	M	1072		1650		1504			2107	7422
3012	0	11	1072	—	22.2%	—	21.4%	—	_	<i>A1 0%</i>	7425
		R	14.470		22.270		21.4/0			41.970	10.1
		D	2.0 10.0%	-	5.0%	-	72.5%	-	_	1.7%	10.1
	10	M	24.49		2240	10	502		560	9.40	(729
	10	1	2448	-	2240 22.407	48	592 0 407	-	500 8 207	840 12.007	0/28
		D	30.3%		<i>33.47</i> 0	0.7%	0.0% 5.14		0.2%	12.0%	10.9
		D	4.0	-	0.9 8 3%	13.0%	J.14 17.6%	-	0.02	0.17	10.8
	20	M	21.909		12074	43.370	1700		0.070	1.070	52122
	20	11	51 898	-	139/4	—	1/00	-	—	4550 <i>e 70</i> /	52122
		D	01.2%		20.070		3.5%			0.7%	26.6
		D	74.3%	-	51.3%	-	8.0 8.2%	-	—	2.2%	50.0
	20	λī	17.3%		1420		0.270			2.270	21 210
	30	1	1/236	-	1428	-	10.00	-	_	35/	21318
		р	80.8%		0./%		10.8%			<i>I. 1%</i>	24.2
		D	17.9	-	0.0	—	3.1 22.10%	—	—	0.1	24.5
		λī	/3.0%		2.4%	400	23.4%		5(00	0.4%	722505
		1	435000	-	1//530	480	423/5	-	5600	/1220	/32505
		р	<i>39.4%</i>		24.2% 71.0	0.1%	J.8%		0.8%	9.7%	615 2
	В слое	D	411.3	-	/1.0	5.5 0.90%	140.5	-	0.2	10.85	043.2
		P	03.8%		11.0%	0.8%	22.770		0.02	1.770 1.4	54.4
		D _c	27.4 50.207	-	4.5 0.207	1.007	20.8	-	0.02	1.4	54.4
	0	37	30.3%		0.2%	1.0%	37.2%		T	2.3%	0167
5613	0	N	3877	—	—	788	2/68	—	-	1/34	9167
		р	42.3%			8.0%	30.2%			18.9%	15 12
		В	1.5	-	-	1.85	5.5 26.407	-	_	0.5	15.15
	17	17	40.2%		477	12.170	30.4%			3.3%	15(0)
	15	<i>I</i> V	5141	—	4//	—	145/	—	_	8611	15686
		р	32.8%		3.0%		9.3%			54.9%	()
		D	4.7	—	0.2	—	1.0	—	—	6.2%	0.9
	25	17	00.170		2.370	100	23.370			0.270	0007
	25	<i>I</i> N	2926	-	16/2	108	1290	-	-	2090	8086
		р	30.2%		20.7%	1.4% 5.12	13.9%			23.8%	6.05
		D	0.2 2.0%	—	0.7 10.20%	5.15 74.00%	0.33 5.10%	-	—	0.47	0.85
		λī	107.070		10.270	/4.9/0	J. 1 /0			0.070	205256
		1	10/9/0	-	14322	6450 2.107	45422	-	—	131092	305256
		р	55.4%		4./%	2.1%	14.9%			42.9%	224.0
	В слое	D	114.5	-	2.1%	16.8%	26.0%	-	—	11.5	234.0
		R	48.9%		2.470	10.870	03			4.970	20.65
		D _c	26.90%	-	1.00%	10.60%	15.00%	—	_	5.60%	20.05
<u> </u>	0	17	30.8%		1.9%	10.0%	45.0%			5.0%	1506
5614	0	IN	31	—	/30	—	31	—	—	694	1506
		р	2.0%		49.8%		2.3%			40.2%	16.6
		D	0.08	—	U.S 1.90%	—	0.3 1 00%	—	—	13.9	10.0
		р	0.7%		1.0%		1.070			<i>3J</i> . <i>1</i> 70	1.50
		D _c	2.00	—	1.404	—	0.04	—	—	1.4	1.32
			3.9%		1.4%		2.0%			98.1%	

