УДК 547.484.34:547.269.1:547.775

СИНТЕЗ ЭТИЛ 2-[АЛКИЛ(БЕНЗИЛ)СУЛЬФАНИЛМЕТИЛ]-3-ОКСОБУТАНОАТОВ И З*H*-ПИРАЗОЛ-3-ОНОВ НА ИХ ОСНОВЕ

© 2019 г. Л. А. Баева*, Р. М. Нугуманов, Л. Ф. Бикташева, Т. Р. Нугуманов, А. А. Фатыхов

ФГБУН «Уфимский Институт химии УФИЦ РАН» (УфИХ УФИЦ РАН), 450054, Россия, Республика Башкортостан, г. Уфа, пр. Октября 69 *e-mail: sulfur@anrb.ru

Поступила в редакцию 23 апреля 2018 г. После доработки 10 августа 2018 г. Принята к публикации 12 октября 2018 г.

Трехкомпонентная конденсация ацетоуксусного эфира с формальдегидом и алкантиолами в присутствии 0.1 моль гидроксида натрия приводит к образованию этил 2-[(алкилсульфанил)метил]-3-оксобутаноатов, а с фенилметантиолом – к этил 2-[(бензилсульфанил)метил]-2-(гидроксиметил)-3-оксобутаноату. Полученные соединения взаимодействуют с гидразингидратом в этаноле при комнатной температуре с образованием 4-[(алкилсульфанил)метил]- или 4-[(бензилсульфанил)метил]-5-метил-2,4-дигидро-3*H*-пиразол-3-онов, которые в ДМСО- d_6 существуют преимущественно в виде 1*H*-пиразол-5(3)-олов.

Ключевые слова: тиол, ацетоуксусный эфир, этил 2-[(алкилсульфанил)метил]-3-оксобутаноат, этил 2-[(бензилсульфанил)метил]-2-(гидроксиметил)-3-оксобутаноат, 2,4-дигидро-3*H*-пиразол-3-он, 1*H*-пиразол-5(3)-ол, трехкомпонентная конденсация.

DOI: 10.1134/S0514749219040050

2-[Алкил(арил)сульфанилметил]алкан-1,3-дионы обладают различными видами биологической активности [1–3], могут использоваться для получения аналогов природных аминокислот [4], а также широкого круга *N*- и *O*-гетероциклических соединений [5–8]. Эффективный способ введения алкил- и арилсульфанилметильных групп в молекулу ацетилацетона – конденсация 1,3-дикетона с альдегидами и тиолами [1, 9–11]. Однако для получения полифункциональных 2-[алкил(арил)сульфанилметил]-3-оксопропаноатов используются реакции 3-оксопропаноатов с алкилхлорметилсульфидами [4, 12] или с бензилсульфидами в присутствии хлоранила, тетрагалогено-обензохинонов и ди-*трет*-бутилпероксида (взаимодействие, аналогичное реакции Пуммерера) [13–15].

Нами исследована возможность синтеза новых этил 2-[(алкилсульфанил)метил]- и этил 2-[(бензилсульфанил)метил]-3-оксобутаноатов алкилсульфанилметилированием ацетоуксусного эфира смесью формальдегида и тиолов в присутствии гидроксида натрия, а также получения 4-[алкил(бензил)сульфанилметил]-3*H*-пиразол-3-онов на основе синтезированных соединений.

Трехкомпонентная конденсация ацетоуксусного эфира с эквимольным количеством пропан-, бутан- или пентантиола 1а-с и с двукратным избытком формальдегида в присутствии 0.1 моль гидроксида натрия (10%-ный водный раствор) при комнатной температуре в течение 2 ч приводит к соответствующим этил 2-[(алкилсульфанил)метил]-3-оксобутаноатам 2а-с с выходами 80, 79 и 68% (схема 1). В тех же условиях из фенилметантиола 1d образуется этил 2-[(бензилсульфанил)метил]-2-(гидроксиметил)-3-оксобутаноат 3d с выходом 66%. Попытки вовлечь в реакцию бензальдегид оказались безуспешными. Конденсация ацетоуксусного эфира с алкантиолами 1а-с и бензальдегидом в присутствии гидроксида натрия практически не протекает. При введении в реакционную среду триэтиламина и увеличении продолжительности реакции больше 7 ч выходы соединения 2b уменьшаются (таблица).

