УДК 547.655.6

КИСЛОТНО-КАТАЛИЗИРУЕМАЯ ГЕТЕРОЦИКЛИЗАЦИЯ ТИОГЛЮКОЗИДОВ ТРИАЛКИЛНАФТАЗАРИНОВ В АНГУЛЯРНЫЕ ХИНОН-УГЛЕВОДНЫЕ ТЕТРАЦИКЛЫ

© 2019 г. Ю. Е. Сабуцкий, В. А. Денисенко, Р. С. Попов, С. Г. Полоник*

«Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДО РАН», 690022, Россия, г. Владивосток, Проспект 100 лет Владивостоку 159 *e-mail: sergpol@piboc.dvo.ru

> Поступила в редакцию 31 августа 2018 г. После доработки 4 сентября 2018 г. Принята к публикации 6 сентября 2018 г.

Внутримолекулярной конденсацией тиоглюкозидов триалкилнафтазаринов в растворе кипящего *н*-бутанола и метансульфокислоты впервые получены тетрациклические нафтохинон-углеводные конъюгаты с ангулярным сочленением гетероцикла. Конкурирующей реакцией является гидролиз тиоглюкозидной связи и образование триалкилмеркаптонафтазаринов.

Ключевые слова: 1,4-нафтохиноны, нафтазарины, S-тиоглюкозиды, гетероциклизация, тетрациклические конъюгаты 1,4-нафтохинонов, меркапто-1,4-нафтохиноны.

DOI: 10.1134/S0514749219020046

1,4-Нафтохиноны широко распространены в природе [1]. Вещества этой группы проявляют антибактериальную [2], кардиопротективную [3] и противоопухолевую активность [4, 5]. Широкий спектр биологического действия делает эту группу соединений перспективной для поиска новых веществ-лидеров для целей медицинской химии [6, 7]. Нафтохиноны часто обладают плохой растворимостью, что затрудняет их практическое использование. Конъюгация хинонов с нетоксичными углеводами позволяет улучшить их растворимость и приводит к новым структурам с новыми видами биологической активности [8–12]. В ходе нашего исследовательского проекта по конъюгации нафтохинонов с углеводами мы конденсировали натриевую соль β-D-глюкопиранозы (1) с замещенными хлорпроизводными нафтазарина (5,8-дигидрокси-1,4-нафтохинона) **2а, 2b–3а, 3b** и получили моно- и дитиоглюкозиды 4a, 4b-5a, 5b, которые под действием MeONa/MeOH легко превращаются в углеводные коньюгаты 6а, 6b с выходом 75-81% [13] (схема 1). Ранее, аналогичные конъюгаты 1,4-нафтохинона, полученные на основе 1-меркапто производных D-галактозы, D-маннозы, D-ксилозы и L-арабинозы [14], изучались на модели промиелоцитарной лейкемии человека HL-60 [15]. Было показано, что линейные тетрациклические конъюгаты и их ацетилпроизводные проявляют цитотоксическую активность in vitro в концентрациях 1.0-5.0 мкМ, при этом исходные ациклические ацетилтиогликозиды были в 10-100 раз менее активны. Известно, что замещенные нафтазарины существуют в различных таутомерных формах, которые реагируют с образованием отличающихся продуктов реакции [16]. Поэтому, можно ожидать, что в определенных условиях тиогликозиды нафтазарина могут циклизоваться в ангулярные тетрациклы.

