УДК 547 + 544.473-039.63-386 + 544.437.2 + 544.478-03

МЕТАЛЛ-ОРГАНИЧЕСКИЕ КООРДИНАЦИОННЫЕ ПОЛИМЕРЫ В АСИММЕТРИЧЕСКОМ КАТАЛИЗЕ: ПОСЛЕДНИЕ ДОСТИЖЕНИЯ

© 2019 г. А. В. Артемьев^{а, b}, В. П. Федин^{а, b,} *

^а «Институт неорганической химии им. А.В. Николаева СО РАН», 630090, Россия, г. Новосибирск, пр. академика Лаврентьева 3

^b «Новосибирский государственный университет», 630090, Россия, г. Новосибирск, ул. Пирогова 1 *e-mail: cluster@niic.nsc.ru

> Поступила в редакцию 6 февраля 2019 г. После доработки 4 марта 2019 г. Принята к публикации 15 марта 2019 г.

В обзоре рассмотрены последние достижения в использовании гомохиральных (ГХ) металлорганических координационных полимеров (МОКП) для асимметрического катализа органических реакций.

Ключевые слова: металл-органические координационные полимеры, асимметрический гетерогенный катализ, энантиоселективность, гомохиральность, лиганды, органический синтез.

DOI: 10.1134/S0514749219060107

СОДЕРЖАНИЕ

I. Введение

- II. Реакции присоединения по С=С связи
 - 1.1. Гидрирование
 - 1.2. Реакция Михаэля
 - 1.3. Эпоксидирование и гидроксилирование

III. Реакции присоединения по С=О связи

- 3.1. Цианосилилирование
- 3.2. Альдольная конденсация
- 3.3. Реакция Анри
- 3.4. Реакция Морита-Бейлиса-Хиллмана
- 3.5. Гидрирование и карбоалюминирование
- IV. Реакции циклизации
- V. Окисление сульфидов в сульфоксиды
- VI. Прочие трансформации

Заключение

I. ВВЕДЕНИЕ

Асимметрический катализ - один из наиболее эффективных инструментов, позволяющих синтезировать энантиомерно-чистые вещества ИЗ прохиральных прекурсоров, используя небольшое количество хирального катализатора [1-6]. Этот интенсивно развивающийся последнее десятилетие подход, помимо своей фундаментальной важности, имеет огромное практическое значение. Например. ключевые стадии промышленного синтеза многих биологически активных соединений (прежде всего, фармпрепаратов) и материалов основаны на использовании асимметрического катализа [7, 8]. Особая роль последнего отмечена также присуждением в 2001 г. Нобелевской премии за работы по энантиоселективному гомогенному гидрированию и эпоксидированию на хиральных комплексах Rh(I), Ru(II) и Ti(IV).

Однако, несмотря на колоссальные успехи, достигнутые в области гомогенного асимметрического катализа, остается и ряд нерешенных проблем. Среди них, например, высокая стоимость хиральных лигандов, а также проблема очистки продуктов реакций от микропримесей металлов и лигандов из отработанного катализатора. Поэтому создание более эффективных, экономичных и, в идеале, гетерогенных, катализаторов для асимметрического катализа остается актуальной задачей.

В этом отношении большие надежды сейчас возлагаются на гомохиральные (ГХ) пористые металл-органические координационные полимеры (МОКП) – трехмерные структуры, состоящие из ионов металлов или кластеров, связанных энантиомерно-чистыми мостиковыми лигандами [9]. Высокая каталитическая активность, гетерогенная природа (нерастворимые кристаллические вещества, легко отделяемые от реакционной массы), практически безграничная возможность «настройки» каталитических свойств путем изменения природы металла, размера и хиральности органических лигандов, выгодно отличает ГХ МОКП от традиционных хиральных катализаторов [10-12]. Важнейшим преимуществом, характерным исключительно для пористых МОКП, является селективность к размеру и форме реагирующих молекул («size- and shape selectivity»), регулируемая размером и топологией полостей катализатора [10-12]. Благодаря этим достоинствам, интерес к использованию ГХ МОКП для асимметрического катализа последние годы постоянно растет.

К настоящему времени в этой области накоплен довольно обширный материал, в той или иной степени отраженный в ряде обзоров [9, 13-19]. В этих обобщающих работах, однако, рассмотрены статьи, опубликованные, в основном, до 2015 г. Кроме того, большое внимание в них традиционно уделяется обсуждению строения ГХ МОКП и природы катализа. Цель настоящего обзора – продемонстрировать последние наиболее важные с нашей точки зрения достижения в этой молодой (первая работа опубликована в 2000 г [20]) области химической науки, которая активно развивается на стыке ее важнейших разделов – катализа, органической и координационной химии, а также химии твердого тела. Учитывая, что основная аудитория предлагаемого обзора состоит, главным образом, из специалистов в области органической химии, главный акцент в нем сделан на препаративной части, представляющей наибольший интерес для органического синтеза. По этой же причине нам представлялось целесообразным отойти от рассмотрения структуры ГХ МОКП и механистических аспектов катализа, ограничившись лишь кратким описанием способа их получения. Для удобства читателя все представленные работы систематизированы по типу катализируемых реакций.