Таблица 3. Продолжение

			E	Bacillario	phyceae		Dura	C:1:	Ollicola		
Станции	Горизонт			Skeleto-	Cylindro-		Dyno-	Silico-	(Calyco-	Rest	Общая
			Chaetoceros	nema	teca	rest	phyceae	phyceae	monas)		
5615	0	N			335		2404	118	670	4020	7547
0010	Ū	11	_	_	4.4%	_	31.8%	1.6%	8.9%	53.3%	
		В			0.13		16.8	0.5	0.05	2.3	19.8
			_		0.6%	_	84.8%	2.5%	0.5%	11.6%	
	10	N	114	1378	285		971	256	689	2015	5708
			2.1%	24.1%	5.0%	_	17.0%	4.5%	12.0%	35.3%	
		В	0.05	0.15	0.1	_	11.8	1.02	0.01	0.14	13.3
			0.4%	1.1%	0.1%		88.8%	7.9%	0.07%	1.0%	
	15	N	_	_	12210	644	414	140	330	330	14068
					86.8%	4.6%	2.9%	1.1%	2.3%	2.3%	
		В	_	_	4.9	26.6	1.0	0.56	0.01	0.38	33.45
					14.6%	79.5%	3.0%	1.7%	0.1%	1.1%	
		N	855	10335	34337	1610	20338	2860	9343	36037	115715
			1.0%	8.9%	29.6%	1.4%	17.6%	2.4%	8.0%	31.1%	
	Вслое	В	0.38	1.13	13.65	66.5	184.1	11.4	0.35	13.5	291.0
	2	р	0.2%	0.4%	4.7%	22.8%	63.2%	3.9%	0.2%	4.6%	21.0
		B _c	0.3	0.07	0.9	4.2	23.0	1.1	0.03	1.4	31.0
<u> </u>			1.0%	0.3%	2.9%	13.5%	74.2%	3.5%	0.2%	4.5%	
5616	0	N	990	87	_	29	1911	174	_	3144	6335
		р	15.6%	1.4%		0.6%	30.1%	2.7%		49.6%	0.20
		В	0.3	0.01	-	1.0	3.2 29.207	0./	-	3.1/	8.38
		p	3.0%	0.2%		11.9%	38.2%	8.3% 0.06		37.8%	0.75
		D _c	0.02	I	-	0.07	53.30%	0.00 8.0%	-	26.6%	0.75
5(17	0	NT	2.0%	5115		9.3%	1(24	0.0%	71(1	20.0%	25.40.4
5617	0	IN	341 1.507	5115 20.007	-	-	1624	3410 12.207	/101	/843 20.70/	25494
		R	0.13	20.0%			0.4%	13.5%	20.1%	2 28	37 37
		Ъ	0.13	1.9%	—	—	46.9%	42.2%	1.5%	7.0%	52.52
	8	N	0.570	7016	754	20	2465	0105	754	16964	37087
	0	14	_	20.00%	2.00%	0.10%	6 50%	24.00%	2.00%	10 704	51 901
		ъ		20.0%	2.0%	0.1%	0.3%	24.0%	2.0%	44.0%	10.5
		В	_	1.0	0.3	0.15	8.1/	36.4	0.03	3.44	49.5
				2.0%	0.6%	0.3%	16.5%	73.5%	0.1%	6.9%	
	13	Ν	455	1365	8189	35	7104	5914	-	3640	26702
			1.78%	5.1%	30.7%	0.2%	26.6%	22.1%		13.6%	
		В	0.02	0.15	3.3	0.35	17.9	23.66	_	1.74	47.1
			0.1%	0.3%	7.0%	0.7%	38.0%	50.2%		3.7%	
	18	N	968	1452	7744	1107	525	968	_	_	12764
			7.6%	11.4%	60.7%	8.6%	4.1%	7.6%			
		В	0.05	0.06	3.1	21.45	0.43	3.8			28.9
			0.2%	0.3%	10.7%	74.2%	1.5%	13.1%		_	
		N	6059	79069	65206	3130	59351	104812	33545	159838	514311
		- *	1 3%	15 5%	12 7%	0.6%	11.6%	20.5%	6 5%	31 3%	21.211
		D	0.74	0.6	12.770 76 7	56 2	201 2	<u> </u>	0.070 1 1	10.2	758 5
	В слое	D	0.74	9.0 1.207	20.2	JU.J 7 404	204.3	+17.0	2.2	40.2	130.3
		F	0.1%	1.3%	3.4%	1.4%	20.9%	33.2%	0.3%	3.3%	7 0 (
		B _c	0.05	1.9	1.6	3.5	25.5	41.8	0.2	4.0	78.6
			0.1%	2.4%	2.0%	4.4%	32.4%	53.3%	0.3%	5.1%	