Здесь мы сообщаем о первом синтезе тетрациклических нафтазарин-углеводных конъюгатов

с ангулярным сочленением гетероцикла. Для того, чтобы исключить образование тетрацикла линейного строения, для синтеза были взяты хлоралкилнафтазарины **7а**, **7b**, в которых эта возможность блокирована алкильным заместителем. Хлоралкилнафтазарины **7а**, **7b** (1 ммоль) конденсировали с солью тиоглюкозы **1** (1.1 ммоль) в растворе ацетона-МеОН в течении 5 ч и получили тиоглюкозиды нафтазарина **8а**, **8b** с выходом 95–96% (схема 1). Строение вновь полученных тиоглюкозидов **8а**, **8b** подверждается данными ИКС, ЯМР ¹Н и ¹³С спектроскопии и масс-спектрометрии высокого разрешения. Появление в спектрах этих веществ четырех сигналов гидроксильных групп D-глюкозы при сохранении сигналов двух α -гидроксильных групп нафтазаринового ядра и алкильных заместителей указывает на образование тиоглюкозидной связи. 1',2'-*транс*-(β)-Конфигурация тиоглюкозидной связи в в соединения **8а**, **8b** подтверждается величиной КССВ аномерных протонов ($J_{1',2'}$ 9.5–9.6 Гц), наблюдаемых в спектрах в спектрах ПМР при 5.13–5.19 м.д.

Гетероциклизацию полученных тиоглюкозидов **8а, 8b** проводили в смеси кипящего *н*-бутанола и

ÓН

метансульфокислоты (5:1 v/v). В течении 0.5 ч исходные глюкозиды превращались в окрашенные продукты реакции с $R_f 0.95(B)$ и $R_f \sim 0.4(B)$, которые выделили препаративной TCX. По данным масс-спектрометрии высокого разрешения малополярные вещества отвечали брутто формулам $C_{13}H_{12}O_4S$ и $C_{14}H_{14}O_4S$. В спектрах ЯМР ¹Н этих соединений наблюдали сигналы трех алкильных групп, два сигнала протонов в области 10-13 м.д., которые характерны для α-гидроксильных групп нафтазаринового кольца, и новый однопротонный синглет при ~5.3 м.д., который легко обменивался на дейтерий. Совокупность данных ИКС, ЯМР спектроскопии и масс-спектрометрии позволила приписать эти веществам строение меркаптонафтазаринов 9a, 9b – продуктов кислотного гидролиза тиоглюкозидов.

ЯМР спектры полярных соединений содержали сигналы нафтазаринового агликона и D-глюкозы. Однако, в области 4.2–5.5 м.д., в которой проявлялись сигналы аномерного протона и 4-х протонов углеводных гидроксильных групп исходных тиоглюкозидов **8а**, **8b**, в спектрах вновь полученных веществ кроме дублета аномерного протона при 5.16–5.17 м.д. с КССВ (J 9.1–9.2 Гц) наблюдали только три сигнала протонов гидроксильных групп глюкозы, проявляющихся в виде уширенных однопротонных синглетов. В области слабого поля, где резонируют протоны α -гидроксильных групп нафтазаринового кольца, в спектрах ПМР вновь выделенных полярных веществ наблюдали единственный синглет α -гидроксильной группы, проявляющийся при 13.16–13.18 м.д., что указывает на включение другого α -гидроксила нафтазарина в оксатииновый цикл и позволяет приписать этим соединениям структуру ангулярного тетрацикла **10а, 10b**.

Гетероциклизация тиогликозида **8а, 8b** протекает как 1,2-присоединение C^{2'}-OH гидроксильной группы к протонированному хиноидному карбонилу с образованием гемиацеталя **A**. Последующая дегидратация гемиацеталя **A** приводит к неустойчивому интермедиату **B**, который, после перемещения протона и двойных связей, превращается в стабильный ангулярный тетрацикл **10а, 10b** (схема 2).