II. РЕАКЦИИ ПРИСОЕДИНЕНИЯ ПО С=С СВЯЗИ

1.1. ГИДРИРОВАНИЕ

Два гетерогенных катализатора MOF1·Ru и MOF1·Rh, эффективных для целого ряда асимметрических превращений, были получены W. Lin с сотр. [21] реакцией ZrCl₄ с 4,4'-бис(4-карбоксифенилэтинил)BINAP (H₂L) с последующей модификацией образующегося ГХ МОКП [Zr₆(OH)₄O₄L₆] (**MOF1**) комплексами $[Ru(cod)(2-Me-allyl)_2]$ и [Rh(nbd)₂]BF₄, соответственно. MOF1·Ru в количестве 0.5 мол. % проявил довольно высокую стереоизбирательность при гидрировании метилакрилатов и диметилфумарата водородом низкого давления (схема 1). Выходы алканов количественные (табл. 1), а значения ее (70-91% в пользу Sизомера) сопоставимы с величинами, полученными при использовании гомогенного катализатора – Ru (Me₂L)(DMF)₂Cl₂ (ee 81–99%).

1.2. РЕАКЦИЯ МИХАЭЛЯ

Упомянутый ГХ МОКП **МОF1**·**Ru** [21] проявил также впечатляющую энантиоселективность в реакции 1,4-присоединения арилборных кислот к 2-циклогексенону (разновидность реакции Михаэля) с образованием (S)-3-арил-2-циклогексанонов. Выходы последних при 1 мол. % загрузке **МОF1**·**Ru** составляют 80–99% при практически 100% энантиоселективности (схема 2).

Еще один эффективный и стереоселективный катализатор этой реакции – **MOF2·RhCl** – синтезирован в группе W.Lin [22] взаимодействием [RhCl(C_2H_4)_2]₂ с ГХ МОКП [Zr₆(μ_3 -O)₄(μ_3 -OH)₄(L)₆] (**MOF2**) на основе хиральной дикарбоновой кислоты H₂L (схема 3, справа). Всего 0.025–0.25 мол. % **MOF2·RhCl** позволило осуществить стереоселективное присоединение фенилборных кислот к сопряженным енонам с образованием аддуктов Михаэля *S*-конфигурации с высоким выходом и отличным энантиомерным избытком (схема 3, табл. 2). Число оборотов для **MOF2·RhCl** сопоставимо с соответствующей величиной для гомогенного катализатора.

S. Kaskel и др. [23] осуществили энантиоселективное михаэлевское присоединение циклогексанона к β -нитростиролу, используя ГХ МОКП **МОF3**, синтезированный замещением формиат-анионов (fa) в МОКП [Zr₆O₆(OH)₂(tdc)₄(fa)₂] (**DUT-67**, tdc =

Таблица 1. Влияние природы катализатора и строения заместителей в алкенах на энантиоселективность их гидрирования (схема 1).

\mathbf{R}^1	R ²	[Ru]	ee, %
NHAc	Н	MOF1·Ru	85
NHAc	Ph	MOF1·Ru	70
CH ₂ CO ₂ Me	Н	MOF1·Ru	91
NHAc	Н	Ru(Me ₂ L)(DMF) ₂ Cl ₂	88

тиофен-2,5-дикарбоксилат) на L-пролин. В оптимизированных условиях (15 молн.% **MOF3**, *i*-PrOH/EtOH, 50°С, 168 ч) выход продукта присоединения близок к количественному, а его энантиомерный избыток составляет 38% (схема 4). Сопоставимые результаты получены при гомогенном катализе L-пролином (*ee* 42%).

1.3. ЭПОКСИДИРОВАНИЕ И ГИДРОКСИЛИРОВАНИЕ

С. Duan с сотр. [24] сообщали об энантиоселективном 1,2-дигидроксилировании стирола,

Енон	Ar	[Rh] в MOF2·RhCl , мол. %	Выход, %	<i>ee</i> , %	TON
	Ph	0.01	97	95	9700
//	Ph	0.005	67	94	13400
//	4-F-C ₆ H ₄	0.025	90	94	3600
//	$4-Ac-C_6H_4$	0.05	80	91	1600
//	4-MeO-C ₆ H ₄	0.01	84	96	8400
O V	Ph	0.1	82	90	820
o	Ph	0.1	93	70	930
Et Me	Ph	0.25	84	90	336

Таблица 2. Влияние строения реагентов и загрузки катализатора на выход и энантиоселективность реакции, представленной на схеме 3.

катализируемом ГХ МОКП на основе полиоксометалатных анионов $[BW_{12}O_{40}]^{5-}$ со структурой Кеггина. Искомый катализатор **МОF4** был получен сольвотермальной реакцией Ni₂H[BW₁₂O₄₀] с 4,4'-

Таблица 3. Влияние заместителей R на эффективность и энантиоселективность реакции 1,2-дигидроксилирования стиролов (схема 5).