3-[(Алкилсульфанил)метил]пентан-2,4-дионы существуют в растворе в CDCl₃ при 22°C в виде таутомерных дикетонной и енольной форм в соотношении 1:5.5–7 [10]. Для 3-[(алкилсульфонил)-

метил]пентан-2,4-дионов характерна преимущественно енольная форма. В растворах соединений 2a-c, 3d преобладает дикетонный таутомер, преобладание которого подтверждается присутствием в ИК спектрах интенсивных полос поглошения валентных колебаний кетонной и сложноэфирной карбонильных групп в области 1713–1717 и 1737–1739 см⁻¹ соответственно [16]. В спектрах ЯМР 1Н наряду с сигналами протонов метильных и метиленовых групп сульфанилалкильного, ацетильного и этоксикарбонильного заместителей наблюдаются характерные триплетный и дублетный сигналы протонов метиновой С³Н (3.68-3.73 м.д.) и сульфанилметиленовой $C^{I'}H_2S$ групп (2.97–2.99 м.д.). В спектрах ЯМР ¹³С имеются сигналы двух карбонильных атомов углерода ацетильного (201.6-204.1 м.д.) и этоксикарбонильного (168.4–170.2 м.д.) фрагментов.

Очистка соединений **2a** и **2b** вакуумной разгонкой не дает желаемых результатов, так как продукты

реакции выкипают с разложением в широком интервале температур. Небольшая доля соединений 2а или **2b** вместе с соответствующими им этил 2-[(алкилсульфанил)метил]акрилатами 4а или 4b (~14% в соотношении 1:1) выкипает в промежутках температур 48-70°C и 56-95°C (0.1 мм рт.ст.) соответственно. Акрилаты 4а, b, вероятно, образуются в результате расщепления связи C^2 – C^3 (между карбонилом и центральной группой СН) и дегидратации этил 2-[(алкилсульфанил)метил]-2-(гидроксиметил)-3-оксобутаноатов 3, которые аналогично соединению 3d образуются в ходе реакции. Промежуточный этил 2-(гидроксиметил)-2-[(пропилсульфанил)метил]-3оксобутаноат За наряду с соединениями 2а-с, 3d выделен с помощью колоночной хроматографии на силикагеле (элюент – этилацетат-гексан).

В отличие от спектров 3-оксобутаноатов 2a, b, в спектрах ЯМР 1 Н акрилатов 4a, b отсутствует характерный синглетный сигнал трех протонов ацетильной группы, но наблюдаются два

Конденсация ацетоуксусного эфира (АУЭ) с формальдегидом и бутантиолом в присутствии 0.1 моль NaOH (20°C, 3 ч).

№ опыта	Мольное соотношение CH ₂ O-AУЭ на 1 моль BuSH	Время реакции, ч	Выход соединения 2b, %
1	1.5:1	3	74
2	1.5:1	5	58
3	2:1	3	80
4^a	2:1	3	27
5	2:1	8	56

Примечание. ^аВ присутствии 0.1 моль Еt₃N.

CXEMA 2.

O O O O Et NH₃NH₂· H₂O Me NH NH NH Me S R

S R

A B

2a-c, 3d

Sa-d

$$R' = H, R = Pr (a), Bu (b), C5H11 (c); R' = CH2OH, R = Bn (d).$$

синглетных сигнала неэквивалентных олефиновых протонов при \sim 5.6 и 6.2 м.д. В спектрах ЯМР ¹³С углеродные атомы группы $C^3H_2=C^2$ резонируют при 125.4 и 137.3 м.д. соответственно.

3-Оксобутаноаты **2a-с** и **3d** без предварительной очистки использованы для получения пиразолонов. Взаимодействие соединений **2a-с** и **3d** с 64%-ным гидразингидратом в метаноле при комнатной температуре в течение 30–45 мин без перемешивания приводит к образованию пиразолонов **5a-d** с выходами 62–71% (схема 2).

В ИК спектрах соединений 5а-d наблюдаются интенсивные полосы поглощения в области 1602-1615, 1569–1575, 1535–1548 см⁻¹, соответствующие валентным колебаниям связей C=C, C=N и деформационным колебаниям группы NH, а также полосы в области 3219 и 3095 см⁻¹, характерные для валентных колебаний групп ОН и NH [16]. В спектрах ЯМР 1 Н соединений **5а-d**, записанных в ДМСО- d_{6} , наряду с характеристичными сигналами алкил- или бензилсульфанильного фрагмента наблюдаются два синглетных сигнала протонов сульфанилметиленовой $C^{I}H_2S$ и метильной групп, что подтверждает присутствие этиленовых связей у углеродных атомов в гетероцикле. Полученные данные позволяют предположить, что соединения 5а-d в ДМСО d_6 из возможных таутомерных форм [17–19] могут существовать в виде одного изомера – формы 1*H*пиразол-5(3)-олов (C, **D**) или 1,2-дигидро-3Hпиразол-3-она (4-пиразолин-3-она) (В). Однако присутствие в спектрах ЯМР ¹Н характерных синглетных сигналов протонов группы ОН в области 4.51—4.65 м.д., а также имеющиеся корреляции углеродных атомов гетероцикла с гидроксильными протонами в двумерных спектрах ЯМР 1 H- 13 C, зарегистрированных в режиме НМВС, свидетельствует о преимущественном существовании формы 1 H-пиразол- 5 - или 3 -олов (C , D). В метаноле, вероятно, преобладают кето-формы пиразолонов — 2 4-дигидро- (A) и 1 2-дигидро- 3 H-пиразол- 3 -оны (B), так как в УФ спектре соединения 5 b в данном растворителе наблюдаются две полосы поглощения с 3 С $^$

