УДК 547.8 + 547.32

СИНТЕЗ ПОЛИФУНКЦИОНАЛИЗИРОВАННЫХ ГЕКСАГИДРОПИРИМИДИНОВ

© 2019 г. А. Г. Бадамшин^{а, b}, Д. Р. Латыпова^a, В. А. Докичев^{a, b, *}

^а ФГБУН «Уфимский Институт химии РАН» (УфИХ РАН), 450054, Россия, Республика Башкортостан, г. Уфа, пр. Октября 71 *e-mail: dokichev@anrb.ru

Поступила в редакцию 5 сентября 2018 г. После доработки 24 сентября 2018 г. Принята к публикации 11 октября 2018 г.

Взаимодействием алкил 5-ацетилгексагидропиримидин-5-карбоксилатов с аммиаком, гидразин гидратом и алюмогидридом лития получены производные гексагидропиримидина, содержащие в своей структуре фармакофорные 1,3-пропилендиаминовые и 1,3-пропаноламиновые фрагменты.

Ключевые слова: синтез, алкил 5-ацетилгексагидропиримидин-5-карбоксилаты, аммиак, гидразин гидрат, алюмогидрид лития.

DOI: 10.1134/S0514749219020071

Синтетические и природные соединения с гексагидропиримидиновым фрагментом проявляют широкий спектр биологической активности (противоопухолевой, антивирусной, антибактериальной и др.) [1–7] и находят применение в синтезе полиметиленовых полиаминов [8–11], для которых характерна высокая активность против болезни Альцгеймера, а также различного рода опухолей и раковых клеток [12–14].

Разработке эффективных методов получения данного класса соединений посвящено большое количество публикаций [15-18]. Протекающее в условиях реакции Манниха взаимодействие 1,3-дикарбонильных соединений с аминами и альдегидами является одним из удобных способов построения гексагидропиримидинового цикла, содержащего карбонильные и карбоксильные заместители 1,3- и 5-положениях [4, 5, 15–17].

Можно ожидать, что введение в молекулу амидной, гидразидной или гидроксильной группы приведет к усилению присущей гексагидропиримидинам фармакологической активности [3,19–21]. Расчеты физиологической активности с использованием компьютерной системы PASS показали, что данные производные могут быть ингибиторами фактора некроза опухоли, антагонистами анафилатоксиновых рецепторов и применяться при лечении тревожно-фобических

расстройств, ревматоидных артритов, псориаза и язвы желудка [22].

С этой целью в настоящей работе исследовано взаимодействие полученных нами ранее [4] на основе природных аминокислот (глицина, L-аланина, L-валина и L-лейцина) этил 5-ацетил-1,3-бис(2-этокси-2-оксоэтил)- $\mathbf{1a}$, этил 5-ацетил-1,3-бис[(1S)-2-метокси-1-метил-2-оксоэтил]- (-)- $\mathbf{1b}$, этил 5-ацетил-1,3-бис[(1S)-1-(метоксикарбонил)-2-метипропил]- (-)- $\mathbf{1c}$ и этил 5-ацетил-1,3-бис[(1S)-1-(метоксикарбонил)-3-метилбутил]гексагидропиримидин-5-карбоксилата (-)- $\mathbf{1d}$ с аммиаком, гидразином и LiAlH₄ (схема 1).

Амидирование этил 5-ацетил-1,3-бис(2-этокси-2 -оксоэтил)гексагидропиримидин-5-карбоксилата **1а** аммиаком, как оказалось, наиболее успешно протекает в метанольном растворе при комнатной температуре. В этих условиях основным продуктом реакции является 1,3-бис(2-амино-2-оксоэтил)гексагидропиримидин-5-карбоксамид **2**, образующийся с выходом 95% в результате полного превращения трех карбоксильных групп в амидные и отщеплением ацетильной. Из реакционной массы наряду с гетероциклом **2** был выделен ацетамид, получающийся, вероятно, при взаимодействии аммиака с ацетильным заместителем [16,23].

Следует отметить, что при каталитическом амидировании гексагидропиримидина **1a** в

 $[^]b$ «Уфимский государственный авиационный технический университет», 450008, Россия, г. Уфа, ул. К. Маркса 12

Схема 1.