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 55 № 2 2019

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления измерены на столике Боэтиуса и не исправлены. ИК-спектры записаны на Фурье-спектрофотометре «Vector-22» в КВг и СНСІ₃. Спектры ЯМР записывали в растворах CDCl₃ и ДМСО- d_6 на спектрометрах «Bruker DRX-500» и «Avance III-700 Bruker» с рабочей частотой 500 и 700 МГц для ¹Н и 125 и 176 МГц для ¹³С. Химические сдвиги приведены в м.д. в шкале б относительно ТМС. КССВ (Л) даны в герцах. Двумерные зксперименты ЯМР (COSY, NOESY, HSQC, HSQC-TOSCY, HMBC) выполняли по стандартным методикам при комнатной температуре. Масс спектры высокого разрешения определены на приборе «Agilent 6510 Q-TOF LC/MS» в режиме регистрации отрицательно заряженных ионов $[M - H]^{-}$. Аналитическую TCX проводили на пластинках марки Silufol. Для уменьшения остаточной адсорбции хинонов хроматографические пластинки Silufol предварительно насыщали парами HCl. Индивидуальные вещества выделяли препаративной ТСХ (ПТСХ) на стеклянных пластинах 20 × 25 см на силикагеле Merck 40-60 µ. Для ТСХ использовали системы растворителей: система (А) бензол–этилацетат–метанол (2 : 1 : 1 v/v), система (B) бензол-этилацетат-МеОН (7:4:2 v/v) и система (C) гексан-бензол-хлороформ (9:3:3 v/v). Исходные хлортриалкилнафтазарины были получены хлорированием соответствующих триалкилнафтазаринов [17].

Конденсация триалкилхлорнафтазаринов (7а, 7b) с натриевой солью D-тиоглюкозы (1). Хлорнафтохинон 7а, 7b (1.00 мМ) растворили в ацетоне (60 мл), добавили MeOH (60 мл), тиоглюкозу 1 240 мг (1.10 мМ) и перемешивали 5 ч при комнатной температуре до превращения исходного хинона 7а, 7b с R_f 0.95 (A) в новый красный продукт реакции с R_f 0.63 (A). Отфильтровали неорганические соли, осадок промыли ацетоном. Фильтрат упарили в вакууме, из остатка препаративной ТСХ на силикагеле в системе B, выделили гликозид, который смыли с SiO₂ метанолом, растворитель удалили и получили тиоглюкозиды **8a**, **8b**.

5,8-Дигидрокси-3-(β-D-глюкопиранозил-1-тио)-2,6,7-триметилнафталин-1,4-дион (8а). Выход 425 мг (96%), *R_f* 0.63 (**A**), т.пл. 243– 245°С. ¹Н ЯМР (500 МГц, ДМСО-*d*₆): 2.19 с (6Н, С⁶-Ме и С⁷-Ме), 2.34 с (3H, С²-Ме), 3.04 м (1H, Н5'), 3.07 м (1Н, Н4'), 3.12 м (1Н, Н2'), 3.19 м (1Н, Н³), 3.32 м (1Н, Н⁶), 3.49 м (1Н, Н⁶), 4.25 т (1Н, J 5.7 Гц, С⁶-ОН), 4.90 д (1Н, J 5.2 Гц, С⁴-ОН), 5.08 д (1H, J 5.0 Гц, С^{3'}-О<u>Н</u>), 5.13 д (1H, J 9.6 Гц, H¹), 5.39 д (1Н, J 6.1 Гц, С²-ОН), 13.23 с (1Н, С⁸-ОН), 13.24 с (1H, C⁵-OH). ¹³С ЯМР (ДМСО-*d*₆, 125 MΓ_{II}): 12.2 (2Ar-Me), 15.0 (C²-Me), 60.9 (C⁶), 69.9 (C⁴), 74.9 (C²), 78.1 (C³), 81.4 (C⁵), 85.0 (C¹), 108.8 (C¹⁰), 109.1 (C⁹), 139.8 (C⁶), 139.9 (C⁷), 140.5 (C^3) , 146.3 (C^2) , 167.8 (C^8) , 167.9 (C^5) , 173.5 (C^1) , 174.0 (C⁴). ИК спектр (КВг): 3520 (ОН), 3470 (OH), 3413 (OH), 2920, 1635 (C=O), 1619 (C=O), 1432, 1402, 1377, 1356, 1273, 1242, 1975, 1044, 870, 820 см^{-1} . Масс-спектр высокого разрешения (ESI): *m/z* [*M*-H]⁻. Вычислено для C₁₉H₂₁O₉S 425.0912, найдено 425.0911.