Таблица 3. Окончание

			I	Bacillario	phyceae		Deres	C:1:	Ollicola		
Станции	Горизонт		Chaetoceros	Skeleto-	Cylindro-	rest	phyceae	phyceae	(Calyco-	Rest	Общая
			entueroeer os	пета	teca	rese			monas)		
5618	0	N	_	10346	_	_	3154	726	23648	16997	54 871
				18.8%			5.7%	1.4%	43.1%	31.0%	
		В	_	1.24	_	_	12.1	2.9	1.0	17.45	34.7
				3.5%			34.9%	8.3%	3.0%	50.3%	
		B _c	_	0.08	_	_	1.5	0.24	0.08	1.6	3.5
				2.8%			42.9%	6.8%	2.3%	45.7%	
5619	0	N	_	14553	_	5666	1882	_	159390	3111	184602
				7.9%		3.1%	1.0%		86.3%	1.7%	
		В	_	1.6	_	4.07	6.5	_	6.5	11.65	30.32
				5.3%		13.3%	21.4%		21.4%	38.4%	
	8	N	1132	5712	357	31	4482	155	29274	3667	44810
			2.5%	12.7%	0.8%	+	10.0%	0.3%	65.5%	8.2%	
		В	2.8	0.36	0.14	2.2	21.5	0.6	1.2	3.9	32.7
			8.5%	1.1%	0.4%	6.7%	65.7%	1.9%	3.7%	11.9%	
	14	N	1040	46276	4160	80	_	_	520	1039	53115
			2.0%	87.6%	7.8%	0.15%			1.0%	1.9%	
		В	0.18	3.17	1.7	1.82	_	_	0.02	0.38	7.3
			2.5%	43.5%	23.4%	24.9%			0.3%	5.3%	
		N	11044	295236	14979	23 121	42334	1085	844038	41 2 30	1273067
			0.9%	23.2%	1.2%	1.8%	3.3%	+	66.3%	3.2%	
	Радор	В	20.14	18.4	6.0	37.1	176.3	4.3	34.5	75.0	371.8
	в слое		5.4%	4.9%	1.6%	10.0%	47.5%	1.1%	9.3%	20.2%	
		B _c	1.4	1.2	0.4	2.3	22.8	0.4	2.9	7.5	38.9
			3.6%	3.1%	1.0%	5.9%	58.7%	1.0%	7.4%	19.3%	
5620	0	N	_	45436	_	2537	3259	614	54488	4298	110632
				41.0%		2.7%	2.8%	0.5%	49.1%	3.9%	
		В	_	5.68	_	5.74	17.6	2.45	2.2	1.2	34.9
				16.3%		16.4%	50.5%	7.0%	6.3%	3.5%	
	9	N	849	9622	1698	945	849	568	1420	2840	18791
			4.5%	51.2%	9.0%	5.0%	4.5%	3.0%	7.5%	15.1%	
		В	0.08	0.94	0.7	1.0	1.12	2.27	0.05	1.4	7.56
			1.0%	12.4%	9.2%	13.2%	14.8%	30.1%	0.8%	18.5%	
		N	3820	247761	7641	15669	18486	5319	251 586	32121	582403
			0.7%	42.5%	1.2%	2.7%	3.1%	0.9%	43.2%	5.5%	
	R or co	В	0.36	29.8	3.15	30.3	84.24	21.2	10.1	11.7	190.8
	в слое		0.5%	15.6%	1.6%	15.9%	44.0%	11.0%	5.3%	6.0%	
		B _c	0.02	2.0	0.2	1.9	10.5	2.1	0.8	1.2	18.7
			0.1%	10.7%	1.0%	10.2%	43.9%	11.2%	4.2%	6.4%	

+ менее 0.1%.

водная флора на ближайших к эстуариям станциях обоих разрезов не была обнаружена, что, вероятнее всего, связано с тем, что соленость в исследованных районах внутреннего шельфа превышала значения 15 PSU, при которых могут существовать пресноводные виды водорослей [14, 16, 17, 19]. Отсутствие пресноводных видов на внутреннем шельфе юго-западной части Восточно-Сибирского моря при солености >15 PSU явствует и из данных [27].