R	Конверсия, %	ee, %
Ph	75	>95
$2-Cl-C_6H_4$	76	67
$3-Cl-C_6H_4$	79	>95
$4-Cl-C_6H_4$	75	>95

дипиридином и (L)-*N*-Вос-2-(имидазол)-1-пирролидином (L) с последующим выдерживанием образующегося МОКП в растворе диэтиламина (для удаления ионов HL⁺ из каналов). В гетерогенной системе **МОF4** (0.7 мол. %)/H₂O₂/ H₂O/CH₂Cl₂ стирол и его хлорзамещенные аналоги подвергаются 1,2-дигидроксилированию, давая (*R*)арил-1,2-этандиолы с хорошей и отличной энантиоселективностью (схема 5, табл. 3). Отметим, что катализатор может быть использован повторно, однако, его эффективность и селективность при этом снижается.

В более поздней работе [25] С. Duan с коллегами разработали еще один каталитическиактивный ГХ МОКП, построенный из анионов Кеггина $[ZnW_{12}O_{40}]^{6^-}$. D- и L-формы этого катализатора (D- и L-**MOF5**) синтезированы сольвотермальной реакцией [TBA]₄W₁₀O₃₂ с Zn(NO₃)₂, 2-амино-4,4'-дипиридином и (L)-*N*-Boc-2-(имидазол)-1-пирролидином. В присутствии этого МОКП (1 мол. %) происходит энантиоселективное окисление стиролов *трет*-бутилгидропероксидом: L-**MOF5** индуцирует образование (*R*)-оксиранов (*ee* 75–93%), а D-**MOF5** – их (*S*)-формы (*ee* 70– 76%) (схема 6).

присутствии Bu₄NBr, В D-И L-MOF5 катализируют энантиоселективное присоединение СО₂ к оксиранам с сохранением исходной конфигурации хирального центра [25]. Например, (*R*)-оксид стирола количественно превращается в (R)-фенилэтиленкарбонат с ее 90-96%. Авторы показали, что обе реакции – эпоксидирование стиролов и образование этиленкарбонатов – могут быть выполнены в режиме «one-pot». Так, в системе CO₂/**MOF5** (0.1 мол. %)/*t*-BuOOH/C₁₀H₂₂ превращение стиролов в арил-замещенные этиленкарбонаты происходит с высоким выходом и энантиомерным избытком от 55 до 80% (схема 7).

У. Сиі и др. [26] синтезировали представительный ряд ГХ МОКП для гетерогенного катализа однореакторного асимметрического эпоксидирования алкенов с последующим раскрытием генерируемых *in situ* оксиранов под действием различных нуклеофилов. Взаимодействием Zn(NO₃)₂ с сален-содержащими кислотами (одной или несколькими) могут быть выделены ГХ МОКП, содержащие один, два или три различных каталитически-активных металла (Cu^{II}, V^{IV}, Cr^{III}, Mn^{III}, Fe^{III}, Co^{III}) в хиральном окружении (схема 8).

MOF6^{CuMn} и **MOF6**^{CuFe} проявили высокую энантиоселективность в реакции эпоксидирования 2*H*-хроменов под действием иодозоаренов [26]. Высокая конверсия исходных алкенов достигается в достаточно мягких условия, а значения *ee* образующихся оксиранов достигают 93% (схема 9).

Используя **МОF6**^{CuMnCr}, объединяющий в своей структуре ионы Mn^{3+} (катализирующие эпоксидирование C=C связи) и ионы Cr^{3+} или Co^{3+} (промотирующие раскрытие оксиранового цикла),

$$R^1 = H, F, Cl, Br, Me, MeO, CN, NO_2, Ph, etc.;$$

 $R^2 = Me, Et, -(CH_2)_5-.$

авторам [26] удалось осуществить «опе-рот» превращение 2*H*-хроменов в продукты их 3,4гидроксиаминирования, -гидроксиазидирования и т.д. В качестве примера можно привести **МОF6**^{СиМnCr}-катализируемое асимметрическое 3,4гидроксиаминирование, -тиилирование и -азидирование EDG- и EWG-замещенных 2*H*-хроменов под действием анилина, бензилмеркаптанов и Me₃SiN₃, соответственно, в присутствии окисилителя (схема 10). **МОF6**^{СиMnCr} в этих условиях проявил высокую каталитическую активность и отличную энантиоселективность: для большинства субстратов значения *ее* были близки к 90% [26].

ГХ МОКП **МОF6**^{СиМпСо} [26] также характеризуется достаточно высокими показателями энантиоселективности в реакциях 3,4-дигидроксилирования, -алкоксилирования и -карбоксилирования

2Н-хроменов (схема 11).

 k^{2}

ee 82-99%

Nu = PhNH, $ArCH_2S$, N_3 .