Таким образом, предложен удобный препаративный метод синтеза этил 2-[алкил(бензил)сульфанил)метил]-3-оксобутаноатов, что делает эти соединения более доступными для дальнейших превращений и использования в синтезах практически важных гетероциклических соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Shimadzu Prestige-21. Спектры ЯМР 13 С и 1 Н записаны на спектрометре Bruker AM-300 (75.5 и 300 МГц соответственно), двумерные эксперименты ЯМР 1 Н- 1 Н COSY, 1 Н- 13 С HSQС и НМВС – на спектрометре Bruker Avance III (500 и 125 МГц соответственно) в CDCl₃ или ДМСО- d_6 относительно ТМС. Анализ методом газо-жидкостной хроматографии проводили на хроматографе Chrom 5, колонка 2.4 м×3 мм, неподвижная фаза SE-30 (5%) на хроматоне N-AW-DMCS (0.16–0.20 мм), рабочая температура 50–300°С, детектор пламенно-иониза-

534 БАЕВА и др.

ционный, газ-носитель — гелий. Масс-спектры положительных и отрицательных ионов химической ионизации при атмосферном давлении записаны в системе ацетонитрил—вода, 95:5, на спектрометре Shimadzu LCMS-2010 EV. Элементный анализ выполнен на CHNS-анализаторе HEKAtech Euro EA 3000.

Контроль протекания реакции сульфанилметилирования проводили методом потенциометрического определения меркаптанной серы с помощью аммиаката азотнокислого серебра [21]. Температуры плавления определяли на микростолике Воётіиs. Хроматографическое разделение проводили на колонках с силикагелем MN Kieselgel 60 (0.063–0.2 мкм).

2-[алкил(бензил)сульфанилметил]-3оксобутаноаты (2a-c, 3d). К 0.02 моль тиола 1a-d последовательно добавляли 0.72 мл (0.002 моль) 10%-ного раствора NaOH, 3.3 мл (0.04 моль) 33%ного раствора формальдегида и 2.5 мл (0.02 моль) ацетоуксусного эфира. Реакционную перемешивали 2-3 ч при комнатной температуре, после чего отделяли органический слой, водный слой разбавляли водой (1:1), продукты реакции экстрагировали хлороформом $(3\times10$ Экстракты, объединенные с органическим слоем, промывали 5%-ной НСІ, водой (1:1 по объему) и сушили MgSO₄. Хлороформ отгоняли, остаток (1 г) хроматографировали на колонке с силикагелем, элюент – этилацетат–гексан, 1:4 (А), и 1:5 (В).

Этил 3-оксо-2-[(пропилсульфанил)метил]бутаноат (2а). Элюент А. Выход 0.80 г (80%), $n_{\rm D}^{20}$ 1.4859, d_4^{20} 1.072. ИК спектр (тонкий слой), v, см⁻¹: 1739 (С=О), 1717 (С=О), 1641 (С=С), 1616 (С=С), 1367 (СН₃), 1358 (СН₃СО), 1249 (С-О-С), 1207, 1147 (С-О-С), 1024. Спектр ЯМР ¹H (СDСІ₃), δ , м.д.: 0.97 т (3H, С⁵'H₃, ³J 7.3 Гц), 1.29 т (3H, С²"H₃, ³J 7.1 Гц), 1.54–1.68 м (2H, С⁴'H₂), 2.29 с (3H, H⁴), 2.50 т (2H, С³'H₂, ³J 7.3 Гц), 2.97 д (2H, С¹'H₂, J 7.2 Гц), 3.68 т (1H, H², ³J 7.2 Гц), 4.22 к (2H, С^{1"}H₂, J 7.1 Гц). Спектр ЯМР ¹³С (СDСІ₃), δ , м.д.: 13.33 (С⁵'), 14.04 (С^{2"}), 22.79 (С^{4'}), 29.54 (С^{1'}), 29.53 (С⁴), 34.73 (С^{3'}), 60.03 (С²), 61.72 (С^{1"}), 168.42 (С¹), 201.62 (С³). Найдено, %: С 55.10; H 8.36; S 14.77. С₁₀Н₁₈О₃S. Вычислено, %: С 55.02; H 8.31; S 14.69.

