К 85-летнему юбилею академика РАН А.И. Коновалова

УДК 547.31+541.127

ВЛИЯНИЕ ВЫСОКОГО ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ, ТЕМПЕРАТУРЫ И РАСТВОРИТЕЛЕЙ НА СКОРОСТЬ РЕАКЦИИ ДИЛЬСА—АЛЬДЕРА ФУРАНА С *N*-ФЕНИЛМАЛЕИНИМИДОМ

© 2019 г. Д. А. Корнилов, В. Д. Киселев*, О. В. Аникин, А. О. Колесникова, А. А. Шулятьев

ФГАОУ ВО "Казанский (Приволжский) федеральный университет", Химический институт им. А.М. Бутлерова, 420008, Россия, Республика Татарстан, г. Казань, ул. Кремлевская 18
*e-mail: vkiselev.ksu@gmail.com

Поступила в редакцию 16 ноября 2018 г. После доработки 18 ноября 2018 г. Принята к публикации 23 ноября 2018 г.

Получены данные о влиянии температуры, растворителей и высокого гидростатического давления на скорость реакции Дильса—Альдера фурана (1) с N-фенилмалеинимидом (2). В реакции $1+2 \rightarrow 3$ наблюдается слабый эффект ускорения в протонодонорных средах по сравнению с другими реакциями циклоприсоединения и енового синтеза. Получены совпадающие в пределах ошибок измерений значения объема активации и объема реакции, что согласуется с предположением о циклическом переходном состоянии.

Ключевые слова: высокое гидростатическое давление, реакция Дильса—Альдера, *N*-фенилмалеинимид, фуран, объем активации, объем реакции.

DOI: 10.1134/S0514749219010026

На сегодняшний день фуран играет важную роль в синтетической химии. Фуран используют в производстве лаков, инсектицидов, стабилизаторов, а также в качестве растворителя и экстрагента масел и жиров. Фурановые производные заняли важное место в области медицинской химии. Включение фурановых ядер в различные соединения является важнейшей синтетической стратегией в разработке лекарственных препаратов. Фуран и его производные являются одними из самых важных гетероциклов, используемых в качестве диенов в реакциях Дильса—Альдера [1–11].

Ранее было доказано, что фуран (1) вступает в реакцию Дильса—Альдера с *N*-фенилмалеинимидом (2) с образованием преимущественно эндо-аддукта 3 (Схема 1) [12]. Однако отсутствовали данные

по кинетике и объемным параметрам данной реакции.

В данной работе нами определены константы скорости реакции $1+2 \rightarrow 3$ в 6 растворителях при 25, 35 и 45°С. Мы также изучили влияние давления на скорость данной реакции, вычислили значения объема активации и объема реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Фуран, **1**, (Sigma-Aldrich, >99%) и *N*-фенилмалеинимид, **2**, (Sigma-Aldrich, 97%) использовали без дополнительной очистки. Спектры ЯМР ¹Н и ¹³С полученного аддукта **3** полностью совпадают с данными, приведёнными для него ранее [12]. Все растворители очищали известными приемами [13].

Кинетические измерения при атмосферном давлении

По данным работы [12] при сопоставимых концентрациях реагентов ($c_{01} = 0.534$ моль л⁻¹, $c_{02} = 0.315$ моль л⁻¹) в реакции $1 + 2 \rightarrow 3$ в дейтерохлороформе наблюдается равновесие с константой K = 40 л моль⁻¹. В условиях 100-кратного избытка 1 конверсия составляет >99%. Кинетику реакции $1 + 2 \rightarrow 3$ во всех растворителях изучали в условиях псевдопервого порядка ($c_{01}/c_{02} = 100$). За скоростью реакции следили по изменению поглощения 2 (375-400 нм) на спектрофотометре Hitachi U-2900 (Япония). Температуру рабочего раствора в кварцевой кювете с притертой пробкой поддерживали с точностью ±0.1°C. Устойчивость реагента 2 во всех изученных растворителях проверяли по сохранению его поглощения за время реакции. Относительные стандартные ошибки для констант скорости составляли ±3%, энтальпии активации ± 2 кДж моль $^{-1}$ и энтропии активации ± 6 Дж моль $^{-1}$ K $^{-1}$.