 NH_{3} , H_{2} (14 атм), Ni-Peнeя, MeOH, 50° C, 24 ч (75%) NH_{3} , MeOH, 25° C, запаянная ампула, 14 суток (95%) NH_{4} OH, 25° C, 17 ч (66%)

присутствии Ni-Peнeя и водорода не наблюдается образование соответствующего пропилендиамина, который можно было ожидать в этих условиях [8, 9].

Известно, что реакция гексагидропиримидинов, содержащих карбонильные группы в 5-положении, с гидразином в зависимости от природы исходного соединения приводит к соответствующим пиразолам либо пиразолонам [18]. Последние представляют интерес в качестве потенциальных биологически активных веществ, также фрагментов структурных сложных полициклических систем. Нами установлено, взаимодействие гидразин гидрата с этил 5-ацетил-1,3-бис[(1S)-2-метокси-1-метил-2-оксоэтил] гексагидропиримидин-5-карбоксилатом (-)-1b кипячении в метаноле в присутствии p-TsOH протекает по ацетильной и карбоксильной группам в 5-положении, не затрагивая карбоксильные фрагменты в 1- и 3-положениях, и приводит к смеси двух продуктов — этил 5-[1E-этангидранозоил]-1,3-бис[(1S)-1-(метоксикарбонил)-2-метилпропил]гексагидропиримидин-5-карбоксилата 3 и диметил (2S,2'S)-2,2'-(1-метил-4-оксо-2,3,7,9тетраазаспиро[4.5]дец-1-ен-7,9-диил)бис(3-метилбутаноата) 4 с общим выходом 40% в соотношении 1:1. Спирогетероцикл 4 образуется, вероятно, в результате внутримолекулярной циклизации гидразона **3**, имеющего *цис*-конфигурацию двойной гидразоновой связи N=C (схема 2).

Соединения 3 и 4 выделены с помощью колоночной хроматографии и охарактеризованы спектрами ЯМР 1 Н, 13 С и 15 N, при этом интерпретация структуры и отнесение сигналов атомов Н и С были выполнены с применением двумерных гомо- и гетероядерных корреляционных спектров { ¹H, ¹H} COSY, { ¹H, ¹H}. В спектрах ЯМР ¹Н и ¹³С гексагидропиримидинов **3** и 4 присутствуют характеристичные сигналы при $\delta_{\rm H}$ 1.58 м.д., и $\delta_{\rm C}$ 10.76, 142.88 м.д., относящиеся к фрагменту CH₃C=N гидразона **3**, а также при $\delta_{\rm H}$ $2.24\,$ м.д. и $\delta_{C}\,$ $18.33,\,$ $164.39\,$ м.д., отвечающие фрагменту СН₃С=N пиразолона 4. Кросс-пики Н₂N и H₃C в спектре NOESY подтверждают *транс*изомерию двойной гидразоновой связи N=C. Спектры ЯМР 13С спирогетероцикла 4 характеризуются наличием сигналов при $\delta_{\rm C}$ 19.38, 19.60, 19.79 и 19.99 м.д., принадлежавших четырем магнитно-неэквивалентным метильным группам двух изопропильных фрагментов.

Особый интерес представляют гексагидропиримидины, содержащие в своей структуру гидроксильные группы, которые являются аналогами 1,3-пропаноламинов и перспективны в

Схема 2.

Схема 3.

 $R = H(1a, 5), Me(1b, 6), CH_2CH(Me)_2(1d, 7); R^1 = Et(1a), Me(1b, d)$

качестве биологически активных соединений. Восстановление гексапиримидинов, содержащих ацетильные и сложноэфирные группы, один из удобных методов их синтеза. Так, восстановление 1,3-гексагидропиримидинов **1a**, **b**, и **d** LiAlH₄ при мольном соотношении 1: LiAlH₄ = 1:12 в среде диэтилового эфира при комнатной температуре протекает с превращением ацетильной и трех сложноэфирных групп в гидроксильные и образованием 1,3-бис(2-гидроксиэтил)-5-(1гидроксиэтил)-5-(гидроксиметил)гексагидропиримидина **5**, 1,3-бис[(1*S*)-2-гидрокси-1-метилэтил]-5-(1гидроксиэтил)-5-(гидроксиметил)гексагидропиримидина **6** и 1,3-бис[(1S)-1-(гидроксиметил)-3метилбутил]-5-(1-гидроксиэтил)-5-(гидроксиметил)гексагидропиримидина 7 с выходами 14, 38 и 22% соответственно. Низкие выхода продуктов реакции, вероятно, обусловлены раскрытием гексагидропиримидинового кольца под действием И взаимодействием образующихся LiAlH₄ диаминов со сложноэфирными фрагментами, приводящей к образованию сложной смеси олигомеров амидного типа [11] (схема 3).