Этил **2-[(бутилсульфанил)метил]-3-оксо-бутаноат (2b).** Элюент А. Выход 0.79 г (79%), $n_{\rm D}^{20}$ 1.4790, $d_{\rm A}^{20}$ 1.046. ИК спектр (тонкий слой), v, см⁻¹: 1737 (C=O), 1714 (C=O), 1639 (C=C), 1615 (C=C), 1366 (CH₃), 1358 (CH₃-CO), 1249 (C-O-C), 1191,

1146 (С–О–С), 1025. Спектр ЯМР ¹H (CDCl₃), δ , м.д.: 0.91 т (3H, C^6 H₃, ³J 7.4 Γ u), 1.29 т (3H, C^2 "H₃, ³J 7.1 Γ u), 1.39 секстет (2H, C^5 H₂, ³J 7.4 Γ u), 1.55 квинтет (2H, C^4 H₂, ³J 7.4 Γ u), 2.28 с (3H, H^4), 2.52 т (2H, C^3 'H₂, ³J 7.4 Γ u), 2.97 д (1H, C^1 'H₂, J 7.4 Γ u); 3.68 т (1H, H^2 , ³J 7.4 Γ u), 4.22 к (2H, C^1 "H₂, ³J 7.1 Γ u). Спектр ЯМР ¹³С (CDCl₃), δ , м.д.: 13.63 (C^6); 14.06 (C^2 "); 21.89 (C^5); 29.56 (C^1); 29.56 (C^4); 31.53, 32.36 (C^3); 59.98 (C^2); 61.75 (C^1 "); 168.43 (C^1); 201.70 (C^3). Найдено, %: C 56.98; H 8.71; S 13.86. $C_{11}H_{20}O_3$ S. Вычислено, %: C 56.86; H 8.68; S 13.80.

Этил 3-оксо-2-[(пентилсульфанил)метил]бутаноат (2с). Элюент В. Выход 0.68 г (55%), $n_{\rm D}^{20}$ 1.4748, d_4^{20} 1.022. ИК спектр (тонкий слой), v, см⁻¹: 1738 (C=O), 1717 (C=O), 1642 (C=C), 1616 (C=C), 1367 (СН₃), 1357 (СН₃–СО), 1249 (С–О–С), 1208, 1146 (С–О–С), 1028. Спектр ЯМР ¹Н (СDСІ₃), δ , м.д.: 0.89 т (3H, C^7 H₃, 3 J 7.4 Γ ц), 1.29 т (3H, C^2 "H₃, 3 J 7.1 Γ ц), 1.30–1.40 м (4H, C^5 H₂, C^6 H₂), 1.57 квинтет (2H, C^4 H₂, 3 J 7.4 Γ ц), 2.28 с (3H, 4 H₄), 2.51 т (2H, C^3 H₂, 3 J 7.4 Γ ц), 2.97 д (2H, C^1 H₂, J 7.4 Γ ц), 3.68 т (1H, 2 , 3 J 7.4 Γ ц), 4.21 к (2H, 2 H₂, 3 J 7.1 Γ ц). Спектр ЯМР 13 С (CDСІ₃), δ , м.д.: 13.91 (7), 14.06 (2 "), 22.21 (6), 29.11 (5), 29.52 (4), 29.53 (1), 30.90, 32.62 (3), 3 0, Найдено, %: C 58.60; H 9.04; S 13.07. 3 1, 3 20, Bычислено, %: C 58.50; H 9.00; S 13.02.

Этил 2-[(бензилсульфанил)метил]-2-(гидроксиметил)-3-оксобутаноат (3d). Элюент А. Выход 0.66 г (66%), $n_{\rm D}^{20}$ 1.5312, d_4^{20} 1.155. ИК спектр (тонкий слой), v, см⁻¹: 3503 (ОН), 1738 (С=О), 1713 (C=O), 1600 $(C-C_{apom})$, 1494 $(C-C_{apom})$, 1454 $(C-C_{apom})$ C_{apom}), 1357 (CH₃-CO), 1288 (OH), 1242 (C-O-C), 1201 (С-О), 1035, 757 (СНаром), 702 (СНаром). Спектр ЯМР ¹H (CDCl₃), δ, м.д.: 1.27 т (3H, CH₃CH₂O, ³J 7.1 Γ ц), 2.16 c (3H, H⁴), 2.95 д и 3.05 д (2H, CH₂S, ³J9.2 Гц), 3.73 с (1H, SCH₂C₆H₅), 3.98 д и 4.08 д (2H, CH_2OH , J 11.8 Γ ц), 4.15 м (1H, CH_2OH), 4.22 к (2H, $CH_3C\underline{H}_2O$, 3J 7.1 Γ ц), 7.20–7.38 м ($5H_{apom}$). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: 13.96 (<u>C</u>H₃CH₂O), 27.33 (С⁴), 31.88 (CH_2S) , 37.73 $(SCH_2C_6H_5)$, 61.91 (C^2) , 63.63 (CH_2OH_5) CH_3CH_2O), 127.2 (C^4H_{apom}), 128.5 ($C^{3',5'}H_{apom}$), 128.9 ($C^{2',6'}H_{apom}$), 137.76 ($C^{1'}_{apom}$), 170.21 (C^1), 204.08 (C^3). Найдено, %: С 60.88; Н 6.87; S 10.94. C₁₅H₂₀O₄S. Вычислено, %: 60.79; Н 6.80; Ѕ 10.82.