Численность и биомасса фитопланктона в первой декаде сентября на всей исследованной акватории были крайне низкими, существенно ниже, чем на шельфе Карского моря и моря Лаптевых в аналогичный сезон [14–17]. Об этом же свидетельствуют данные измерений интеграль-

ной первичной продукции и концентрации хлорофилла [6, 7].

Биомасса фитопланктона в западной части Восточно-Сибирского моря на Индигирском разрезе была существенно выше, чем восточной части на Колымском разрезе, при сравнимом уровне численности (рис. 4, табл. 2, 3). Соответствующие цифры составляют 16.4-339.1 против 9.4-42.1 мг/м³ и 11.9-66.3 × 10⁶ против 7.7-90.3 × 10⁶ кл/м³. При этом вклад динофлагеллят в биомассу фитоцена на Индигирском разрезе был выше (табл. 2, 3). Высокие концентрации фитопланктона на Индигирском разрезе в основном тяготели к верхнему 5-10 м слою водной толщи, на Колымском разрезе такой тенденции не прослеживалось (рис. 5). Следует отметить очень высокую пространственную изменчивость количественных характеристик фитопланктона на обоих разрезах (рис. 4), что для восточной части Восточно-Сибирского моря полтверждается данными [27].

Через неделю после наших наблюдений в Восточно-Сибирском море (17-20 сентября 2017 г.) нами были проведены работы в западной части моря Лаптевых на разрезе от внутреннего района Хатанского залива до континентального склона. На станциях разреза, выполненных в области с поверхностной соленостью 15-23 PSU, основным компонентом фитопланктона была мелкоклеточная диатомея Sceletonema costatum, входившая в число доминантов в аналогичном биотопе на внутреннем шельфе Восточно-Сибирского моря. Обилие вида достигало 1×10^{6} кл/л. а его вклад в общую численность водорослей составлял от 78 до 90% [19]. Вероятно, в осенний период в районах шельфа вблизи эстуарных зон арктических рек с увеличением солености до значений, препятствующих развитию пресноводного фитопланктона, в условиях крайне низкого содержания нитратов преимущество получают мелкоклеточные водоросли разных систематических групп. Возможно, эти виды способны к смешенному питанию, и их развитию способствует высокое содержание аллохтонного растворенного органического вещества, выносимого сибирскими реками.

Полученные нами ранее оценки [19] говорят о том, что в западной части моря Лаптевых в районе смешения морских вод и вод, выносимых Хатангой, при солености 17–19 PSU численность и биомасса фитопланктона были на порядок выше – $0.6-1 \times 10^6$ кл/л и 90–160 мг/м³ соответственно, чем в аналогичных районах, прилежащих к устьям Индигирки и Колымы. Это вместе с другими материалами, полученными нами ранее в море Лаптевых [17], свидетельствует о том, что фитопланктон внутреннего шельфа Восточно-Сибирского моря в сезон, свободный ото льда, характеризуется крайней бедностью. Здесь уместно привести количественные характеристики фи-

ОКЕАНОЛОГИЯ том 61 № 6 2021

топланктона, полученные в тот же сезон (сентябрь) в восточной части Восточно-Сибирского моря на основе тотальных сетных проб [27]. Максимальные значения составляли $0.2-0.4 \times 10^3$ кл/л и 0.2-0.3 мг С/м³, что на 1-2 порядка ниже полученных нами значений (рис. 4, табл. 2, 3). Эти различия, очевидно, следствие использованной в [27] методики, приводящей к недоучету значительной части фитопланктона, и приведенные цифры не могут обсуждаться в сравнении с нашими данными.