Полученные из оптически активных 1,3-гексагидропиримидинов 1b и d тетраолы 6 и 7 были выделены в виде трудноразделимой смеси диастереомеров в соотношении 1:1.2 и 1:1.3 соответственно (по данным ЯМР 1 Н и 13 С).

Продукты восстановления характеризуются появлением в спектрах ЯМР 13 С характерных сигналов атомов углерода при гидроксильной группе при 61.05-65.91 м.д. и 72.27-72.58 м.д. для CH_2OH и CHOH фрагментов соответственно.

Таким образом, нами получены новые гексагидропиримидины, содержащие пропилендиаминовые и пропаноламиновые фрагменты, перспективные в качестве биологически активных веществ и комплексообразователей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР регистрировали на спектрометре Bruker AM-300 с рабочими частотами 300.13 (¹H), 75.47 (¹³C) МГц и Bruker Avance-III 500 с рабочими частотами 500.13 (¹H), 125.47 (¹³C) и 50.58 (¹⁵N) МГц с использованием 5 мм датчика с Z-градиентом РАВВО при постоянной температуре образца 298 К. Химические сдвиги в спектрах ЯМР ¹³С, ¹Н приведены относительно сигнала внутреннего стандарта ТМС. Химические сдвиги ЯМР ¹⁵N получали из F_1 -проекции ${}^{1}\text{H-}{}^{15}\text{N}$ HMBC спектров, значения приведены в аммиачной шкале. Массспектры получали на хромато-мас-спектрометре высокого разрешения Thermo Finnigan MAT 95 XP (ЭУ, 70 эВ, температура ионизирующей камеры 250°C, температура прямого ввода 50-270°C, ИК спектры скорость нагрева 10град/мин). снимали на спектрометре IR Prestige-21 Shimadzu. Температуры плавления определяли на микростолике Boetius. TCX анализ проводили на хроматографических пластинках Silufol Merck и на аналитических пластинах Sorbfil ПТСХ-АФ-А ООО «ИМИД» (элюент - хлороформ-МеОН, 9:1, эфир-AcOEt, элюент – петролейный Полученные соединения выделяли с помощью колоночной хроматографии на силикагеле Macherey-Nagel (140-270 mesh).

1,3-Бис(2-амино-2-оксоэтил) гексагидропиримидин-5-карбоксамид (2). Метод 1. Раствор 1 г (2.7 ммоль) этил 5-ацетил-1,3-бис(2-этокси-2-оксоэтил) гексагидропиримидин-5-карбоксилата 1а и 1.88 г (111 ммоль) аммиака в 20 мл МеОН выдерживали в запаянной стеклянной ампуле объемом 30 мл при комнатной температуре в течение 2 недель. Растворитель удаляли при пониженном давлении. Остаток хроматографировали на колонке с SiO₂ (элюент — CHCl₃—МеОН, 7:3). Получили 0.61 г (95%). Белые кристаллы, т. пл. 198—

199°С. Наряду с продуктом **2** был выделен ацетамид. Выход 0.07 г (44%), т. пл. 78–80°С.

Спектр ЯМР 1 Н (D₂O), δ , м.д. (J, Γ ц): 2.74 м [2H, 2NCH₂^(a)], 2.92 [3H, 2NCH₂^(e), CH], 3.20 д (4H, CH₂, J 17.5), 3.29 м [1H, NCH₂^(a)N], 3.44 м [1H, NCH₂^(e)N], 4.79 с (6H, NH₂). Спектр ЯМР 13 С (D₂O), δ , м.д.: 41.32 (CH), 55.82 (NCH₂CH), 58.93 (CH₂), 76.28 (NCH₂N), 178.33 (C(O)NH₂), 180.22 (C(O)NH₂). Найдено m/z 243.1323 [M – H] $^{+}$. С₉H₁₇N₅O₃. Вычислено М 243.1331.