Этил **2-(гидроксиметил)-3-оксо-2-[(пропил-сульфанил)метил]бутаноат (3а).** Элюент А. Выход 0.07 г (7%). ИК спектр (тонкий слой), v, см⁻¹: 3440 (ОН), 1737 (С=О), 1717 (С=О), 1362 (СН₃–СО), 1271 (ОН), 1243 (С–О–С), 1195 (С–О), 1035.

Спектр ЯМР ¹H (CDCl₃), δ , м.д.: 0.97 т (3H, C⁵′H₃, ³*J* 7.2 Гц), 1.30 т (3H, C²″H₃, ³*J* 7.0 Гц), 1.60 секстет (2H, C⁴′H₂, ³*J* 7.2 Гц), 2.26 с (3H, H⁴), 2.53 т (2H, C³′H₂, ³*J* 7.2 Гц), 3.08 с (2H, C¹′H₂), 4.05 д и 4.13 д (2H, С<u>H</u>₂OH, *J* 11.6 Гц), 4.20 м (1H, СН₂O<u>H</u>), 4.26 к (2H, C¹″H₂, ³*J* 7.0 Гц). Спектр ЯМР ¹³С (CDCl₃), δ , м.д.: 13.28 (C⁵), 13.98 (<u>C</u>H₃CH₂O), 22.86 (C⁴′), 27.57 (C⁴), 33.18 (C¹′), 36.16 (C³′), 63.84 (<u>C</u>H₂OH, CH₃<u>C</u>H₂O), 61.88 (C²), 170.38 (C¹), 204.10 (C³). Массспектр, *m/z* ($I_{\text{отн}}$, %): 249 [*M* + H]⁺ (5); 217 [*M* – H – CH₂O]⁻ (100). Найдено, %: С 53.28; H 8.19; S 12.97. С₁₁Н₂₀O₄S. Вычислено, %: С 53.20; H 8.12; S 12.91. *M* 248.34.

Этил 2-[(алкилсульфанил)метил]акрилаты (4a, b) выделяли с помощью колоночной хроматографии на силикагеле (элюент A) из фракций, т.кип. 48–70°С и 56–95°С (0.1 мм рт.ст.), полученных при перегонке в вакууме неочищенных соединений 1а и 1b соответственно.

Этил 2-[(пропилсульфанил)метил]акрилат (4а). n_D^{20} 1.4898. ИК спектр (тонкий слой), v, см⁻¹: 1716 (C=O), 1628 (C=C), 1190 (C-O-C), 1027, 946 (CH₂=C). Спектр ЯМР ¹H (CDCl₃), δ , м.д.: 0.96 т (3H, C⁵H₃, ³J 7.3 Гц), 1.30 т (3H, C²"H₃, ³J 7.1 Гц), 1.58 секстет (2H, C⁴H₂, ³J 7.3 Гц), 2.42 т (2H, C³H₂, ³J 7.3 Гц), 3.36 с (2H, C¹"H₂), 4.23 к (2H, C¹"H₂, ³J 7.1 Гц), 5.62 д и 6.19 д (2H, H³, J 1.1 Гц). Спектр ЯМР ¹³С (CDCl₃), δ , м.д.: 13.39 (C⁵), 14.10 (C^{2"}), 22.48 (C^{4'}), 32.62, 33.63 (C^{1'},C^{3'}), 60.87 (C^{1"}), 125.35 (C³), 137.34 (C²), 166.20 (C¹). Найдено, %: C 57.85; H 8.61; S 17.15. С₉H₁₆O₂S. Вычислено, %: C 57.41; H 8.57; S 17.03.