Кинетические измерения при повышенном давлении

Влияние давления на скорость реакции $1+2 \rightarrow 3$ при повышенном давлении изучали при 25°C в толуоле и в среде чистого фурана, используя мультипликатор давления (HP-500, Япония), кварцевую кювету переменного объема (PCI-500, Япония) и спектрофотометр с программным управлением (SCINCO S-3100, Корея). Наблюдаемый объем активации ($\Delta V_{\rm exp}^{\neq}$) реакции $1+2 \rightarrow 3$ был рассчитан по данным констант скорости при 1 и 1000 бар, применяя предложенное ранее [14] соотношение (1):

$$[\partial \ln k_p/\partial p]_{p=1 \text{ fap}} = (1.15 \pm 0.03) \times 10^{-3}$$

 $\times \ln [(k_{p=1000 \text{ fap}}/k_{p=1 \text{ fap}})].$ (1)

Исправленные значения объема активации ($\Delta V_{\text{corr}}^{\neq}$) определяли с учетом сжимаемости толуола и фурана [уравнение (2)]:

$$\Delta V^{\neq}_{\text{corr}} = \Delta V^{\neq}_{\text{exp}} + \beta_{\text{T}} RT.$$
 (2)

Здесь β_T – изотермический коэффициент сжимаемости $\{\beta_T \text{ (толуол}\} = 92 \times 10^{-6} \text{ бар}^{-1}, \ \beta_T \text{ (фуран)} = 99 \times 10^{-6} \text{ бар}^{-1} \ [15] \}.$

Объем реакции

Значение объема реакции ($\Delta V_{\text{r-}n}$) было определено кинетическим методом из зависимости удельного объема реакционной смеси от концентрации образующегося аддукта **3** [уравнение (3)]:

$$1/d_{(t)} = 1/d_{(t=0)} + c_{3,t} \Delta V_{r-n}/1000d_{(t=0)}.$$
 (3)

Здесь, $d_{(t=0)}$ и $d_{(t)}$ – плотности раствора в начале и в ходе реакции; $c_{3,t}$ – текущая концентрация аддукта **3**. Текущую концентрацию аддукта **3** рассчитывали по кинетическим данным. Значения плотности реакционной смеси определяли с помощью прецизионного ($\pm 2 \times 10^{-6}$ г см⁻³) плотномера (Anton Paar DSA 5000M, Австрия) при 25 ± 0.002 °C.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные кинетические данные и параметры активации реакции $1+2 \to 3$ в 6-ти растворителях собраны в таблице.

Следует отметить, что скорость реакции $1+2 \to 3$ в полярном ацетонитриле ниже, чем в ме-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 55 № 1 2019

Растворитель	εa	k ₂ (25°C)	k ₂ (35°C)	k ₂ (45°C)	Δ <i>H</i> ≠	–ΔS≠	Δ <i>G</i> ≠ (25°C)
1,4-Диоксан	2.2	1.88 × 10 ⁻⁵	3.96 × 10 ⁻⁵	7.45×10^{-5}	51.8	162	100.1
Ацетонитрил	37.5	2.15×10^{-5}	4.18×10^{-5}	7.90×10^{-5}	48.8	171	99.8
Толуол	2.3	1.55 × 10 ⁻⁵	3.06 × 10 ⁻⁵	5.99 × 10 ⁻⁵	50.8	167	100.6
Бензол	2.3	1.53 × 10-5	2.95 × 10 ⁻⁵	5.54×10^{-5}	48.3	175	100.5
1,2-Дихлорэтан	10.3	3.56 × 10 ⁻⁵	7.61 × 10 ⁻⁵	1.42×10^{-4}	52.1	155	98.3
Трихлорметан	4.6	4.26×10^{-5}	8.29 × 10 ⁻⁵	1.46 × 10 ⁻⁴	46.1	174	98.0

Константы скорости k_2 (л моль $^{-1}$ с $^{-1}$), энтальпии ΔH^{\neq} (кДж моль $^{-1}$), энтропии ΔS^{\neq} (Дж моль $^{-1}$ К $^{-1}$) и свободные энергии активации ΔG^{\neq} (кДж моль $^{-1}$) реакции $\mathbf{1} + \mathbf{2} \to \mathbf{3}$ в ряду растворителей

нее полярных 1,2-дихлорэтане и трихлорметане (см. таблицу). Как правило, скорость реакций циклоприсоединения и енового синтеза в протонодонорных растворителях на 1–2 порядка выше, чем в апротонных [16-20]. Такое ускорение происходит вследствие активации диенофилов за счет образования водородной связи с протонодонорными растворителями [21]. Однако в реакции $1 + 2 \rightarrow 3$ наблюдается значительно меньший эффект ускорения в протонодонорных средах (см. таблицу). Это можно объяснить тем, что в реакции между фураном и *N*-фенилмалеинимидом образование водородных связей происходит с обоими реагентами. Это ведет к активации диенофила и дезактивации диена, что компенсирует эффект ускорения. Подобные скромные эффекты ускорения наблюдались и в других реакциях с участием диенов, способных к образованию водородных связей [22, 23].