Метод 2. В стальной автоклав объемом 100 мл поместили 1.5 г (4 ммоль) этил 5-ацетил-1,3-бис(2-этокси-2-оксоэтил)гексагидропиримидин-5-карбоксилата 1a в 20 мл МеОН, 50 мл жидкого аммиака, 0.07 г свежеприготовленного Ni-Peneя и нагревали при 50°С в течение 24 ч. при давлении H_2 14 атм. Реакционную смесь отфильтровали, растворитель удаляли при пониженном давлении. Остаток хроматографировали на колонке с SiO_2 (элюент − CHCl₃−MeOH, 7:3). Выход 0.73 г (75%).

Метод 3. Смесь 0.75 г (2 ммоль) этил 5-ацетил-1,3-бис(2-этокси-2-оксоэтил)гексагидропиримидин-5-карбоксилата **1a** и 10 мл (53 ммоль) 20% водного раствора аммиака перемешивали при комнатной температуре в течение 17 ч. Растворитель удаляли при пониженном давлении. Остаток хроматографировали на колонке с SiO_2 (элюент — CHCl₃—MeOH, 7:3). Выход 0.32 г (66 %).

Взаимодействие этил 5-ацетил-1,3-бис[1-(метоксикарбонил)-2-метилпропил|гексагидропиримидин-5-карбоксилата (1с) с гидразин **гидратом.** К раствору 0.008 г (0.048 ммоль) *p*-TsOH в 5 мл MeOH добавляли 0.36 г (7.2 ммоль) гидразин гидрата, 0.5 г (1.2 ммоль) этил 5-ацетил-1,3-бис[1-(метоксикарбонил)-2-метилпропил]гексагидропиримидин-5-карбоксилата (-)-1с и кипятили с обратным холодильником в течение 8.5 ч. Растворитель удаляли при пониженном давлении, добавляли 30 мл хлористого метилена, промывали водой (16 мл) и сушили безводным Na₂SO₄. Растворитель удаляли при пониженном давлении. Остаток хроматографировали на колонке с SiO₂ (элюент – гексан–АсОЕt, 7:3).

Этил 5-(1-этангидранозоил)-1,3-бис[(1*S*)-1-(метоксикарбонил)-2-метилпропил] гексагидропиримидин-5-карбоксилат (3). Выход 0.21 г (20%). Карамелеобразное вещество светло-желтого цвета. Спектр ЯМР 1 Н (CDCl₃), δ , м.д. (J, Γ ц): 0.76 д (3H, CH₃, ^{3}J 3.0), 0.79 д (3H, CH₃, ^{3}J 3.0), 0.88 д

(3H, CH₃, ${}^{3}J$ 3.0), 0.97 \pm (3H, CH₃, ${}^{3}J$ 3.0), 1.13 \pm (3H, CH_3 , 3J 8.0), 1.58 c (3H, $CH_3C=N$), 1.96–2.04 m [2H, CH(CH₃)₂], 2.11 д [1H, NCH₂^(a), ²J 7.0], 2.35 д [1H, NCH₂^(a), ²J 7.0], 2.71 д [1H, NCH₂^(a)N, ²J 9.0], 2.71 д (1H, CHCO₂, ³*J* 6.0), 2.80 д (1H, CHCO₂, ³*J* 6.0), 3.32 д [1H, NCH₂(e), ²J 7.0], 3.44 д [1H, NCH₂(e), ²J 7.0], 3.61 с (3H, ОСН₃), 3.63 с (3H, ОСН₃), 3.53 д [1H, NCH₂(e)N, ²J 9.0], 4.03 KB (2H, OCH₂, ³J 7.1), 5.92 VIII. c (2H, NH₂). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 10.76 (CH₃C=N), 14.38 (CH₂CH₃), 19.51 (CH₃), 19.68 (CH₃), 19.86 (CH₃), 26.99 и 27.04 (<u>C</u>HCH₃), 51.10 (OCH₃), 51.23 (OCH₃), 51.84 (NCH₂), 57.74 (NCH₂), 54.13 (C), 60.53 (OCH₂), 69.96 (NCH₂N), 72.01 (NCH), 72.94 (NCH), 142.88 (C=N), 171.30 (CO₂Me), 171.59 (CO₂Me), 171.81 (CO₂Et). Спектр ЯМР ¹⁵N (CDCl₃), δ, м.д.: 106.58 (C=N), 332.14 (C=N). Найдено $[M + Na]^+$ 465.2684, $[M + K]^+$ 481.2423. $C_{21}H_{38}N_4O_6$. Вычислено M 442.2791.