Этил 2-[(бутилсульфанил)метил]акрилат (4b). n_D^{20} 1.4870. ИК спектр (тонкий слой), v, см $^{-1}$: 1716 (C=O), 1628 (C=C), 1190 (C-O-C), 1028, 945 (CH₂=C). Спектр ЯМР 1 Н (CDCl₃), δ , м.д.: 0.89 т (3H, C 6 H₃, 3 J 7.4 Гц), 1.29 т (3H, C 2 "H₃, 3 J 7.1 Гц), 1.37 секстет (2H, C 5 'H₂, 3 J 7.4 Гц), 1.53 квинтет (2H, C 4 'H₂, 3 J 7.4 Гц), 2.44 т (2H, C 3 'H₂, 3 J 7.4 Гц), 3.36 с (2H, C 1 'H₂), 4.22 к (2H, C 1 "H₂, 3 J 7.1 Гц), 5.61 д и 6.18 д (2H, H 3 , J 0.9 Гц). Спектр ЯМР 13 С (CDCl₃), δ , м.д.: 13.60 (С 6 '), 14.10 (С 2 "), 21.92 (С 5 '), 32.65 (С 1 ', C 4 '), 31.22 (С 3 '), 60.87 (С 1 "), 125.35 (С 3), 137.25 (С 2), 166.18 (С 1). Найдено, %: С 59.44; H 8.85; S 15.91. С₁₀H₁₈O₂S. Вычислено, %: С 59.37; H 8.97; S 15.85.

4-[(Алкилсульфанил)метил]- (5а-с) и 4-[(бензилсульфанил)метил]-5-метил-2,4-дигидро-3*H*-пиразол-3-оны (5d). К раствору 3.0 ммоль соединения 2а-с, 3d в 2 мл этанола при перемешивании и охлаждении по каплям в течение 5 мин добавляли 0.15 мл (3.0 ммоль) 64%-ного раствора гидразина в 0.6 мл этанола. Реакционную смесь оставляли на 30–45 мин при комнатной температуре, выпавший бесцветный осадок отфильтровывали, промывали холодным этанолом и сушили в вакууме.

5-Метил-4-[(пропилсульфанил)метил]-2,4- дигидро-3*H*-пиразол-3-он (5а). Выход 0.40 г (71%), т.пл. 140–142°С (ЕtOH). ИК спектр (вазелиновое масло), v, см⁻¹: 3219 (OH), 3095 (NH), 2676, 1615 (С=С), 1575 (С=N), 1548 (NH), 1464 (СН₃), 1377 (СН₃). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м.д.: 0.86 т (3H, С⁵'H₃, ³*J* 7.3 Гц), 1.48 секстет (2H, С⁴'H₂, ³*J* 7.3 Гц), 2.05 с (3H, СН₃), 2.34 т (2H, С³'H₂, ³*J* 7.1 Гц), 3.37 с (2H, С¹'H₂), 4.60 уш.с (1H, OH), 10.82 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 10.3 (СН₃), 13.8 (С⁵'), 22.7 (С⁴'), 23.0 (С¹'), 33.20 (С³'), 98.3 (С⁴), 138.7 (С³), 159.9 (С⁵). Найдено, %: С 51.61; Н 7.64; N 15.06; S 17.28. С₈Н₁₄N₂OS. Вычислено, %: С 51.58; Н 7.58; N 15.04; S 17.21.

4-[(Бутилсульфанил)метил]-5-метил-2,4**дигидро-3***H***-пиразол-3-он (5b).** Выход 0.41 г (69%), т.пл. 135-137°С (ЕtOH). ИК спектр (вазелиновое масло), v, см⁻¹: 3219 (ОН), 3095 (NH), 2668, 1615 (C=C), 1574 (C=N), 1549 (NH), 1464 (CH₃), 1377 (CH₃). Спектр ЯМР 1 Н (ДМСО- d_{6}), d, м.д.: 0.81 т (3H, C^6 'H₃, 3J 7.4 Гц), 1.28 секстет (2H, C^5 'H₂, 3 Ј 7.3 Гц), 1.45 квинтет (2H, С 4 H₂, 3 Ј 7.3 Гц), 2.05 с (3H, CH₃), 2.36 T (2H, C^{3} H₂, ^{3}J 7.4 Γ II), 3.37 c (2H, $C^{I'}H_2$), 4.65 ym.c (1H, OH), 10.85 ym.c (1H, NH). Спектр ЯМР 13 С, δ , м.д.: 10.3 (СН₃), 13.9 (С 6), 21.8 (C^5) , 23.1 (C^I) , 30.9 (C^3) , 31.5 (C^4) , 98.3 (C^4) , 138.7 (C^5) , 159.9 (C^3) . Macc-cnektp, m/z $(I_{\text{OTH}}, \%)$: 201 [M + H_{1}^{+} (74), 242 $[M + H + MeCN]^{+}$ (100); 199 $[M - H]^{-}$ (100). Найдено, %: С 54.01; Н 8.10; N 14.08; S 16.13. С₉H₁₆N₂OS. Вычислено, %: С 53.97; Н 8.05; N 13.99; S 16.01. M 200.30.