Полученные материалы показывают, что на внутреннем шельфе Восточно-Сибирского моря на внешней границе области, существенно опресненных речным стоком вод, при поверхностной солености 21-25 PSU формируются локальные благоприятные условия для развития фитопланктона. На Индигирском разрезе (ст. 5602) при солености 21.2 PSU наблюдалось максимальная для разреза численность мелкоклеточного фитопланктона 1.5×10^9 кл/м² (рис. 2a, 4a, табл. 2). На Колымском разрезе с фронтальной зоной на периферии речного плюма (ст. 5617) при солености 23.3 PSU было ассоциировано самое высокое значение биомассы фитопланктона – 42.1 мг/м³ (рис. 26, 46, табл. 3). Оно определялось высокой концентрацией морского вида Dictvocha speculum, вклад которого в общую биомассу фитоцена составлял 55.2%. На этой станции также зарегистрированы максимальное для разреза содержание хлорофилла и высокая первичная продукция [6]. Максимальная биомасса на внешней границе речного плюма (24.3 PSU) отмечена и на Индигирском разрезе: 339 мг/м³ (рис. 4а).

Средняя часть Колымского разреза пересекала область шельфа со специфическими особенностями гидрофизической структуры. В этой области практически отсутствовал скачок плотности, и водная толща была перемешена от поверхности до дна (рис. 26). Концентрация нитратного азота во всей толще воды была крайне низкой (рис. 36). Численность и биомасса фитопланктона в этой области снижались до минимальных для всего исследованного района величин: 7.7 × 10⁶ кл/м³ и 9.4 мг/м³ соответственно (рис. 46, табл. 3).

Биомасса фитопланктона на Индигирском разрезе была существенно выше, чем на Колымском (рис. 4, табл. 2, 3). Максимальные значения биомассы для этих разрезов составляли 339 и 42.1 мг/м³ соответственно. Это было связано с различием в комплексах видов, определявших обилие фитопланктона. В средней части Индигирского разреза на станциях 5602–5606 основу биомассы, а на станции 5604 и основу численности формировала крупноклеточная диатомея *Rhizosolenia hebetata* f. *semispina* (рис. 6, табл. 2). В области срединного шельфа, которую пересекал Колымский разрез, наибольший вклад в численность вносили диатомея *Cylindrotheca closterium*, динофлагелляты, главным образом рода *Gymnodinium*, cf. *dicrateria* (класс Primnesiophyceae), и жгутиковые с небольшим размером клеток. Биомассу формировали немногочисленные крупные виды динофлагеллят, такие как *Dinophysis acuminata*, *D. rotundata*, несколько видов гетеротрофных *Protoperidinium*. В нижних слоях в небольшом количестве были встречены солоноватоводные неритические диатомеи *Navicula distans*, *N. directa* и *Gyrosigma macrum*.

На обоих разрезах увеличение численности и/или биомассы фитопланктона наблюдалось в районах вблизи кромки льда. Основным компонентом фитопланктона был комплекс видов рода Chaetoceros. Доминирование видов рода Chaetoceros в приледной области северо-западной части Восточно-Сибирского моря отмечено и в [27]. В нашем материале по биомассе доминировали С. diadema и С. debilis, по численности – С. diadema и C. socialis. Численность и биомасса Chaetoceros в приледной области на Индигирском разрезе была в несколько раз выше, чем на Колымском. Наблюдалось высокое содержание клеток на разных стадиях спорообразования и спор – от 30-40% численности (у C. socialis до 100%), а также до 40% мертвых клеток. Такое физиологическое состояние популяций всех видов Chaetoceros свидетельствовало о переходе их в покоящуюся стадию. При этом клетки Chaetoceros концентрировались в нижних слоях водной толщи.

В целом, полученный материал позволяет говорить о крайней бедности фитопланктона Восточно-Сибирского моря в исследованный безледный сезон по сравнению с другими эпиконтинентальными морями Сибирской Арктики, а также о существенных различиях в структуре фитопланктонных сообществ западной и восточной областей бассейна, что является дополнительным подтверждением его существенной зональной гетерогенности.

Работа выполнена в рамках темы государственного задания № 0128-2021-007, проекта РФФИ "Арктика" № 18-05-60069 и проекта РНФ № 19-17-00196. Экспедиционные исследования проведены при финансовой поддержке Министерства науки и высшего образования РФ (целевое финансирование на проведение морских экспедиционных исследований).

СПИСОК ЛИТЕРАТУРЫ

- Атлас Арктики. Трешников А. Ф. (ред). М.: Гл. управление геодезии и картографии при Совете Министров СССР, 1985. 204 с.
- Георгиев А.А., Георгиева М.Л. Новые данные о фитопланктоне Восточно-Сибирского моря // Труды VI Международной научно-практической конференции "Морские исследования и образование:

МАRESEDU – 2017". 2017. Тверь: ПолиПРЕСС. С. 443–446.