Диметил (2S,2'S)-2,2'-(1-метил-4-оксо-2,3,7,9тетраазаспиро[4.5]дец-1-ен-7,9-диил)бис(3-ме**тилбутаноат) (4).** Выход 0.19 г (20%). Карамелеобразное вещество светло-желтого цвета. Спектр ЯМР 1 Н (CDCl₃), δ , м.д. (J, Γ ц): 0.81 д (3H, CH₃, ^{3}J 3.0), 0.82 μ (3H, CH₃, 3J 3.0), 0.93 μ (3H, CH₃, 3J 3.0), 0.99 д (3H, CH₃, 3J 3.0), 1.89–1.97 м (1H, C<u>H</u>(CH₃)₂), 2.03-2.10 m [1H, CH(CH₃)₂], 2.24 c (3H, CH₃C=N), 2.03–2.10 м [111, С<u>П</u>(СП₃)²], 2.24 С (5П, СП₃С–1у), 2.39 д [2H, 2NCH₂^(a), ²J 9.0], 2.72 д [2H, 2NCH₂^(e), ²J 9.0], 2.78 д [1H, NCH₂^(a)N, ²J 8.0], 2.86 д (1H, CHCO₂, ³J 6.0), 2.98 д (1H, CHCO₂, ³J 6.0), 3.64 с (6H, 2OCH₃), 3.78 д [1H, NCH₂^(e)N, ²J 8.0], 4.05 кв (2H, OCH₂, ³J 7.1), 11.01 уш. с (H, NH). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 18.33 (CH₃C=N), 19.38 (CH₃), 19.60 (CH₃), 19.79 (CH₃), 19.99 (CH₃), 26.81 $(\underline{C}HCH_3)$, 26.99 $(\underline{C}HCH_3)$, 50.90 (OCH_3) , 51.17 (OCH₃), 51.55 (NCH₂), 55.53 (NCH₂), 50.82 (C), 68.93 (NCH₂N), 71.60 (NCH), 72.22 (NCH), 164.39 (C=N), 171.26 (CO₂), 171.33 (CO₂), 175.72 (CONH). Спектр ЯМР ¹⁵N (CDCl₃), δ, м.д.: 172.88 (CONH), 306.32 (C=N). Найдено $[M + \text{Na}]^+$ 419.2265, $[M + \text{K}]^+$ 435.2004. С₁₉H₃₂N₄O₅. Вычислено *М* 396.2373.

Общая методика восстановления. К охлажденному до –10°С раствору 16 ммоль LiAlH₄ в 20 мл диэтилового эфира прикапывали при перемешивании в токе аргона 1.3 ммоль гексагидропиримидина 1а, b, и d, растворенного в 10 мл диэтилового эфира. Прикапывание вели с такой скоростью, чтобы температура реакционной смеси не поднималась выше 30°С. Реакционную массу при перемешивании выдерживали при комнатной температуре в течение 2 ч. Добавляли 11 мл 15%-ного водного раствора NaOH, пере-

мешивали в течение 15 мин, затем добавляли 4 мл дистиллированной воды и перемешивали 10 мин. Органический слой отфильтровывали, осадок промывали МеОН. Растворитель удаляли при пониженном давлении. Остаток хроматографировали на колонке с SiO₂ (элюент — CH₂Cl₂—МеОН, 50:1).

