УДК 547.841 + 541.63

КОНФОРМАЦИОННЫЙ АНАЛИЗ 5-ГИДРОКСИМЕТИЛ-2,2-ДИМЕТИЛ-5-ЭТИЛ-1,3-ДИОКСАНА

© 2019 г. Г. З. Раскильдина^{*a*}, Л. В. Спирихин^{*b*}, С. С. Злотский^{*a*}, В. В. Кузнецов^{*a*, *c*, *}

^а ФГБОУ ВО «Уфимский государственный нефтяной технический университет» (УГНТУ), 450062, Россия, Республика Башкортостан, г. Уфа, ул. Космонавтов 1

> ^b ФГБУН «Уфимский Институт химии РАН» (УфИХ РАН), 450054, Россия, Республика Башкортостан, г. Уфа, пр. Октября 71

^с «Уфимский государственный авиационный технический университет», 450008, Россия, Республика Башкортостан, г. Уфа, ул. К. Маркса 12 *e-mail: kuzmaggy@mail.ru

> Поступила в редакцию 10 октября 2018 г. После доработки 10 ноября 2018 г. Принята к публикации 17 декабря 2018 г.

С помощью DFT приближения PBE/3 ζ проведено компьютерное моделирование конформационных превращений 2,2-диметил-5-оксиметил-5-этил-1,3-диоксана в вакууме, а также в присутствии молекул хлороформа, ДМСО, бензола и воды. Показано, что маршрут конформационного равновесия включает конформеры кресла с аксиальной и экваториальной оксиметильной группой и 2,5-*твист*-форму. Установлено, что в бензоле и ДМСО доминирует кресло с экваториальной оксиметильной группой, а в случае вакуума, хлороформа и воды преобладает аксиальная форма. Полученные результаты подтверждены данными двумерной спектроскопии ЯМР (NOESY) в растворах ДМСО- d_6 и CDCl₃.

Ключевые слова: 1,3-диоксан, конформационный анализ, переходное состояние, компьютерное моделирование, ЯМР спектроскопия.

DOI: 10.1134/S0514749219040153

Актуальность структурных исследований производных 1,3-диоксана – классических объектов конформационного анализа – обусловлена как особенностями их строения, так и использованием качестве реагентов тонкого органического синтеза [1-3]. Особое место среди шестичленных циклических формалей, ацеталей и кеталей занимают производные с гидроксильной группой в качестве заместителя. Последняя позволяет в результате О-алкилирования либо галогенирования синтезировать функциональные производные 1,3диоксанов, а также соответствующих диолов [4-6]. Присутствие в качестве заместителя ОН-группы неизбежно повышает чувствительность конформационного равновесия к влиянию растворителя, поскольку межмолекулярные взаимодействия в сольватной оболочке различным образом влияют на стабильность того или иного конформера.

Мы провели конформационный анализ 5-гидроксиметил-2,2-диметил-5-этил-1,3-диоксана 1 в присутствии различных растворителей с помощью DFT приближения PBE/3ζ в рамках программного комплекса ПРИРОДА [7] и данных спектроскопии ЯМР. Основное направление исследования сводилось к решению вопроса о том, какой из конформеров кеталя 1 доминирует в равновесии в вакууме, а также в присутствии моле-кул воды, хлороформа, бензола и ДМСО (кластер-ная модель).

Первый этап включал проведение конформационного анализа изолированной молекулы кеталя **1**. На поверхности потенциальной энергии (ППЭ) были выявлены три минимума, соответствующие конформерам *кресло* с экваториальной (K_e) и аксиальной (K_a) ориентацией гидроксиметильной группы и 2,5-*твист*-форме (2,5-*T*), а также два переходных состояния **ПС**1 и **ПС**2 в конформации *полукресло* (схема 1).

Для выявления оптимальных по энергии конформеров для каждой из форм, отвечающих минимумам, был проведен дополнительный кон-

формационный анализ, связанный с моделированием внутреннего вращения этильного и гидроксиметильного заместителей у атома С⁵ кольца. Вращение группы CH₂OH проводили при изменении торсионного угла φ в пределах от 180 до -180° (рис. 1). Главный минимум на ППЭ молекулы кеталя 1 в вакууме принадлежит форме K_a , а ближайший к нему по энергии конформер K_e имеет *гош*-ориентацию заместителей у атома С⁵ (схема 2, табл. 1).