5-Метил-4-[(пентилсульфанил)метил]-2,4- дигидро-3*H***-пиразол-3-он (5c).** Выход 0.42 г (65%), т.пл. 130–132°С (ЕtOH). ИК спектр (вазелиновое масло), v, см $^{-1}$: 3219 (OH), 3095 (NH), 2669, 1615 (С=С), 1574 (С=N), 1549 (NH), 1464 (СН₃), 1377 (СН₃). Спектр ЯМР 1 H (ДМСО- d_6), δ , м.д.: 0.81 т (3H, С 6 H₃, 3 *J* 7.4 Γ ц), 1.18–1.32 м (4H, С 5 H₂, С 6 H₂), 1.48 квинтет (2H, С 4 H₂, 3 *J* 7.4 Γ ц), 2.06 с (3H, CH₃), 2.37 т (2H, С 3 H₂, 3 *J* 7.4 Γ ц), 3.38 с (2H, С 1 H₂), 4.62 уш.с (1H, OH), 10.85 уш.с (1H, NH). Спектр ЯМР 13 С, δ , м.д.: 10.3 (СН₃), 14.3 (С 7), 22.1 (С 6), 23.1 (С $^{1\prime}$), 29.1 (С $^{5\prime}$), 30.9 (С $^{3\prime}$), 31.2 (С $^{4\prime}$), 98.4

 (C^4) , 138.8 (C^5) , 160.0 (C^3) . Найдено, %: С 56.13; Н 8.50; N 13.09; S 14.98. $C_{10}H_{18}N_2OS$. Вычислено, %: С 56.04; Н 8.46; N 13.07; S 14.96.

4-[(Бензилсульфанил)метил]-5-метил-2,4**дигидро-3***H***-пиразол-3-он (5d).** Выход 0.44 г (62%), т.пл. 143-145°С (EtOH). ИК спектр (вазелиновое масло), v, см⁻¹: 3095 (NH), 3060 (СН_{аром}), 3028 (CH_{anom}), 2678, 1602 (C-C_{anom}), 1580 (C=N), 1535 (NH), 1494 (C-C_{apom}), 1464 (CH₃), 1377 (CH₃), 764 (${\rm CH}_{\rm apom}$), 696 (${\rm CH}_{\rm apom}$). Спектр ЯМР 1 Н (ДМСО d_6), δ , M.A.: 2.02 c (3H, CH₃), 3.38 c (2H, CH₂S), 3.66 с (2H, SCH₂C₆H₅), 4.51 уш.с (1H, OH), 7.15–7.45 м (5H_{anom}), 10.65 ym.c (1H, NH). Cπεκτρ ЯМР ¹³C, δ, м.д.: 10.3 (CH₃), 23.5 (CH₂S), 35.9 (SCH₂C₆H₅), 97.9 (C^4) , 127.9 $(C^{4''}H_{apom})$, 128.8 $(C^{2'',\overline{6''}}H_{apom})$, 129.1 $(C^{3'',5''}H_{apom})$, 138.9 (C^5) , 139.2 $(C^{1''}_{apom})$, 159.9 (C^3) . Масс-спектр, m/z ($I_{\text{отн}}$, %): 235 [M + H]⁺ (100), 276 $[M + H + MeCN]^+$ (82). Найдено, %: С 61.53; Н 6.07; N 11.99; S 13. 74. С₁₂H₁₄N₂OS. Вычислено, %: С 61.51; H 6.02; N 11.96; S 13.68. M 234.32.

БЛАГОДАРНОСТИ

Спектральные и аналитические результаты получены на оборудовании ЦКП «Химия» УфИХ УФИЦ РАН.

ФОНДОВАЯ ПОДДРЕЖКА

Работа выполнена по темам AAAA-A17-117011910030-0, AAAA-A19-119011790021-4 и AAAA-A17-117011910027-0 госзадания.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Dar A.A., Enjamuri N., Shadab Md., Ali N., Khan A.T. *ACS Comb. Sci.* 2015, 17, 671. doi 10.1021/ acscombsci.5b00044
- 2. Erciyas E., Erkaleli H.I., Cosar G. *J. Pharm. Sci.* **1994**, *83*, 545. doi 10.1002/jps.2600830420