5,8-Дигидрокси-3-(β-D-глюкопиранозил-1-тио)-6.7-диметил-2-этилнафталин-1.4-дион (8a). Выход 439 мг (96%), Rf 0.63(A), т.пл. 214-216°С. ¹Н ЯМР (700 МГц, ДМСО-*d*₆): 1.08 т (3Н, J 7.0 Гц, CH₃CH₂), 2.18 с (6H, C⁶-Me и C⁷-Me), 2.85 м (1H, CH₃C<u>H₂</u>), 2.92 м (1H, CH₃C<u>H₂</u>), 3.03 м (1Н, Н⁵), 3.08 м (1Н, Н⁴), 3.12 м (1Н, Н²), 3.19 м (1Н, Н³), 3.32 м (1Н, Н⁶), 3.47 м (1Н, Н⁶), 4.21 т (1H, J 5.6 Гц, С^{6'}-О<u>Н</u>), 4.93 д (1H, J 5.7 Гц, С^{4'}-О<u>Н</u>), 5.11 д (1Н, *J* 4.9 Гц, С^{3'}-О<u>Н</u>), 5.19 д (1Н, *J* 9.5 Гц, Н¹), 5.42 д (1Н, *J* 6.4 Гц, С²-О<u>Н</u>), 13.25 с (1Н, С⁸-O<u>H</u>), 13.29 c (1H, C⁵-O<u>H</u>). ¹³C SMP (\square MCO- d_6 , 176 MΓμ): 12.3 (2 × Me), 13.1 (Me), 60.9 (C⁶), 70.0 (C⁴), 75.0 (C²), 78.1 (C³), 81.5 (C⁵), 84.8 (C¹), 108.9 (C¹⁰), 109.4 (C⁹), 139.6 (C⁶), 140.1 (C⁷), 140.3 (C³), 151.3 (C²), 169.3 (C⁸), 169.4 (C⁵), 171.9 (C¹), 172.9 (C⁴). ИК спектр (KBr): 3550 (OH), 3461 (OH), 3411 (OH), 2938, 1637 (C=O), 1615 (C=O), 1597 (C=C), 1454, 1395, 13377, 1342, 1303, 1231, 1092, 1074, 1050, 822 см-1. Масс-спектр высокого разрешения (ESI): *m/z* [*M* – H][–]. Вычислено для С₂₀H₂₃O₉S 439.1068, найдено 439.1069.

Гетероциклизация тиоглюкозидов нафтазарина (общая методика). Тиоглюкозид 8а, 8b (0.25 мМ) растворили при перемешивании в смеси 10 мл н-бутанола и 2 мл MeSO₃H, кипятили 30 мин с обратным холодильником, контролируя ход реакции TCX в системе (B) до превращения тиогликозида 8а, 8b в продукты реакции с $R_f \sim 0.92-0.95$ (B) и $R_f \sim 0.41-0.43$ (B). Реакционную смесь перенесли в делительную воронку, добавили 10 мл бутанола, промыли 50 мл воды, бутанольный экстракт упарили в вакууме без осушки, из остатка ПТСХ в системе (С) выделили неполярный продукт реакции 9а, 9b. Полярную полосу на старте собрали, нанесли на свежую пластину, проявили пластину в системе (В) и выделили полярный продукт 10а, 10b.