Отличная энантиоселективность в подобной реакции была достигнута с использованием пористого ГХ МОКП **МОF7**, сочетающего в своей структуре V^{V} -саленовые дикарбоксилаты и (FeL)₂(µ₂-O)-саленсодержащие тетрапиридины, связанные Cd²⁺-центрами [27]. В присутствии 5 мол. % **МОF7** и иодозобензола, 2*H*-хромены легко реагируют с различными анилинами, образуя продукты гидроксиаминирования с высоким выходом и очень высокой энантиоселективностью (схема 12, табл. 4), сопоставимой по показателями *ее* с гомогенным катализатором. Исключение

Схема 11.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 55 № 6 2019

Схема 13.

составляет стерически затрудненный 4-тритиланилин, практически не реагирующий в данных условиях.

III. РЕАКЦИИ ПРИСОЕДИНЕНИЯ ПО С=О СВЯЗИ

3.1. ЦИАНОСИЛИЛИРОВАНИЕ

Цианосилилирование альдегидов – одна из наиболее популярных реакцией для тестирования асимметрической индукции в ГХ МОКП. Причина этого, по-видимому, заключается в легкости проведения этой реакции и востребованности хиральных циангидринов как прекурсоров для синтеза биологически важных молекул. К настоящему времени наиболее распространенными и эффективными ГХ МОКП, катализирующими энантиоселективное цианосилилирование альдегидов является каркасные соединения с металлсаленовыми фрагментами.

Примером такого катализатора может служить V^{V} -содержащий пористый МОКП **МОF8**, полученный Y. Cui с коллегами из дикабоновой кислоты (H₂L) по следующей схеме (схема 13) [28].

Таблица 4. Влияние заместителей в 2*H*-хроменах и анилинах на эффективность и энантиоселективность реакции гидроксиаминирования (схема 12).

R	Ar	Конверсия, %	ee, %
Н	Ph	93	94
6-Me	Ph	77	96
6-F	Ph	77	95
6-Br	Ph	87	93
Н	3-Me-C ₆ H ₄	85	94
Н	2-MeO-C ₆ H ₄	79	91
Н	4-MeO-C ₆ H ₄	76	93
Н	$4-I-C_6H_4$	91	99
Н	4-Trityl-C ₆ H ₄	< 5	_

МОF8 проявил высокую энантиоселективность в реакции присоединения Me₃SiCN к арил- и гетарилальдегидам (схема 14, табл. 5) [28]. При использовании 1 мол. % *R*-формы этого ГХ МОКП образуются S-аддукты с высоким ее при практически полной конверсии исходного альдегида. Напротив, МОКП (S)-MOF8 катализирует формирование *R*-аддуктов (показано на примере анисового альдегида). Невысокое значение ее для аддукта с антрацен-9-карбальдегидом, вероятно, обусловлено стерическими факторами, что также подтверждается нулевой конверсией более объемного короненкарбальдегида. Важно отметить, что хиральный гомогенный катализатор, приготовленный из диметилового эфира VO(сален)-содержащей дикарбоновой кислоты, характеризуется значительно меньшей асимметрической индукцией [28].

			Схема 14.		
0 	+	MesSiCN	<i>R</i> ⁻ or <i>S</i> - MOF8 (1 мол. %) Ph ₃ PO	. (OSiMe₃ ∗
R	Н	Wegsterv	Cl(CH ₂) ₂ Cl, 0°С, 36 ч	R	CN

Таблица 5. Влияние заместителей в альдегидах и природы катализатора на эффективность и энантиоселективность реакции цианосилилирования (схема 14).

R	Катализатор	Конверсия, %	ee, %
Ph	(<i>R</i>)-MOF8	93	92 (<i>S</i>)
$4-Br-C_6H_4$	(<i>R</i>)-MOF8	94	92 (<i>S</i>)
$4-Me-C_6H_4$	(<i>R</i>)-MOF8	90	92 (S)
$3-MeO-C_6H_4$	(<i>R</i>)-MOF8	92	95 (S)
$4-MeO-C_6H_4$	(<i>R</i>)-MOF8	90	94 (<i>S</i>)
$4-MeO-C_6H_4$	(S)-MOF8	88	92 (<i>R</i>)
1-Naphthyl	(<i>R</i>)-MOF8	91	92 (<i>S</i>)
2-Naphthyl	(<i>R</i>)-MOF8	90	95 (S)
2-Thienyl	(<i>R</i>)-MOF8	92	92 (S)
9-Anthral	(<i>R</i>)-MOF8	62	35 (S)

В 2016 г этими же авторами [29] были получены еще два подобных ГХ МОКП: МОГ9 - взаимодействием VO(сален)-содержащей дикарбоновой кислоты (сален H_2L на схеме 13) и $Cd(NO_3)_2$, а второй. смешаннолигандный MOF10 – взаимодействием этих же реагентов в присутствии 1 экв. аналогичной Cu^{II}(сален)-содержащей кислоты. Каталитически-активные формы этих МОКП, приготовленные окислением их V^{IV} центров до V^V , при загрузке 0.5-1 мол. % показали очень высокую асимметрическую индукцию (ее 67-99%) в образовании оптически активных аддуктов из Me₃SiCN и различных арил(гетарил)альдегидов. Конверсия последних в большинстве примеров была практически полной. Отдельного внимания заслуживает факт сохранения каталитической активности MOF9 и MOF10 после 10 циклов их повторного использования.