1.3-Бис(2-гидроксиэтил)-5-(гидроксиметил)-5-(1-гидроксиэтил)гексагидропиримидин (5) получен из 0.61 г (16 ммоль) LiAlH₄ и 0.48 г (1.3 ммоль) гексагидропиримидина 1а. Выход 0.06 г (14%), светло-желтое маслообразное вещество. Спектр ЯМР 1 Н (CD₃OD), δ , м.д. (J, Γ ц): 1.18 д (3H, CH₃, ^{3}J 6.5), 2.36 уш.д [1H, NCH₂^(a), ²J 11.6], 2.43 уш.д [1H, NCH₂^(a), ²J 11.6], 2.51 T (2H, CH₂CH₂, ³J 5.7), 2.52 T (2H, <u>CH</u>₂CH₂, ³*J* 5.7), 2.58 <u>уш.д</u> [1H, NCH₂^(e), ²*J* 11.6], 2.65 уш.д [1H, NCH₂(e), ²J 11.6], 2.99 м [1H, NCH₂^(a)N], 3.37 M [1H, NCH₂^(e)N], 3.66 T (4H, 2CH₂CH₂OH, ³J 5.7), 3.67 д (1H, CCH₂O, ²J 11.3), 3.72 д (1H, CCH₂O, ²J 11.3), 3.83 м (1H, HCOH). Спектр ЯМР ¹³С (CD₃OD), δ, м.д.: 18.00 (CH₃), 42.50 (C), 57.30 (NCH₂), 58.40 (NCH₂), 58.37 (NCH₂CH₂), 58.44 (NCH₂CH₂), 59.61 (NCH₂CH₂), 65.47 (CH₂OH), 72.27 (CHOH), 77.68 (NCH₂N). Найдено m/z 247.1656 $[M - H]^+$. $C_{11}H_{23}O_4N_2$. Вычислено $[M-H]^+$ 247.1652.

1,3-Бис[(1*S*)-2-гидрокси-1-метилэтил]-5-(гидроксиметил)-5-(1-гидроксиэтил)гексагидропи**римидин (6)** получен из 0.61 г (16 ммоль) LiAlH₄ и 0.48 г (1.3 ммоль) гексагидропиримидина 1b. Выход 0.18 г (38%), светло-желтое маслообразное вещество. Спектр ЯМР 1 Н (CD₃OD), δ , м.д. (J, Γ ц): 0.99-1.03 M (12H, 4CH₃), 1.14-1.18 M (6H, 2С<u>Н</u>₃СНОН), 2.60–2.92 м (8H, 2NCH₂, 2NCH₂N), 3.30 ym.c (2H, CCH₂OH), 3.34 ym.c (2H, CCH₂OH), 3.42–3.67 м (7H, 2CHCH₂OH, 2NCHMe, CHOH), 3.86 к (1H, CHOH, ${}^{3}J$ 6.5). Спектр ЯМР 13 С (CD₃OD), б, м.д.: 11.21 (CH₃), 11.26 (CH₃), 11.39 (CH_3) , 11.59 (CH_3) , 18.04 (CH_3CHOH) , 18.12 (CH₃CHOH), 41.70 (C), 41.81 (C), 52.08 (CH₂N), 54.81 (CH₂N), 60.65(NCHCH₃), 60.86 (NCHCH₃), (CHCH₂OH), 63.83 (CHCH₂OH), 65.80 (CCH₂OH), 65.86 (CCH₂OH), 70.86 (NCH₂N), 71.17 (NCH₂N), 72.45 (<u>C</u>HOH), 72.57 (<u>C</u>HOH). Найдено m/z 275.1943 $[M-H]^+$. $C_{13}H_{28}N_2O_4$. Вычислено М 275.1965.