Сопряжение в молекуле фурана ведет к его пониженной по сравнению с циклопентадиеном активности в реакции Дильса—Альдера. Скорость реакции N-фенилмалеинимида с циклопентадиеном ($k_2 = 7.05 \times 10^{-2}$ л моль $^{-1}$ с $^{-1}$, диоксан, T = 293.15 K [24]) в 5400 раз выше, чем с фураном ($k_2 = 1.31 \times 10^{-5}$ л моль $^{-1}$ с $^{-1}$, диоксан, T = 293.15 K, рассчитано из экспериментальной зависимости $\ln k$ vs 1/T).

По данным работы [12] можно оценить величину энтальпии реакции $\mathbf{1} + \mathbf{2} \to \mathbf{3}$ ($\Delta H_{\rm r-n} = 50~\rm kДж~моль^{-1}$). Известно, что различие в энтальпии реакций N-фенилмалеинимида и самого сильного π -акцептора тетрацианоэтилена с рядом диенов составляет 29 кДж моль⁻¹ [21]. Отсюда следует, что

константа равновесия реакции тетрацианоэтилена с фураном составляет 2.32×10^{-4} л моль⁻¹. Следовательно, даже в условиях максимального избытка фурана конверсия реакции составит всего 0.3%.

Значения объема активации для реакции $1 + 2 \rightarrow 3$ определены при 25°C в толуоле и в среде чистого фурана по данным о скорости при атмосферном давлении (1 бар) и при 1000 бар [уравнения (1) и (2)]. Для реакции $1 + 2 \rightarrow 3$ в толуоле из полученного отношения $k_{P=1000}/$ $k_{P=1}$, равного 3.40, рассчитано наблюдаемое значение $\Delta V_{\rm exp}^{\neq} = -34.9 \pm 0.9 \, {\rm cm}^3 \, {\rm моль}^{-1}$. С учетом изменения концентрации реагентов из-за сжимаемости растворителя исправленное значение объема активации ($\Delta V_{\rm corr}^{\neq}$) равно $-32.6 \pm$ $0.9 \ {\rm cm}^3 \ {\rm monb}^{-1}$. Для реакции $1 + 2 \to 3$ в среде чистого фурана ($k_2 = 1.30 \times 10^{-5}$ л моль⁻¹ с⁻¹, T =298.15 K) из полученного отношения $k_{P=1000}$ / $k_{P=1}$, равного 3.54, рассчитано наблюдаемое значение $V_{\text{exp}}^{\neq} = -36.0 \pm 1.0 \text{ cm}^3 \text{ моль}^{-1}$. Исправленное значение объема активации (V_{corr}^{\neq}) равно -33.5 ± 1.0 см³ моль⁻¹. Следует отметить, что значения объема активации реакции $1+2 \rightarrow 3$ в двух данных растворителях совпадают в пределах ошибок измерений.

Для определения объема реакции $1+2 \rightarrow 3$ (в среде чистого фурана) были проведены два измерения зависимости [уравнение (3)] плотности раствора реакционной смеси от концентрации аддукта 3 в ходе реакции:

$$d^{-1} = -(0.0350704 \pm 0.0001837)c_3$$
 (1)
+ (1.0715555 \pm 0.0000020);

а Значения диэлектрической проницаемости по данным [13].

$$R^2=0.9992;$$
 $\Delta V_{\rm r-n}=-32.7~{
m cm^3~monb^{-1}};$ $c_{01}=13.75~{
m monb}~{
m n}^{-1};$ $c_{02}=2.87\times 10^{-2}~{
m monb}~{
m n}^{-1}.$

$$d^{-1} = -(0.0352543 \pm 0.0003215)c_3$$
 (2)
+ (1.0715596 \pm 0.0000026).

$$R^2=0.9993; \Delta V_{\rm r-n}=-32.9~{
m cm}^3~{
m моль}^{-1};~c_{01}=13.75~{
m моль}~{
m л}^{-1};~c_{02}=2.87\times 10^{-2}~{
m моль}~{
m л}^{-1}.~\Delta V_{{
m r-n(av)}}=-32.8\pm 0.1~{
m cm}^3~{
m моль}^{-1}.$$

Величины объема активации и объема реакции совпадают в пределах ошибок измерений. Близкие значения объемных параметров были получены и для реакции фурана с малеиновым ангидридом [25]. Полученные результаты согласуются с предположением о циклическом переходном состоянии.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Российского Фонда Фундаментальных исследований (проект № 18-33-00063), Министерства образования и науки Российской Федерации (проект № 4.6223.2017/9.10) и исследовательского гранта Казанского федерального университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Woodward R.B., Baer H. J. Am. Chem. Soc. 1948, 70, 1161.
- 2. Weis C.D. J. Org. Chem. 1962, 27, 3520.
- 3. Brion F. Tetrahedron Lett. 1982, 23, 5299.
- 4. Fringuelli F., Taticchi A. *Dienes in the Diels–Alder Reaction*. N.-Y.: Wiley, **1990**.
- 5. Kappe C.O., Murphree S., Padwa A. *Tetrahedron*. **1997**, *53*, 14179.
- 6. Shipman M. Contemp. Org. Synth. 1995, 2, 1.
- 7. Marchionni C., Vogel P., Roversi P. *Tetrahedron Lett.* **1996**, *37*, 4149.
- 8. Woo S., Keay B. Synthesis. 1996, 669.