Наиболее высокий барьер внутреннего вращения гидроксиметильного заместителя в

Рис. 1. Зависимость относительной энергии формы K_a 5-гидроксиметил-2,2-диметил-5-этил-1,3-диоксана 1 от величины торсионного угла φ при оптимальной ориентации экваториального этильного заместителя.

конформере K_a составляет 7.0 ккал/моль (рис. 1). Расчетные различия в энергиях между формами K_a , K_e и 2,5-*T* близки к наблюдаемым для соединений этого класса [2, 3].

Ранее на примере тетрагидро-1,3-оксазинов [8] было показано, что число молекул в сольватной оболочке при стандартных условиях не должно превышать десяти. Поэтому мы исследовали кластеры, содержащие 5 либо 10 молекул соответствующих растворителей.

В случае кластеров кеталь 1@5 и 10 молекул ДМСО главный минимум, с учетом оптимального положения заместителей у атома С⁵ кольца вне зависимости от числа молекул растворителя соответствует конформеру K_e (ΔG_{298}^0). Далее на шкале энергии располагаются формы К_а и 2,5-Т. Влияние числа молекул ДМСО сказывается только на значениях энергий ПС1 и ПС2 (табл. 1) и на высоте потенциального барьера внутреннего вращения группы CH₂OH у атома C⁵. В ходе главного минимума для формы K_e поиска величины ΔE_0^{\neq} кластеров **1**@5 и **1**@10ДМСО составляли 10.9 и 4.5 ккал/моль соответственно, а геометрия конформеров Ке и Ка близка к наблюдаемой для изолированной молекулы кеталя 1. Близкая зависимость наблюдается и для системы кеталь1@5 C₆H₆ (рис. 2).

Доминирует в конформационном равновесии форма K_e . Однако в этом случае ближайшим к ней по энергии оказывается конформер 2,5-T, а форма K_a является наиболее лабильной (табл. 1).

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 55 № 4 2019

Конформеры	<i>–E</i> ₀ ^a , Хартри	ΔE_{0}^{0} , ккал/моль (ΔE_{0}^{\neq})	$\Delta H^0_{298},$ ккал/моль $(\Delta H^{\sharp}_{298})$	$\Delta G^0_{298},$ ккал/моль (ΔG^{\neq}_{298})	$\Delta S^{0}_{298},$ кал/(моль \cdot K) (ΔS^{\neq}_{298})		
В вакууме							
К _а К _е 2,5-Т ПС-1 ПС-2	578.695699 578.693302 578.692960 578.684912 578.680600	0 1.5 1.7 (6.8) (9.5)	0 1.6 1.7 (6.4) (9.1)	0 1.4 1.8 (7.0) (9.4)	$ \begin{array}{c} 0 \\ 0.7 \\ -0.2 \\ (-2.0) \\ (-0.8) \end{array} $		
В ДМСО (1:5)							
К _а К _е 2,5-Т ПС-1 ПС-2	3342.983613 3342.995248 3342.993806 3342.966895 3342.983392	7.3 0 0.9 (17.8) (7.4)	8.0 0 0.3 (17.7) (7.1)	3.0 0 3.4 (15.1) (7.6)	$ \begin{array}{r} 16.6 \\ 0 \\ -10.6 \\ (8.8) \\ (-1.4) \end{array} $		
В ДМСО (1:10)							
К _а К _е 2,5-Т ПС-1 ПС-2	6107.287345 6107.287279 6107.285831 6107.276354 6107.275790	0 0.04 0.9 (6.9) (7.3)	0 0.08 0.4 (7.7) (6.4)	2.1 0 3.3 (5.2) (10.0)	-7.3 0 -10.0 (8.1) (-12.3)		
В бензоле (1:5 C ₆ H ₆)							
К _а К _е 2,5-Т ПС-1 ПС-2	1738.324030 1738.325443 1738.323586 1738.312544 1738.314157	0.9 0 1.2 (8.1) (7.1)	0.2 0 1.6 (7.7) (6.8)	3.4 0 1.2 (7.9) (8.3)	-10.7 0 1.3 (-0.7) (-5.2)		
В хлороформе (1:5 CHCl ₃)							
К _а К _е 2,5-Т ПС-1 ПС-2	7672.484407 7672.481177 7672.482017 7672.470225 7672.470288	0 2.0 1.5 (8.9) (8.9)	0 1.5 1.4 (7.1) (8.0)	0 3.2 2.4 (13.6) (9.5)	$0 \\ -5.7 \\ -3.1 \\ (-21.6) \\ (-5.1)$		
В воде (1:10 H ₂ O)							
К _а К _е 2,5-Т ПС-1 ПС-2	1342.404524 1342.400675 1342.399779 1342.390512 1342.391616	0 2.4 3.0 (8.8) (8.1)	0 2.7 3.1 (8.3) (8.0)	0 2.5 3.4 (10.0) (8.0)	$\begin{array}{c} 0 \\ 0.7 \\ -1.0 \\ (-5.7) \\ (0.05) \end{array}$		