1,3-Бис[(1S)-1-(гидроксиметил)-3-метилбутил]-5-(гидроксиметил)-5-(1-гидроксиэтил)гексагидропиримидин (7) получен из 0.61 г (16 ммоль) LiAlH₄ и 0.59 г (1.3 ммоль) гексагидропиримидина 1d. Выход 0.10 г (22%), светло-желтое маслообразное вещество. Спектр ЯМР ¹H (CD₃OD). δ, м.д. (*J*, Гц): 0.89–0.91 м (24H, 8CH₃), 0.99–1.08 м [4H, 2CH₂CH(CH₃)₂], 1.18 д (6H, 2CH₃CHOH, ³J 6.4), 1.24–1.32 м [4H, 2CH₂CH(CH₃)₂], 1.42–1.50 м [2H, 2CH(CH₃)₂], 2.32–2.38 m [4H, 4NCH₂^(a)], 2.49-2.53 м [4H, 4NCH₂^(e)], 2.60–2.75 м (4H, CHCH₂OH), 3.25 уш. д [1H, NCH₂^(a)N, ²J 8.6], 3.28–3.40 м [5H, 2CHCH₂OH, 2NCH₂(e)N, NCH₂(a)N], 3.42–3.46 м (2H, 2CHCH₂OH), 3.59 уш. д (1H, CCH₂OH, ²J 11), 3.65– 3.68 м (2H, СС<u>Н</u>₂ОН), 3.74–3.78 м (2H, С<u>Н</u>ОН, ССН₂ОН), 3.90 м (1H, СНОН). Спектр ЯМР ¹³С (CD₃OD), δ, м.д.: 17.82 (CH₃CHOH), 18.06 (CH₃CHOH), 22.16 (CH₃), 22.19 (CH₃), 22.21 (CH₃), 22.23 (CH₃), 23.41 (CH₃), 23.43 (CH₃), 23.44 (CH₃), 23.48 (CH₃), 25.46 (CH(CH₃)₂), 25.52 (CH(CH₃)₂), 34 81 (CHCH₂CH), 34.89 (CHCH₂CH), (CHCH₂CH), 34.94 (CHCH₂CH), 40.40 (C), 40.63 (C), 52.77 (CH₂N), 55.07 (CH₂N), 61.05 (CHCH₂OH), 61.11 (CHCH₂OH), 61.77 (CHCH₂OH), 61.81 (CHCH₂OH), 65.36 (CCH₂OH), 65.91 (CCH₂OH), 67.84 (NCH₂N), 69.51 (NCH₂N), 72.32 (<u>C</u>HOH), 72.58 (CHOH). Cπέκτρ ЯΜΡ ¹⁵N (CDCl₃) δ, м.д.: 36.21, 38.80. Найдено m/z 359.2900 [M - H]⁺. $C_{19}H_{39}O_4N_2$. Вычислено $[M-H]^+$ 359.2904.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено в рамках государственного задания Минобрнауки России (задание № 4.2703.2017/ПЧ) по теме № АААА-А17-1170011910021-8 и финансовой поддержке гранта Российского научного фонда (проект № 14-33-00022).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Suzuki T., Kubota T., Kobayashi J. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 4220. doi 10.1016/j.bmcl.2011.05.072
- Ishiyama H., Yoshizawa K., Kobayashi J. *Tetrahedron*.
 2012, 68, 6186. doi 10.1016/j.tet.2012.05.071
- Liu S.-W., Jin J., Chen C., Liu J.-M., Li J.-Y., Wang F.-F., Jiang Z.-K., Hu J.-H., Gao Z.-X., Yao F., You X.-F., Si S.-Y., Sun C.-H. *J. Antibiot.* 2013, 66, 281. doi 10.1038/ja.2012.118
- 4. Latypova D.R., Badamshin A.G., Gibadullina N.N., Khusnutdinova N.S., Zainullina L.F., Vakhitova Y.V., Tomilov Y.V., Dokichev V.A. *Med. Chem. Res.* **2017**, *26*, 900. doi 10.1007/s00044-017-1802-4