5,8-Дигидрокси-3-меркапто-2,6,7-триметил-нафталин-1,4-дион (9а). Выход 10 мг (15%), R_f 0.92 (**B**), т.пл. 267–269°С. ¹Н ЯМР спектр (500 МГц, CDCl₃): 2.25 с (3H, ArMe), 2.26 с (3H, ArMe), 2.27 с (3H, ArMe), 5.38 с (1H, ArSH), 13.05 с (1H, α-OH), 13.52 с (1H, α-OH). ¹³С ЯМР спектр (125 МГц): 12.4 (ArCH₃), 12.5 (ArCH₃), 14.7 (ArCH₃), 108.3, 108.7, 129.5, 137.9, 138.8, 140.2, 145.1, 161.9, 162.3, 176.4, 179.9. ИК спектр (CHCl₃): 2929, 2542 (SH), 1594 (C=O), 1569 (C=C), 1448, 1397, 1382, 1340, 1306, 1271, 1122, 1093 см⁻¹. Масс-спектр высокого разрешения (ESI): *m/z* [*M* – H]⁻. Вычислено для C₁₃H₁₁O₄S 263.0384, найдено 263.0384.

5,8-Дигидрокси-З-меркапто-6,7-диметил2-этилнафталин-1,4-дион (9b). Выход 26 мг (37%), R_f 0.95 (**B**), т.пл. 162–163°С. ¹Н ЯМР спектр (700 МГц, CDCl₃): 1.19 т (3H, CH₂CH₃, J 7.5 Гц), 2.73 кв (2H, CH₂CH₃, J 7.5 Гц), 2.26 с (3H, C⁶-Me), 2.27 c (3H, C⁷-Me), 5.37 c (1H, ArSH), 13.07 c (1H, α-OH), 13.56 c (1H, α-OH). ¹³C ЯМР спектр (176 МГц): 11.3 (СН₂СН₃), 12.4 (ArCH₃), 12.5 (ArCH₃), 20.1 (CH₂CH₃), 108.4 (C¹⁰), 108.8 (C^9) , 137.9 (C^7) , 140.3 (C^6) , 144.2 (C^3) , 144.4 (C^2) , 162.0 (C⁵), 162.3 (C⁸), 176.7 (C¹), 179.6 (C⁴), ИК спектр (CHCl₂): 2976, 2935, 2876, 2540 (SH), 1595 (C=O), 1565 (C=C), 1451, 1395, 1340, 1303, 1382, 1098, 1273, 1046, 1016 см⁻¹. Масс-спектр высокого разрешения (ESI): *m/z* [*M* – H][–]. Вычислено для С₁₄Н₁₃О₄S 277.0540, найдено 277.0538.

(7а*S*,9*R*,10*S*,11*S*,11а*R*)-5,10,11-Тригидрокси-9-(гидроксиметил)-2,3,6-триметил-7а,10,11,11атетрагидро-9*H*-нафто[1,2-*b*]пирано[2,3-*e*]-[1,4]-оксатиин-1,4-дион (10а). Выход 26 мг (25%), R_f 0.41 (В), т.пл. 248–251°С. ¹Н ЯМР спектр (500 МГц, ДМСО-*d*₆): 2.04 с (6H, 2 × Me), 2.16 с (3H, Me), 3.31 м (1H, H¹⁰), 3.36 м (1H, H¹¹a), 3.50 м (2H, С<u>H</u>₂OH и H⁹), 3.64 м (1H, H¹¹), 3.73 м (1H, С<u>H</u>₂OH), 4.70 уш.с (1H, CH₂O<u>H</u>), 5.04 уш.с, 1H, С¹¹-O<u>H</u>), 5.17 д (1H, H^{7a}, *J* 9.1 Гц), 5.37 уш.с, (1H, С¹¹-O<u>H</u>), 13.18 с (1H, C⁵-OH). ¹³С ЯМР спектр (125 МГц): 11.9 (Аг<u>С</u>Н₃), 12.3 (Аг<u>С</u>Н₃), 13.1 (С³), 60.8 (<u>С</u>H₂OH), 70.5 (С¹⁰), 73.7 (С^{7а}), 74.2 (С⁹), 79.0 (С^{11а}), 82.1 (С¹¹), 110.2 (С^{12b}), 116.1 (С^{4a}), 128.5 (С^{6a}), 133.51 (С⁶), 140.4 (С³), 145.1 (С²), 145.4 (С^{12a}), 153.8 (С⁵), 181.8 (С¹), 189.3 (С⁴). ИК спектр (КВг): 3550 (ОН), 3450 (ОН), 3412 (ОН), 2921, 1637 (С=О), 1597 (С=С), 1559, 1448, 1398, 1373, 1299, 1267,1101, 1072, 1045, 814 см⁻¹. Массспектр высокого разрешения (ЕSI): $m/z [M-H]^-$. Вычислено для С₁₉Н₁₉О₈S 407.0806, найдено 407.0806.