Другим примером сален-содержащих гетерогенных катализаторов цианосилилирования являются разработанные Y. Cui с сотр. [30] пористые ГХ МОКП **МОF11** и **МОF12**, включающие Ti-саленовые линкеры TiL(OBu)₂ (схема 15).

МОКП **МОF11** и **МОF12** в количестве 5 мол. % проявили умеренную и высокую энантио-

селективность в реакции присоединения Me₃SiCN к арил- и гетарилальдегидам в присутствии трифенилфосфиноксида (схема 16) [30]. (R)-MOF11 и (R)-MOF12 способствуют образованию *R*-энантиомеров силиловых эфиров циангидринов. Напротив, (S)-MOF11 индуцирует преимущественное формирование энантиомеров с такой же конфигурацией, как это было продемонстрировано на примере синтеза (S)-2-(4-метоксифенинил)-2-(триметилсилилокси)ацетонитрила с ее 91%. В остальном наблюдались те же зависимости энантиоселективности и реакционной способности, характерные для МОКП-катализируемых реакций. Важно, что указанные МОКП по показателям энантиоселективности значительно превосходят гомогенный катализатор – саленовый комплекс TiL(OBu)₂ (*ee* 3–5%).

Н. Јіапд и др. в 2017 г [31] путем взаимодействия $Cd(NO_3)_2$ с тетра(4-карбоксифенил)порфирином (H₆L') и Ni-саленовым комплексом NiL (лиганд L аналогичен по структуре салену на схеме 15) получили пористый ГХ МОКП [$Cd_2(NiL)(CdL')$]• [$Cd_2(NiL)(H_2L')$] (**MOF13**). (*R*)-форма последнего катализирует образование (*R*)-аддуктов из различных альдегидов и Me₃SiCN с *ee* от 55 до 98% (схема 17). Практически для всех альдегидов

908

Схема 18.

наблюдается высокая конверсия (81–96%). Стерически объемный антрацен-9-карбальдегид реагирует менее охотно (конверсия 42%), что, в целом, характерно для реакций, катализируемых пористыми МОКП.

Для катализа цианосилилилирования C=O группы, наряду с металл-саленовыми ГХ МОКП, могут быть также использованы МОКП с каталитическими сайтами другого типа. Например, в 2014 г Y. Cui [32] сообщал об асимметрическом катализе цианосилилилирования альдегидов на нанопористым ГХ МОКП [Zn₄O(L)_{3/2}] (**MOF14**), структура которого представлена на схеме 18. В присутствии 0.5 мол. % (*R*)-**MOF14**, Me₃SiCN практически количественно присоединяется по карбонильной группе альдегидов, давая *S*-аддукты с очень высоким *ee* (табл. 6). Общий характер

реакции ряде показан на альдегидов с ароматическими, гетероароматическими И непредельными заместителями, в том числе, с объемными. На примере синтеза (R)-2-фенил-2-(триметилсилилокси)ацетонитрила продемонстрирована принципиальная возможность получения *R*изомеров в присутствии S-MOF14 [32]. Разработанный катализатор был также успешно использован авторами в полном синтезе (S)-буфуралола (антагонист бета-адреноблокаторов), ключевая стадия которого включает энантиоселективное цианосилилирование 7-этилбензофуран-2-карбальдегида.

Оптически активные *О*-силиловые эфиры циангидринов можно получать и непосредственно из гидроксиметиларенов или -гетаренов, используя тандемную последовательность «окисление– асимметрическое цианосилилирование». Специаль-

Таблица 6. Влияние заместителей в альдегидах и природы катализатора на эффективность и энантиоселективность реакции цианосилилирования (схема 18).

R	Катализатор	Конверсия, %	ee, %
Ph	(<i>R</i>)-MOF14	97	98 (<i>S</i>)
Ph	(<i>S</i>)-MOF14	97	96 (<i>R</i>)
$4-Cl-C_6H_4$	(<i>R</i>)-MOF14	99	99 (<i>S</i>)
$4-NO_2-C_6H_4$	(<i>R</i>)-MOF14	99	>99 (S)
3-MeO-C ₆ H ₄	(<i>R</i>)-MOF14	99	81 (<i>S</i>)
3-Py	(<i>R</i>)-MOF14	97	>99 (<i>S</i>)
2-Furyl	(<i>R</i>)-MOF14	95	99 (<i>S</i>)
trans-PhCH=CH	(<i>R</i>)-MOF14	98	98 (<i>S</i>)
1-Naphthyl	(<i>R</i>)-MOF14	99	94 (<i>S</i>)
2-Naphthyl	(<i>R</i>)-MOF14	99	>99 (S)
9-Anthranyl	(<i>R</i>)-MOF14	67	67 (<i>S</i>)

ный гетерогенный катализатор для этой цели, ГХ МОКП **MOF15**, был синтезирован в группе Y. Cui из Cd(NO₃)₂, хирального VO-саленового комплекса и ТЕМРО-содержащей трикарбоновой кислоты (схема 19) [33].