- Глебов И.И., Надточий В.А., Савин А.Б. и др. Результаты комплексных исследований в Восточно-Сибирском море в августе 2015 г. // Известия ТИНРО. 2016. Т. 186. С. 81–92.
- 4. Горбатенко К. М., Кияшко С. И. Состав зоопланктона и трофический статус гидробионтов моря Лаптевых и Восточно-Сибирского моря // Океанология. 2019. Т. 59. № 6, С. 987–997.
- 5. *Гуков А.Ю., Дударев О.В., Семилетов И.П. и др.* Особенности распределения биомассы макробентоса и донных биоценозов в южной части Восточно-Сибирского моря // Океанология. 2005. Т. 45. № 6. С. 889–896.
- Демидов А.Б., Гагарин В.И. Первичная продукция и условия ее формирования в Восточно-Сибирском море в осенний период // Докл. АН. 2019. Т. 487. № 6. С. 696–700.
- 7. Демидов А.Б., Гагарин. В И., Арашкевич Е.Г. и др. Пространственная изменчивость первичной продукции и хлорофилла в море Лаптевых в августесентябре // Океанология. 2019. Т. 59. № 5. С. 755– 770.
- Добровольский А.Д., Залогин Б.С. Моря СССР. М.: Изд-во МГУ, 1982. 192 с.
- 9. Карклин В.П., Карелин И.Д. Сезонная и многолетняя изменчивость характеристик ледового режима морей Лаптевых и Восточно-Сибирского // Система моря Лаптевых и прилегающих морей Арктики. М.: Изд-во МГУ, 2009. С. 187–201.
- Никоноров А.М., Иванов В.В., Брызгало В.А. Реки Российской Арктики в современных условиях антропогенного воздействия. Ростов-на-Дону: Изд-во "НОК". 2007. 280 с.
- Павштикс Е.А. Обзор состава и количественного распределения зоопланктона в Восточно-Сибирском море // Исследования фауны морей. Санкт-Петербург, 1994. Т. 48. С. 17–16.
- Пинчук А.И. О зоопланктоне Чаунской губы. Экосистемы, флора и фауна Чаунской губы, Восточно-Сибирское море // Исследования фауны морей. Санкт-Петербург, 1994. Т. 47(55). С. 121–127.
- Суханова И.Н. Концентрирование фитопланктона в пробе // Современные методы количественной оценки распределения морского планктона. М.: Наука, 1983. С. 97–105.
- 14. *Суханова И. Н., Флинт М.В., Мошаров С.А. и др.* Структура сообществ фитопланктона и первичная продукция в Обском эстуарии и на прилежащем Карском шельфе // Океанология. 2010. Т. 50. № 5. С. 785–800.
- Суханова И.Н., Флинт М.Ф., Дружкова Е.И., и др. Фитопланктон северо-западной части Карского моря // Океанология. 2015. Т. 55. № 4. С. 605–619.
- 16. Суханова И.Н., Флинт М.В., Сергеева В.М. и др. Структура сообществ фитопланктона Енисейского эстуария и прилежащего Карского шельфа // Океанология. 2015. Т. 55. № 6. С. 935–949.
- 17. Суханова И.Н., Флинт М.В., Георгиева Е.Ю. и др. Структура сообществ фитопланктона в восточной

части моря Лаптевых // Океанология. 2017. Т. 57. № 1. С. 86–102.

- Суханова И.Н., Флинт М.В., Сахарова Е.Г. и др. Фитоценозы Обского эстуария и Карского шельфа в поздневесенний сезон // Океанология. 2018. Т. 58. № 6. С. 882–898.
- Суханова И.Н., Флинт М.В., Фёдоров А.В. и др. Фитопланктон Хатангского залива, шельфа и континентального склона западной части моря Лаптевых // Океанология. 2019. Т. 59. № 5. С. 724–733.
- Bhavya P.S., Lee J.H., Lee H.W. et al. First in situ estimations of small phytoplankton carbon and nitrogen uptake rates in the Kara, Laptev, and East Siberian seas // Biogeosciences. 2018. V. 15. P. 5503–5517.
- 21. *Ershova E.A., Kosobokova K.N.* Cross-shelf structure and distribution of mesozooplankton communities in the East-Siberian Sea and the adjacent Arctic Ocean // Polar Biol. 2019. V. 42. P. 1353–1367. https://doi.org/10.1007/s00300-019-02523-2
- 22. Gordeev V.V., Martin J.M., Sidorov J.S. et al. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean // American J. Sci. 1996. V. 296. P. 664–691.
- Jones, E. P., Anderson L.G., Swift J.H. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implications for circulation // Geophys. Res. Lett. 1998. V. 25. № 6. P. 765–768.
- Maslanik JA, Fowler C, Stroeve J. et al. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss // Geophys. Res. Lett. 2007. V. 34.