Таблица 1. Энергетические параметры стационарных точек на поверхности потенциальной энергии 5-гидроксиметил-2,2-диметил-5-этил-1,3-диоксана 1 (PBE/3ζ).

^а С учетом ZPE.

В кластере кеталь 1@5 CHCl₃, как и для изолированной молекулы диоксана, конформационное равновесие смещено в сторону формы K_a (рис. 3).

Похожая зависимость наблюдается и для кластера диоксан 1@10 H₂O (табл. 1). В равновесии доминирует форма K_a , а ближайшим по энергии является конформер K_e .

Ближайшим по энергии (ΔG_{298}^0), как и в предыдущем случае, является конформер 2,5-*T*.

Расчетные значения дипольных моментов конформеров K_a и K_e свободной молекулы кеталя **1**

достаточно близки и составляют 1.66 и 1.90 Д соответственно. Поэтому результаты компьютерного моделирования трудно объяснить влиянием полярности растворителя: не ясно, почему более полярный конформер K_e доминирует в неполярном бензоле, а менее полярная форма K_a – в полярном ДМСО (µ 3.96 Д). Вероятная причина наблюдаемых различий связана с коллективным вкладом межмолекулярных взаимодействий в конкретном кластере.

Для всех исследованных ассоциатов значения ΔG_{298}^0 между формами минимумов заметно выше, чем для изолированной молекулы кеталя **1**, а

кластеры 1@5 ДМСО и 1@5 CHCl₃ отличаются также более высоким потенциальным барьером **ПС1** (ΔG_{298}^{\pm}). При этом различия в значениях ΔG_{298}^{0} во всех случаях указывают на практически полное смещение конформационного равновесия в сторону наиболее стабильной формы (\geq 90%).

Данные ЯМР (табл. 2) свидетельствуют о высокой конформационной однородности молекул кеталя 1 в растворе. Отнесения сигналов в спектрах ЯМР ¹H и ¹³C выполнены по данным 1D и 2D спектроскопии с использованием режимов DEPT135, NOESY, COSYHH и HSQC.

Рис. 2. Кластер кеталь 1@5 С₆H₆.

Рис. 3. Кластер кеталь 1@5 CHCl₃.

Таблица 2. Данные ЯМР ¹Н и ¹³С 5-гидроксиметил-2,2-диметил-5-этил-1,3-диоксана 1.