- 3. Bicking J.B., Holtz W.J., Watson L.S., Cragoe E.J. Jr. J. Med. Chem. 1976, 19, 530. doi 10.1021/jm00226a017
- Masterson D.S., Roy K., Rosado D.A., Fouche M. J. Pept. Sci. 2008, 14, 1151. doi:10.1002/psc.1052
- Wada K., Gomibuchi T., Otsu Y., Shibuya K., Abe T., Andersch W., Harder A., Lösel P. Пат. WO2000009500 A2 (2000).
- Yamauchi M., Katayama S., Nakashita Y., Watanabe T. J. Chem. Soc., Perkin Trans. 1. 1985, 183. doi 10.1039/ P19850000183
- Watanabe T., Katayama S., Nakashita Y., Yamauchi M. Chem. Commun. 1981, 761. doi 10.1039/C39810000761
- 8. Шокова Э.А., Ким Дж.К., Ковалев В.В. *ЖОрХ.* **2015**, *51*, 773. [Shokova E.A., Kim D.K., Kovalev V.V. *Russ. J. Org. Chem.* **2015**, *51*, 755.] doi 10.1134/S1070428015060019
- 9. Li L., Liu B., Wu Q., Lin X. *Chin. J. Chem.* **2011**, *29*, 1856. doi 10.1002/cjoc.201180324.
- 10. Баева Л.А., Бикташева Л.Ф., Фатыхов А.А., Ляпина Н.К. *ЖОрХ.* **2013**, 49, 1300. [Baeva L.A., Biktasheva L.F., Fatykhov A.A., Lyapina N.K. *Russ. J. Org. Chem.* **2013**, 49, 1283.] doi 10.1134/S1070428013090078
- 11. Bhattacharjee S., Das D.K., Khan A.T. *Synthesis*. **2014**, *46*, 73. doi 10.1055/s-0033-1340082
- 12. Bohme H., Mundlos E. *Chem. Ber.* **1953**, *86*, 1414. doi 10.1002/cber.19530861108
- 13. Li Z., Li H., Guo X., Cao L., Yu R., Li H., Pan S. *Org. Lett.* **2008**, *10*, 803. doi 10.1021/ol702934k
- 14. Li Z., Li H. Патент 101462990 (2013). КНР.
- 15. Yu R., Li Z. Патент 101585830 (2012). КНР.
- 16. Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии. М.: Высшая школа, **1971**.
- 17. Attanasi O.A., De Crescentini L., Filippone P., Foresti E., Galeazzi R., Ghiviriga I., Katritzky A.R. *Tetrahedron*. **1997**, *53*, 5617. doi 10.1016/S0040-4020(97)00217-2
- 18. Metwally M.A., Bondock S.A., El-Desouky S.I., Abdou M.M. *Int. J. Mod. Org. Chem.* **2012**, *1*, 19.
- Dorn H. J. Prakt. Chem. 1973, 315, 382. doi 10.1002/ prac.19733150306
- Katritzky A.R., Maine F.W. *Tetrahedron*. **1964**, *20*, 299, 315. doi 10.1016/S0040-4020(01)93217-X, 10.1016/S0040-4020(01)93218-X
- 21. Рубинштейн И.А., Клейменова З.А., Соболев Е.П. Методы анализа органических соединений нефти, их смесей и производных. М.: Изд-во АН СССР, **1960**, 74.

Synthesis of Ethyl 2-[alkyl(benzyl)sulfanylmethyl]-3-oxobutanoates and 3*H*-pyrazol-3-ones Based of Them

L. A. Baeva*, R. M. Nugumanov, L. F. Biktasheva, T. R. Nugumanov, A. A. Fatykhov

Ufa Institute of Chemistry, Ufa Researcher Centre, RAS, 450054, Russia, Republic of Bashkortostan, Ufa, pr. Oktyabrya 69
*e-mail: sulfur@anrb.ru

Received April 23, 2018 Revised August 10, 2018 Accepted October 12, 2018

Three-component condensation of acetoacetic ester with formaldehyde and alkanethiols in the presence of 0.1 equiv of sodium hydroxide led to the formation of ethyl 2-[(alkylsulfanyl)methyl]-3-oxobutanoates, while thiometylation with phenylmethanethiol produced the ethyl 2-[(benzylsulfanyl)methyl]-2-(hydroxymethyl)-3-oxobutanoate. The resulting compounds reacted with hydrazine hydrate in ethanol at room temperature to give 4-[(alkylsulfanyl)methyl]- or 4-[(benzylsulfanyl)methyl]-5-methyl-2,4-dihydro-3*H*-pyrazole-3-ones that existed mainly in the 1*H*-pyrazole-5(3)-oles form in DMSO-*d*₆ solution.

Keywords: thiol, acetoacetic ester, ethyl 2-[(alkylsulfanyl)methyl]-3-oxobutanoate, ethyl 2-[(benzylsulfanyl)methyl]-2-(hydroxymethyl)-3-oxobutanoate, 2,4-dihydro-3*H*-pyrazole-3-one, 1*H*-pyrazole-5(3)-ol, three-component condensation