- 9. Lautens M. Synlett. 1993, 177.
- Lautens M., Chiu P., Ma S., Rovis T. J. Am. Chem. Soc. 1995, 117, 532.
- 11. Lautens M., Klute W. Angew. Chem., Int. Ed. 1996, 35, 442
- Cooley J.H., Williams R.V. J. Chem. Educ. 1997, 74, 582.
- 13. Riddick J.A., Bunger W.B., Sakano T.K. *Organic Solvents*. 4th ed. N.-Y. etc: J. Wiley & Sons Inc. **1986**.
- 14. Kornilov D.A., Kiselev V.D. *Int. J. Chem. Kinet.* **2015**, *47*, 389.
- Kiselev V.D., Bolotov A.V., Satonin A.P., Shakirova I.I., Kashaeva H.A., Konovalov A.I. *J. Phys. Chem. B.* 2008, 112, 6674.
- 16. Киселев В.Д., Корнилов Д.А., Аникин О.В., Племенков В.В., Коновалов А.И. ЖОрХ. **2018**, *54*, 1073. [Kiselev V.D., Kornilov D.A., Anikin O.V., Plemenkov V.V., Konovalov A.I. *Russ. J. Org. Chem.* **2018**, *54*, 1080.]
- 17. Kiselev, V.D. Kornilov D.A., Anikin O.V., Shulyatiev A.A., Kolesnikova A.O., Konovalov A.I. *Int. J. Chem. Kinet.* **2018**, *50*, 651.
- 18. Киселев В.Д., Корнилов Д.А., Аникин О.В., Седов И.А., Коновалов А.И. *ЖОрХ.* **2017**, *53*, 1828. [Kiselev V.D., Kornilov D.A., Anikin O.V., Sedov I.A., Konovalov A.I. *Russ. J. Org. Chem.* **2017**, *53*, 1864.]
- 19. Kiselev V.D., Kornilov D.A., Konovalov A.I. *Int. J. Chem. Kinet.* **2017**, *49*, 562.
- 20. Kiselev V.D., Kornilov D.A., Lekomtseva I.I, Konovalov A.I. *Int. J. Chem. Kinet.* **2015**, *47*, 289.
- 21. Kiselev V.D., Konovalov A.I. *J. Phys. Org. Chem.* **2009**, *22*, 466.
- 22. Kiselev V.D., Kornilov D.A., Sedov I.A. Konovalov A.I. *Int. J. Chem. Kinet.* **2017**, *49*, 61.
- 23. Киселев В.Д., Корнилов Д.А., Аникин О.В., Латыпова Л.И., Коновалов А.И. ЖФХ. **2017**, *91*, 446. [Kiselev V.D., Kornilov D.A., Anikin O.V., Latypova L.I., Konovalov A.I. *Russ. J. Phys. Chem. A.* **2017**, *91*, 464.]
- 24. Sauer J., Wiest H., Mielert A. Ber. 1964, 97, 3183.
- 25. Жулин В.М., Кельцева М.В., Богданов В.С., Корешков Ю.Д., Каботянская Е.Б. *Изв. АН СССР. Сер. Хим.* **1990**, 525. [Zhulin V.M., Kel'tseva M.V., Bogdanov V.S., Koreshkov Yu.D., Kabotyanskaya E.B. *Russ. Chem. Bull.* **1990**, *39*, 456.]

High Pressure, Temperature, and Solvent Effects on the Rate of the Diels-Alder Reaction of Furan with N-Phenylmaleimide

D. A. Kornilov, V. D. Kiselev*, O. V. Anikin, A. O. Kolesnikova, and A. A. Shulvatiev

Kazan Federal University, Butlerov Institute of Chemistry, Kazan, Tatarstan, 420008 Russia, ul. Kremlevskaya 18 *e-mail: vkiselev.ksu@gmail.com

> Received November 16, 2018 Revised November 18, 2018 Accepted November 23, 2018

The data on temperature, solvent, and high hydrostatic pressure influence on the rate of the Diels-Alder reaction of furan (1) with N-phenylmaleimide (2) have been obtained. For the $1+2 \rightarrow 3$ reaction compared with other cycloaddition and ene reactions in proton donor solvents a weak acceleration effect is observed. The values of the activation and reaction volumes coinciding within the measurement errors have been obtained, which is consistent with the assumption of a cyclic transition state.

Keywords: high hydrostatic pressure, Diels-Alder reaction, *N*-phenylmaleimide, furan, activation volume, reaction volume