- Gibadullina N.N., Latypova D.R., Vakhitov V.A., Khasanova D.V., Zainullina L.F., Vakhitova Yu. V., Lobov A.N., Ugrak B.I., Tomilov Yu.V., Dokichev V.A. J. Fluor. Chem. 2018, 211, 94. doi 10.1016/j.jfluchem.2018.04.011
- Gibadullina N.N., Latypova D.R., Novikov R.A., Tomilov Y.V., Dokichev V.A. *Arkivoc.* 2017, 4, 222. doi 10.3998/ark.5550190.p010.003
- De Carvalho G.S.G., Dias R.M.P., Pavan F.R., Leite C.Q.F., Silva V.L., Diniz C.G., De Paula D.T.S., Coimbra E.S., Retailleau P., Da Silva A.D. *Med. Chem.* 2013, 9, 351. doi 10.2174/1573406411309030005
- 8. Frydman B., Bhattacharya S., Sarkar A., Drandarov K., Chesnov S., Guggisberg A., Popaj K., Sergeyev S., Yurdakul A., Hesse M., Basu H.S., Marton L.J. *J. Med. Chem.* **2004**, *47*, 1051. doi 10.1021/jm030437s
- Kalisiak J., Trauger S.A., Kalisiak E., Morita H., Fokin V.V., Adams M.W.W., Sharpless K.B., Siuzdak G. J. Am. Chem. Soc. 2009, 131, 378. doi 10.1021/ja808172n
- 10. Nagarajan S., Ganem B. *J. Org. Chem.* **1985**, *50* (26), 5735. doi 10.1021/jo00350a059
- 11. Pradipta A.R., Tanaka K. *Bull. Chem. Soc. Jpn.* **2016**, 89, 337. doi 10.1246/bcsj.20150358
- 12. Hegde S.S., Chandler J., Vetting M.W., Yu M., Blanchard J.S. *Biochemistry*. **2007**, *46*, 7187. doi 10.1021/bi700256z
- Bolognesi M.L., Calonghi N., Mangano C., Masotti L., Melchiorre C. *J. Med. Chem.* **2008**, *51*, 5463. doi 10.1021/jm800637b

- 14. Gunther R., Stein A., Bordusa F. J. Org. Chem. **2000**, 65, 1672. doi 10.1021/jo991302q
- 15. Mukhopadhyay C., Rana S., Butcher R.J. *Tetrahedron Lett.* **2011**, *52*, 4153. doi 10.1016/j.tetlet.2011.05.144
- Saleh A., Morton M., D'Angelo J. Synth. Commun. 2014, 44, 2715. doi 10.1080/00397911.2014.916302
- 17. Латыпова Д.Р. *Баш. хим. ж.* **2018**, *25*, 10. [Latypova D.R. *Bashk. Khim. Zh.* **2018**, *25*, 10.] doi 10.17122/bcj-2018-2-10-23
- 18. Гейн В.Л., Горгопина Е.В., Замараева Т.М., Дмитриев М.В. ЖОрХ. **2017**, *53*, 1639. [Gein V.L., Gorgopina E.V., Zamaraeva T.M., Dmitriev M.V. Russ. J. Org. Chem. **2017**, *53*, 1675.] doi 10.1134/S1070428017110100
- Saleh A.I., Abu-Safieh K.A., Salameh B.A. *Chem. Pap.* 2015, 69, 729. doi 10.1515/chempap-2015-0018
- 20. Groszkowski S., Korzycka L., Bilasiewicz W. *Pol. J. Pharm.* **1973**, *25*, 573.
- 21. Horvath D. *J. Med. Chem.* **1997**, *40*, 2412. doi 10.1021/jm9603781
- Filimonov D.A., Lagunin A.A., Gloriozova T.A., Rudik A.V., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V. Chem. Heterocycl. Compd. 2014, 50, 444. doi 10.1007/s10593-014-1496-1
- 23. Латыпова Д.Р., Бадамшин А.Г., Лобов А.Н., Докичев В.А. *ЖОрХ*. **2013**, *49*, 860. [Latypova D.R., Badamshin A.G., Lobov A.N., Dokichev V.A. *Russ. J. Org. Chem.* **2013**, *49*, 843.] doi 10.1134/S1070428013060079

Synthesis of Polyfunctionalized Hexahydropyrimidines

A. G. Badamshina^{a, b}, D. R. Latypova^a, and V. A. Dokichev^{a, b, *}

^a Ufa Institute of Chemistry, Ufa Researcher Centre, RAS, 450054, Russia, Respublika Bashkortostan, Ufa, pr. Oktyabrya 71 *e-mail: dokichev@anrb.ru

^b Ufa State Aviation Technical University, 450008, Russia, Ufa, ul. K. Marksa 12

Received September 5, 2018 Revised September 24, 2018 Accepted October 11, 2018

The interaction of alkyl 5-acetylhexahylopyrimidine-5-carboxylates with ammonia, hydrazine hydrate and lithium aluminum hydride obtained hexahydropyrimidine derivatives, containing in its structure pharmacophore 1,3-propylenediamine and 1,3-propanolamine fragments.

Keywords: synthesis, alkyl 5-acetylhexahylopyrimidine-5-carboxylates, ammonia, hydrazine hydrate, lithium aluminum hydride