(7aS,9R,10S,11S,11aR)-5,10,11-Тригидрокси-9- (гидроксиметил)-2,3-диметил-6-этил-7а,10,11,11а-тетрагидро-9*Н*-нафто[1,2-*b*]пирано-[2,3-е][1,4]оксатиин-1,4-дион Выход (10b). 35 мг (33%), *R*_f 0.43(**B**), т.пл. 269–271°С. ¹Н ЯМР спектр (700 МГц, ДМСО-*d*₆): 1.11 т (1H, CH₂C<u>H₃</u>, J 7.4 Γμ), 2.04 c (3H, C^3 -Me), 2.05 c (3H, C^2 -Me), 2.68 м (2Н, СН₂СН₃), 3.30 м (1Н, Н¹⁰), 3.37 м (1H, H¹¹a), 3.50 м (2H, H⁹ и CH₂OH), 3.65 м (1H, Н¹¹), 3.74 м (1Н, CH₂OH), 4.67 уш.с (1Н, CH₂OH), 5.02 уш.с (1Н, С¹⁰-О<u>Н</u>), 5.18 д (1Н, *J* 9.2 Гц, Н⁷а), 5.36 уш.с (1Н, С¹¹-ОН), 13.16 с (1Н, С⁵-ОН). ¹³С ЯМР спектр (176 МГц): 11.4 (СН₂<u>С</u>Н₃), 11.9 (C²), 13.2 (C³), 20.3 (CH₂CH₃), 60.8 (CH₂OH), 70.5 $(C^{10}), 73.6 (C^{7a}), 74.2 (C^{11}), 79.0 (C^{11a}), 82.1 (C^{9}),$ 110.5 (C^{12b}), 116.4 (C^{4a}), 132.6 (C^{6a}), 134.2 (C⁶), 140.5 (C³), 145.3 (C²), 145.4 (C^{12a}), 153.7 (C⁵), 181.9 (C¹), 189.4 (С⁴). ИК спектр (КВг): 3550 (ОН), 3486 (ОН), 3412 (OH), 2921, 1635 (C=O), 1621 (C=O), 1603, 1556, 1433, 1402, 1356, 1276, 1237, 1131, 1105, 1065, 1041, 918, 810 см⁻¹. Масс-спектр высокого разрешения (ESI): *m/z* [*M*-H]⁻. Вычислено для C₂₀H₂₁O₈S 421.0963, найдено 421.0965.

БЛАГОДАРНОСТИ

Авторы приносят благодарность к.х.н. Н.С. Полонику за предоставленные образцы исходных триалкилхлорнафтазаринов.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке РФФИ. Проект 18-33-00492 мол_а.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 55 № 2 2019