Растворитель	Протоны	ЯМР ¹ Н, м.д. (<i>J</i> , Гц)	Атомы С	ЯМР ¹³ С, м.д.
CDCl ₃	$\begin{array}{c} C^{7}H_{3}\\ C^{8}H_{2}\\ C^{2a}H_{3}\\ C^{2e}H_{3}\\ OH\\ H^{4A,6a}\\ H^{4B,6B}\\ C^{9}H_{2} \end{array}$	$\begin{array}{c} 0.83 \text{ t} ({}^{3}J7.5) \\ 1.24 \text{ k} ({}^{3}J7.5) \\ 1.39 \text{ c} \\ 1.43 \text{ c} \\ 5.23 \text{ c} \\ 3.64 \text{ g} ({}^{2}J11.7) \\ 3.68 \text{ g} ({}^{2}J11.7) \\ 3.72 \text{ M} \end{array}$	$ \begin{array}{c} C^{2} \\ C^{4}, C^{6} \\ C^{5} \\ C^{2a}H_{3} \\ C^{2e}H_{3} \\ C^{7} \\ C^{8} \\ C^{9} \end{array} $	98.17 65.22 36.90 20.19 27.29 7.47 23.81 62.97
ДМСО- <i>d</i> 6	$C^{7}H_{3}$ $C^{8}H_{2}$ $C^{2a}H_{3}$ $C^{2e}H_{3}$ $H^{4A,6a}$ $H^{4B,6B}$ $C^{9}H_{2}$ OH	0.73 T $({}^{3}J7.5)$ 1.23 κ $({}^{3}J7.5)$ 1.24 c 1.28 c 3.45 μ $({}^{2}J11.7)$ 3.53 μ $({}^{2}J11.7)$ 3.38 μ $({}^{3}J5.2)$ 4.50 T $({}^{3}J5.2)$	$ \begin{array}{c} C^{2} \\ C^{4}, C^{6} \\ C^{5} \\ C^{2a}H_{3} \\ C^{2e}H_{3} \\ C^{7} \\ C^{8} \\ C^{9} \end{array} $	97.67 64.40 36.45 21.76 25.96 7.03 23.04 60.50
C_6D_6	$C^{7}H_{3}$ $C^{8}H_{2}$ $C^{2a}H_{3}$ $C^{2e}H_{3}$ $H^{4A,6a}$ $H^{4B,6B}$ $C^{9}H_{2}$	0.73 м 1.23 м 1.31 с 1.42 с 3.48 д (² J 11.4) 3.65 м 3.67 м	$ \begin{array}{c} C^{2} \\ C^{4}, C^{6} \\ C^{5} \\ C^{2a}H_{3} \\ C^{2e}H_{3} \\ C^{7} \\ C^{8} \\ C^{9} \end{array} $	98.23 65.21 37.15 20.59 27.35 7.17 23.97 62.12

Наиболее информативны результаты, полученные для растворов в CDCl₃ и ДМСО- d_6 . Спектры ЯМР ¹Н свидетельствуют о том, что метиленовые протоны при магнитно эквивалентных углеродных атомах C⁴ и C⁶ гетероциклического кольца являются диастереотопными ($\Delta\delta$ 0.03–0.11 м.д.) и проявляются в виде двух дублетов с геминальной константой ²J –11.7 Гц. Аналогичный характер имеют и сигналы протонов метильных заместителей у атома C² кольца ($\Delta\delta$ 0.04 м.д.). Анализ данных ЯМР ¹Н и ¹³C в температурном интервале 20–90°С в ДМСО- d_6 не выявил никаких изменений в значениях КССВ, что дополнительно указывает на высокую конформационную однородность молекул кеталя **1**.

На основании NOESY эксперимента установлено, что сигналы протонов этильной группы,

кроме NOE взаимодействия с протонами метиленовой и протоном гидроксильной групп, аналогично взаимодействуют с экваториальными протонами при углеродных атомах С⁴ и С⁶ гетероциклического кольца в растворе в ДМСО-*d*₆ Это подтверждает, что этильная группа находится в экваториальном положении. Следовательно, гидроксиметильная группа ориентирована аксиально. Результаты NOESY для раствора в CDCl₃ свидетельствуют о том, что гидроксиметильная группа занимает в данном случае экваториальное положение, поскольку NOE регистрируются взаимодействия только С протонами этильного фрагмента. Результаты NOESY подтверждают данные конформационного анализа кеталя 1 в рамках расчётного приближения РВЕ/3С и указывают на важную роль растворителя

в смещении конформационного равновесия молекул 1,3-диоксана с полярными заместителями.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Компьютерное моделирование конформационного поведения молекул диоксана 1 проводили в рамках программного обеспечения ПРИРОДА (DFT-приближение PBE/3ζ) [7]. На первом этапе проводили оптимизацию геометрии всех конформеров, отвечающих минимумам на ППЭ, с помощью полуэмпирического приближения АМ1 (пакет HyperChem [9]). Полученные формы далее оптимизировали в рамках РВЕ/ЗС. В ходе этой процедуры проводили поиск конформеров, отвечающих минимуму энергии внутреннего вращения гидроксиметильного и этильного заместителей у атома С⁵ при сканировании соответствующих торсионных углов в пределах -180-180° (схема 2). Конформационные превращения $K_a \leftrightarrow 2,5$ - $T \leftrightarrow K_e$ моделировали при сканировании внутрициклического торсионного угла ОССС в пределах ±50°. Значения потенциальных барьеров установлены с помощью процедуры поиска переходных состояний в рамках использованного программного обеспечения. Приналлежность стационарных точек ППЭ к минимумам подтверждалась отсутствием мнимых частот, а к переходным состояниям - наличием одной мнимой частоты в соответствующем гессиане.