MOF15 в количестве 2 мол. % эффективно катализирует «one-pot» тандемное окисление цианосилилирование EDG- и EWG-замещенных спиртов бензилового типа в системе *t*-BuONO/O₂/ Me₃SiCN/Ph₃PO (схема 20) [33]. Для большинства взятых субстратов циангидрины образуются с хорошей энантиоселективностью (*ee* 66–87%).

3.2. АЛЬДОЛЬНАЯ КОНДЕНСАЦИЯ

J. Canivet и др. [34] описали ряд модифицированных пептидами МОКП, проявивших низкую активность и скромную стереоизбирательность в альдольной реакции между 4-нитробензальдегидом и ацетоном. Сами катализаторы приготовлены пост-синтетической модификацией 2-аминотерефталат-аниона (по NH₂ группе) в известном пористом МОКП Al-MIL-101-NH₂ [35] путем его обработки Вос-защищенными олигопептидами. В качестве иллюстративного примера можно привести Al-MIL-101-NH-Gly-Pro, при использовании которого (15 мол. %) соответствующий альдоль образуется за 7 дней (25°С) с выходом 36% и ее 25% [34]. При повышении температуры до 45°С выход значительно возрастает (>95%), однако ее продукта снижается до 17%. Схожие показатели энантиоселективности для этой же реакции были получены с модифицированным (S)-пролиновыми группами МОКП **MUF-77** в качестве гетерогенного катализатора [36].

В целом, стоит отметить, что пролин-модифицированные ГХ МОКП являются перспективными гетерогенными катализаторами асимметрической альдольной конденсации. Некоторые из их обеспечивают существенную энантиоселективность и высокие выходы хиральных альдолей [37–39].

Интересным и очень продуктивным подходом к дизайну хиральных гетерогенных катализаторов является недавно описанная [40] функционализация известного МОКП **Cr-MIL-101** путем

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 55 № 6 2019

сополимеризации в его полостях метилакрилата с хиральным виниловым мономером (продукт Оалкилирования *транс*-Вос-4-гидрокси-L-пролина 4-хлорметилстиролом). После снятия Вос-групп с хирального сополимера (внутри пор Cr-MIL-101) полученный пористый композит Cr-MIL-101-PP, содержащий кислотные центры (Cr³⁺) и основные группы (L-пролин), способен катализировать энантиоселективное присоединение циклогексанона к замещенным бензальдегидам (схема 21) [40]. Как видно из данных таблицы 7, использование Cr-MIL-101-PP практически для всех субстратов обеспечивает впечатляющие показатели энантиоселективности и выходов хиральных альдолей при значениях диастереоселективности (соотношение анти/синизомеров) от хороших (8:1) до высоких (>20:1).

3.3. РЕАКЦИЯ АНРИ

В качестве иллюстративного примера применения ГХ МОКП для катализа реакции Анри можно привести **MOF16**, характеризующийся выдаю-щимися показателями активности и асимметрической индукции. **MOF16** был получен восстановлением иминогрупп (действием NaBH₄) в MOКП [Cd₂(L)(ДМФА)₃], приготовленном сольвотермальным синтезом из Cu^{II}-сален-содержащей тетракарбоновой кислоты H₄L и CdI₂ в диметилформамиде (схема 22) [41].

В присутствии 1 мол. % R-MOF16 и (i-Pr $)_2$ EtN (сокатализатор) нитрометан энантиоселективно присоединяется к различным алкил-, арил- и гетарилкарбальдегидам, образуя (R)-аддукты (схема 23,

Таблица 7. Влияние заместителей в альдегидах и продолжительности реакции на ее эффективность и энантиоселективность (схема 21).

MOF₁₆

R	Время реакции	Выход, %	ee, %	Анти/син
3-NO ₂	36 ч	89	92	11:1
2-NO ₂	5 д	84	93	13:1
4-Cl	6ч	63	87	8:1
4-CF ₃	24 ч	70	93	>20:1
4-CN	48 ч	99	91	8:1

табл. 8) [41]. Для большинства субстратов выходы продуктов реакции были высокие, а значения *ее* превышают 90%. Исключение составляют альдегиды с объемными заместителями (1-нафтил, 9-антранил), а также 4-нитробензальдегид. 1-Пиренкарбальдегид вообще не реагирует в этих условиях, что, повидимому, обусловлено большой стерической загруженностью его молекул, препятствующей их доступу к каталитическим сайтам (Cu²⁺) внутри пор **MOF16**.