https://doi.org/ L0320 43 https://doi.org/10.1029/2007G

- 25. *Menden-Deuer S., Lessard E.J.* Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton // Limnol. Oceanogr. 2000. V. 45. № 3. P. 569–579.
- Nghiem S.V., Chao Y., Neumann G. et al. Depletion of perennial sea ice in the East Arctic Ocean // Geophys. Res. Lett. 2006. V. 33. https://doi.org/10.1029/2006G L0271 98
- 27. Polyakova Ye.I., Kryukova I.M., Martynov F.M. et al. Community structure and spatial distribution of phytoplankton in relation to hydrography in the Laptev Sea and the East Siberian Sea (autumn 2008) // Polar Biol. 2021. V. 44. P. 1229–1250.
- Semiletov I., Dudarev O., Luchin V. et al. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. // Geophys Res Lett. 2005. https://doi.org/10.1029/2005GL0224 90

https://doi.org/10.1029/2005GL0224 90

- 29. *Stein R.* Circum Arctic river discharge and its geological record // Int. J. Earth Science. 2000. V. 89. P. 447–449.
- 30. *Strathmann R.R.* Estimating the organic carbon content of phytoplankton from cell volume, cell area or plasma volume // Limnol. Oceanogr. 1967. V. 12. № 3. P. 411–418.
- Weingartner T.J., Danielson S., Sasaki Y. et al. The Siberian Coastal Current: a wind- and buoyancy-forced Arctic coastal current. // J Geophys Res Ocean. 1999. V. 104. P. 29697–29713. https://doi.org/10.1029/1999J C9001 61

First Data on Structure of Phytoplankton Communities of the East-Siberian Sea

I. N. Sukhanova^{*a*}, M. V. Flint^{*a*, *#*}, A. V. Fedodov^{*b*}, E. G. Sakharova^{*c*}, P. N. Makkaveev^{*a*}, A. A. Polukhin^{*a*}, A. A. Nedospasov^{*a*}, A. S. Schuka^{*a*}

^aShirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

^bSouthern Branch, Shirshov Institute of Oceanology, Russian Academy of Sciences, Gelendjik, Russia

^cPapanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavskaya Oblast', Russia

[#]e-mail: m_flint@ocean.ru

The research on structure of phytoplankton communities of the East-Siberian Sea were carried out during 69th cruise of R/V "Akademik Mstislav Keldish" in a frame of the Program "Ecosystems of Siberian Arctic Seas". The materials were obtained from 5 to 9 September at two kvasimeridional transects from inner shelf areas adjacent to Indigirka and Kolyma mouths towards outer shelf. The list of dominant algae groups and species, estimates of numbers, biomass and peculiarities phytoplankton vertical distribution are given for pelagic biotops with different environmental conditions. Significant quantitative poorness of East-Siberian Sea phytoplankton in summer season in comparison with the Laptev Sea determined, which is especially pronounced in the eastern area of the basin. Algae numbers at Indigirka transect varied in a range 11.9-66.3 × 10³ cell/L, biomass – from 16.4 to 339.1 mg/m³. Corresponding figures for Kolyma transect were 7.7–90.3 × 10³ cell/L μ 9.4–42.1 mg/m³. Maximum values in both transects were observed in the area of outer border of riverine plume at increase of surface salinity up to 21–25 PSU. The material obtained allow to reveal significant difference in structure of phytoplankton communities of western versus eastern areas of the East-Siberian Sea, which proves well pronounced zonal heterogeneity of the basin.

Keywords: East-Siberian Sea, western and eastern sheif, riverine discharge, environmental conditions, phytoplankton, dominating species, numbers, biomass