ЯМР ¹Н и ¹³С получены Спектры на импульсном спектрометре Bruker Avance-III 500 МГц с рабочими частотами 500.13 (¹Н) и 125.47 (¹³С) МГц с использованием 5 мм датчика с Z-градиентом РАВВО при постоянной температуре образца 298 К. Химические сдвиги приведены в шкале б, м.д. (внутренний стандарт TMC). Задержка между импульсными последовательностями устанавливалась для достижения полной релаксации [10]. С целью увеличения цифрового разрешения применяли дополнение нулями и умножение Фурье-образа спектра на экспоненциальную функцию (lb 0.1 Гц для 1 Н и 1 Гц для 13 С).

Спектры ЯМР ¹³С с подавлением протонов (WALTZ-16) были зарегистрированы при следующих условиях: спектральное окно 29.8 кГц, количество точек 64К, длительность возбуждающего импульса (30°) 3.2 мкс, релаксационная задержка 2 с, количество прохождений 12288. Редактирование спектров ЯМР ¹³С проводили на основании экспериментов DEPT-90 и DEPT-135. Длительность импульса регенерирующего поперечную намагниченность – 6 мкс (DEPT-90) и 9 мкс (DEPT-135), рефокусирующая задержка 1/2J 3.5 мс, 64 К точки накоплены в течение 2048 прохождений, спектральное окно 29.8 кГц, экспоненциальное уширение линий 1 Гц.

Двумерные спектры получены в станлартных режимах многоимпульсных последовательностей программного обеспечения прибора. Параметры спектра gsCOSY: размер матрицы 4К на 512 эксп. при спектральном окне 5.0 кГц, при обработке использовалась синусоидальная-колоколообразная взвешивающая функция для F1 и F2 проекций (ssb 2); gsHSQC спектр (hsqcetgp, размер матрицы 2К на 256 экспериментов, 5.0 кГц для проекции F2 и 27.7 кГц – для F1) зарегистрирован с задержкой d_4 оптимизированной под наблюдение J_{CH} 145 Гц. Параметры gsHMBC спектра (hmbcgpndqf: размер матрицы 2К на 256 эксп., 5.0 кГц для проекции F2 и 27.7 кГц – для F1) зарегистрирован с задержкой d₆ 71.4 мс (const 13 Гц). Для записи спектра NOESY использовали матрицу 2К на 256 экспериментов со спектральным окном 5.0 кГц, время смешения $d_8 0.6$ с.

Хромато-масс-спектр регистрировали на приборе Focus с масс-спектрометрическим детектором Finingan DSQ II (температура ионного источника 200°С, прямой ввод – 50–270°С, скорость нагрева 10 град/мин, колонка Thermo TR-5MS 50×2.5× 10⁻⁴ м, расход гелия 0.7 мл/мин).

(2,2-Диметил-5-этил-1,3-диоксан-5-ил)метанол (1). В трёхгорлую колбу, снабжённую механической мешалкой, термометром и обратным холодильником, загружали 0.49 моль (66 г) 2-(гидроксиметил)-2-этилпропан-1,3-диола, 4.9 моль (284 г) ацетона и 0.22 г *п*-толуолсульфоновой кислоты. Реакционную смесь интенсивно перемешивали при комнатной температуре 18 ч, добавляли 3 г (безводного) K_2CO_3 и продолжали перемешивать 1 ч. Смесь фильтровали, концентрировали, а остаток перегоняли в вакууме. Выход 91%, бесцветная жидкость, т.кип. 106°С (5 мм рт.ст.) [6]. Масс-спектр *m/z* (I_{0TH} , %): 174 (0), 117 (45), 159 (100), 143 (4), 99 (18), 86 (15), 71 (16), 59 (27), 43 (29).