СПИСОК ЛИТЕРАТУРЫ

- 1. Thomson, R.H. *Naturally occurring quinones* IV, Chapman & Hall; London, UK, **1997**.
- Sanchez-Calvo J.M., Barbero G.R., Guerrera-Vasquez G., Duran A.G., Macias M., Rodriguez-IgleA sias M.A., Molinillo J.M.G., Macias, F.A. *Med. Chem. Res.* 2016, 25, 1274.
- Мищенко Н.П., Федореев С.А., Багирова В.Л. Хим.фарм. ж. 2003, 37, 49. [Mishchenko N.P., Fedoreev S.A., Bagirova V.L. Pharm. Chem. J. 2003, 37, 48.]
- 4. Asche C. Mini Rev. Med. Chem. 2005, 5, 449.
- 5. Wellington K.W. RSC Advances. 2015, 5, 20309.
- 6. Klotz L., Hou X. Jacob C. Molecules. 2014, 19, 14902.
- 7. Constantino L., Barlocco D. Curr. Med. Chem. 2006, 13, 65.
- Полоник С.Г., Прокофьева Н.Г., Агафонова И.Г., Уварова Н.И. *Хим.-фарм. ж.* 2003, *37*, 3. [Polonik S.G., Prokof'eva N.G., Agafonova I.G., Uvarova N.I. *Pharm. Chem. J.* 2003, *37*, 397.]
- Su Y., Xie J., Wang Y., Hub X., Lin X. Eur. J. Med. Chem. 2010, 45, 2713.

- Pelageev D.N., Dyshlovoy S.A., Pokhilo N.D., Denisenko V.A., Borisova K.L., von Amsberg G.K., Bokemeyer C., Fedorov S.N., Honecker F., Anufriev V.Ph. *Eur. J. Med. Chem.* 2014, 77, 139.
- Lin H.-Y., Han H.-W., Bai L.-F., Qiu H.-Y., De-Zheng Y., Qi J.-L., Wang X.-M., Gu H.-W., Yang Y.-H. *RSC. Adv.* 2014, *4*, 49796.
- Полоник С.Г., Толкач А.М., Уварова Н.И. Изв. АН. Сер хим. 1996, 477. [Polonik S.G., Tolkach A.M., Uvarova N.I. Russ. Chem. Bull. Int. Ed. 1996, 45, 459.]
- 13. Sabutskii Y.E., Denisenko V.A., Popov R.S., Polonik S.G. *Arkivoc* 2017, *iii*, 302.
- Полоник С.Г., Денисенко В.А. Изв. АН. Сер хим. 2009, 1034. [Polonik S.G., Denisenko V.A. Russ. Chem. Bull. Int. Ed. 2009, 58, 1062.]
- 15. Fedorov S.N., Shubina L.K., Kuzmich A.S., Polonik S.G. *Open Glycoscience*, **2011**, *4*, 1.
- 16. Huot R., Brassard P. Can. J. Chem. 1974, 54, 838.
- Полоник Н.С., Полоник С.Г., Денисенко В.А., Моисеенко О.П., Ануфриев В.Ф. *ЖОрХ*, **2011**, *47*, 1029.
 [Polonik N.S., Polonik S.G., Denisenko V.A., Moiseenko O.P., Anufriev V.Ph. *Russ. J. Org. Chem.* **2011**, *47*, 1045.]

Acid-Catalyzed Beterocyclization of Trialkylnaphthazarin Thioglucosides in Angular Quinone-Carbohydrate Tetracycles

Y. E. Sabutskii*, V. A. Denisenko, R. S. Popov, and S. G. Polonik*

Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, 690022, Russia, Vladivostok, Prospekt 100 let Vladivostoku 159 *e-mail: chemist.518@mail.ru

> Received August 31, 2018 Revised September 4, 2018 Accepted September 6, 2018

Tetracyclic naphthoquinone-carbohydrate conjugates with an angular junction of the heterocycle were obtained for the first time by intramolecular condensation of trialkylnazarin thioglucosides in a solution of boiling *n*-butanol and methanesulfonic acid. The competing reaction is the hydrolysis of the thioglucosidic bond and the formation of trialkylmercaptonaphthazarines.

Keywords: 1,4-naphthoquinones, naphthazarines, S-thioglucosides, heterocyclization, tetracyclic conjugates of 1,4-naphthoquinones, mercapto-1,4-naphthoquinones