В работе [42] описано еще несколько ГХ МОКП на основе (R)-4-(4-(1-карбоксиэтокси)фенокси)-3хлорбензойной кислоты, проявляющих каталитическую активность в реакции Анри. Однако, все они характеризуются скромными показателями асимметрической индукции (*ee* до 21%).

$$R \xrightarrow{\text{Cxema 23.}} R \xrightarrow{\text{R-MOF16 (1 MOЛ. \%),}} (i-Pr)_2 \text{EtN} \xrightarrow{\text{OH}} NO_2$$

Таблица 8. Влияние заместителей в альдегидах на эффективность и энантиоселективность реакции Анри (схема 23).

R	Выход, %	ee, %	TON
Bu	98	91	198
Су	84	92	155
Ph	71	95	135
2-MeO-C ₆ H ₄	88	98	172
3-MeO-C ₆ H ₄	84	92	155
4-MeO-C ₆ H ₄	78	91	142
2-NO ₂ -C ₆ H ₄	73	91	133
$4-NO_2-C_6H_4$	61	67	82
2-Furyl	86	93	160
2-Py	98	93	182
1-Naphthyl	31	81	50
9-Anthtanyl	11	45	10
1-Pyrenyl	следы	_	_

3.4. РЕАКЦИЯ МОРИТА-БЕЙЛИСА-ХИЛЛМАНА

У.-В.Dong с коллегами [43] разработали композитный гетерогенный катализатор TiO₂@MOF17, проявивший высокую каталитическую активность и асимметрическую индукцию в реакции Морита– Бейлиса–Хиллмана. Композит TiO₂@MOF17 получен по схеме 24, включающей сольвотермальную реакцию хиральной кислоты H_2L -CIL с ZrCl₄, выдерживание образующегося ГХ МОКП типа UiO-68 (**MOF17**) в растворе Ti(O*i*-Pr)₄ и последующий гидролиз последнего в порах **MOF17**. В результате этих операцией был выделен перманентно-пористый композит **TiO₂@MOF17**, содержащий одновременно хиральные осно́вные центры (2-замещенный L-пирролидин), фотокаталитически-активные частицы TiO₂, а также фрагменты ионной жидкости (катион имидазолия).

Как **MOF17**, так композит на его основе (**TiO**₂@**MOF17**), за счет наличия хиральных осно́вных центров в их структуре, являются эффективными гетерогенными катализаторами для асимметрической реакции Морита–Бейлиса–Хиллмана (схема 25) [43]. Например, присоединение метилакрилата к различным бензальдегидам на **TiO**₂@**MOF17** (2 мол. %) приводит с хорошим выходом к (R)-аддуктам высокой оптической чистоты (некоторые примеры см. табл. 9).

Фотоактивность частиц TiO₂, иммобилизованных в **TiO₂@MOF17**, открывает возможность получения аддуктов Морита–Бейлиса–Хиллмана непосредственно из бензиловых спиртов [43]. С помощью тандемной последовательности реакций фотоокисления этих спиртов (O₂, 1 атм, облучение светом с $\lambda > 400$ нм) и присоединения метилакрилата к образующимся бензальдегидам можно получать соответствующие аддукты с высокой оптической чистотой (*ee* 81–98%) и выходами от 12% (из 4-нитробензилового спирта) до 99% (из анизилового спирта).

3.5. ГИДРИРОВАНИЕ И КАРБОАЛЮМИНИРОВАНИЕ

Вышеупомянутый **MOF1·Ru** оказался эффективным гетерогенным катализатором и для гидрирования кетогруппы β -кетоэфиров (схема 26) [21]. При давлении водорода 40 Бар **MOF1·Ru** (0.5 мол. %) вызывает превращение различных β кетоэфиров в эфиры β -гидроксикислот с количественным выходом и очень высоким значением *ее* (94–97%).

Структурно-подобный МОКП **МОF1·Rh** проявил отличную энантиоселективность в асимметрическом карбоалюминировании циклических α,β енонов триметилалюминием (схема 27) [21]. Уже при 0.4 мол. % загрузке катализатора происходит образование оптически-чистых (*ee* 98–99%) спиртов аллильного типа с высоким выходом. Сопоставимые результаты получены с гомогенным катализатором на основе Rh(I) и 4,4'-бис(4метоксикарбонилфенилэтинил)ВINAP.

IV. РЕАКЦИИ ЦИКЛИЗАЦИИ

N. Jeong с коллегами, используя хиральные МОКПы, осуществили энантиоселективный вариант циклизации 3,3,7-триметилоктен-6-аля и его 7-алкилзамещенных аналогов в 5,5-диметил-2-алкенил-циклогексанолы [44–46] Новые ГХ гетерогенные катализаторы были синтезированы путем пост-синте-

Таблица 9. Влияние заместителей в альдегидах на эффективность и энантиоселективность реакции Морита–Бейлиса–Хиллмана (схема 25).