ФОНДОВАЯ ПОДДРЕЖКА

Работа выполнена при финансовой поддержке Минобрнауки Российской Федерации в рамках реализации проекта № 16.1969.2017/4.6.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рахманкулов Д.Л., Караханов Р.А., Злотский С.С., Кантор Е.А., Имашев У.Б., Сыркин А.М. Итоги науки и техники. Технология органических веществ. М.: ВИНИТИ, **1979**, *5*, 6.
- 2. Внутреннее вращение молекул. Ред. В.Дж. Орвилл-Томас. М.: Мир, **1977**, 355.
- Кузнецов В.В. ЖОрХ. 2014, 50, 1247. [Kuznetsov V.V. Russ. J. Org. Chem. 2014, 50, 1227.] doi 10.1134/ S1070428014090012
- Раскильдина Г.З., Валиев В.Ф., Султанова Р.М., Злотский С.С. ЖПХ. 2015, 88, 1414. [Raskil'dina G.Z., Valiev V.F., Sultanova R.M., Zlotskii S.S. Russ. J. Appl. Chem. 2015, 88, 1599.] doi 10.1134/S1070427215100079

- 5. Раскильдина Г.З., Валиев В.Ф., Султанова Р.М., Злотский С.С. *Изв. АН. Сер. хим.* **2015**, 2095. [Raskildina G.Z., Valiev V.F., Sultanova R.M., Zlotsky S.S. *Russ. Chem. Bull. Int. Ed.* **2015**, *64*, 2095.] doi 10.1007/s11172-0151123-z
- 6. Валиев В.Ф. Автореф. дис. ... канд. хим. наук. Уфа. **2018**.
- Лайков Д.Н., Устынюк Ю.А. Изв. АН. Сер. хим. 2005, 54, 804. [Laikov D.N., Ustynyuk Yu.A. Russ. Chem. Bull._Int. Ed. 2005, 54, 820.] doi 10.1007/ s11172-005-0329-x
- Кузнецов В.В. ЖСХ. 2018, 59, 1425. [Kuznetsov V.V. Russ. J. Struct. Chem. 2018, 59, 1374.] doi 10.26902/ JSC20180617
- 9. HyperChem 8.0. http://www.hyper.com.
- Гюнтер Х. Введение в курс спектроскопии ЯМР. М.: Мир, 1984, 215. [Hünther H. NMR spectroscopy. An introduction. By John Wiley & Sons, Ltd., 1980.]

CONFORMATIONAL ANALYSIS OF 2,2-DIMETHYL-5-ETHYL-5-HYDROXYMETHYL-1,3-DIOXANE

G. Z. Raskildina^a, L. V. Spirikhin^b, S. S. Zlotskij^a, and V. V. Kuznetsov^{a, c, *}

^a Ufa State Petroleum Technological University, 450062, Russia, Republic Bashkortostan, Ufa, ul. Kosmonavtov 1
 ^b Ufa Institute of Chemistry, Ufa Researcher Centre, RAS, 450054, Russia, Republic Bashkortostan, Ufa, pr. Oktyabrya 71
 ^c Ufa State Aviation Technical University, 450008, Russia, Republic Bashkortostan, Ufa, ul. K. Marksa 12

*e-mail: kuzmaggy@mail.ru

Received October 10, 2018 Revised November 10, 2018 Accepted December 17, 2018

The computer simulation of conformational transformation of 2,2-dimethyl-5-ethyl-5-hydroxymethyl-1,3dioxane in vacuum as well as in chloroform, DMSO, benzene and water using DFT approximation PBE/3 ζ have been carried out. Conformational equilibrium includes forms of chair with equatorial and axial hydroxymethyl group and 2,5-*twist*-conformer. Chair with equatorial hydroxymethyl group dominates in benzene and DMSO; on the other hand, a chair with axial hydroxymethyl group prevails in vacuum, chloroform and water. These results have been confirmed by two-dimensional NMR (NOESY) in DMSO- d_6 and CDCl₃.

Keywords: 1,3-dioxane, conformational analysis, transition state, computer simulation, NMR-spectroscopy