R	Выход, %	ee, %
2-Me	68	85
3-Me	85	93
4-Me	97	96
2-MeO	88	90
4-MeO	99	99
2-NO ₂	44	87
4-NO ₂	64	98

тической модификации МОКП $[Cu_2(S-L)_2(H_2O)_2]$ (**MOF18**), легко получаемого из $Cu(NO_3)_2$ и (*S*)или (*R*)-2,2'-дигидрокси-6,6'-диме-тил-(1,1'-дифенил)-4,4'-дикарбоновой кислоты. Например, обработка *S*-**MOF18** избытком Me₂Zn приводит к Zn-модифицированному МОКП **Zn/S-MOF18**, который эффективно катализирует циклизацию 3-метилгераниаля в соответствующий циклогексанол (схема 28). При использовании 1.5 экв. **Zn/S-MOF18** выход продукта составляет 89%, а величина *ee* – 23%. Двукратное увеличение количества катализатора позволяет значительно повысить оптическую чистоту продукта циклизации до *ee* 50%, а выход при этом увеличивается до 92%. Мажорный

Схема 29.

стереоизомер имеет S(C1),R(C2)-конфигурацию. Стоит, однако, отметить, что гомогенный катализатор – Zn(II) соль *R*-BINOL – в аналогичных условиях показывает значительно более высокую асимметрическую индукцию для данной реакции (*ee* от 37 до 90%) [44]. В последующей работе [45] авторы детально исследовали влияние времени контакта регента с катализатором, а также размеры кристаллов последнего на стереохимический результат реакции.

Ті-модифицированный МОКП Ті/*R*-МОF18, *R***-MOF18** Ti(O*i*-Pr)₄, получаемый обработкой катализирует циклизацию 3-метилгераниаля и его 7-алкилзамещенных аналогов в циклогексанолы с сопоставимой энантиоселективностью (ее 24%. схема 29, табл. 10) [46]. Значительно повысить асимметрическую индукцию удалось за счет дальнейшей модификации Ti/R-MOF18 обработкой (R)- или (S)-BINOL. Полученные таким путем МОКП *R*- и *S*-МОF19 (оба содержат около 5% BINOL) при загрузке в 10 мол. % обеспечивают значительно более высокую энантиоселективность в исследуемой реакции (табл. 10). Интересно отметить, что из двух гетерогенных систем, S-MOF19 и R-MOF19, первая позволяет добиться более высокой стереоселективности (ее 9-67%), которая сопоставима с таковой для гомогенных катализаторов (ее 5-70%).

К. Tanaka и др. [47] сообщали об асимметрическом катализе реакции Дильса-Альдера пористым ГХ ПОКП *R*-MOF20, полученным из Cu(NO₃)₂ и (*R*)-2,2'-дигидрокси-1,1'-динафтил-4,4'дибензойной кислоты. В присутствии 3.4 мол. % *R***-MOF20** изопрен реагирует с различными *N*замещенными малеинимидами, образуя в мягких условиях советующие аддукты (схема 30). Как видно из табл. 11. заместители R оказывают сильное влияние на стереоселективность данной реакции и выход продукта. Наибольшие значения ее и выход аддукта наблюдались лишь для *N*-этил- (75 и 81%, соответственно) и *N*-метилмалеин-имидов (37 и 37%, соответственно). Малеинимиды с более объемными заместителями (Pr, Ph, Cy) образуют продукты циклоприсоединения с низкими выходами и незначительной энантиоселективностью. Конфигурация стереоцентров в мажорных изомерах, к сожалению, не устанавливалась [47].

Реакция Дильса-Альдера также эффективно катализируется ГХ МОКП **МОF21**, синтезированным из Cr^{III}-сален-содержащей кислоты Cr(H₂L)Cl (саленовый лиганд H₂L аналогичен представленному на схеме 13), CdI₂ и NaOAc [48]. В присутствии 5 мол. % **МОF21** и молекулярных сит (4 Å) диены Оппольцера-Овермана легко реагируют с акролеином и его 2-алкильными производными, давая циклоаддукты с очень высокой энантиоселективностью (схема 31, табл. 12).

R	Катализатор	Выход, %	ee, %
Me	Ti/ <i>R</i> -MOF18	85	24
Me	<i>R</i> -MOF19	88	47
Me	<i>S</i> -MOF19	79	67
(CH ₂) ₃ CHMe ₂	Ti/ <i>R</i> -MOF18	88	7
(CH ₂) ₃ CHMe ₂	<i>R</i> -MOF19	80	13
(CH ₂) ₃ CHMe ₂	<i>S</i> -MOF19	75	37
(CH ₂) ₂ CH(Me)(CH ₂) ₂ CHMe ₂	Ti/ <i>R</i> -MOF18	83	0
(CH ₂) ₂ CH(Me)(CH ₂) ₂ CHMe ₂	<i>R</i> -MOF19	68	9
(CH ₂) ₂ CH(Me)(CH ₂) ₂ CHMe ₂	<i>S</i> -MOF19	70	30

Таблица 10. Влияние природы катализатора и заместителей в альдегидах на эффективность и энантиоселективность реакции циклизации (схема 29).

Таблица 11. Влияние природы заместителей в малеинимидах на эффективность и энантиоселективность реакции Дильса-Альдера (схема 30).

R	Выход, %	ee, %
Me	37	37
Et	81	75
Pr	11	5
Ph	17	7
Су	18	0

МОF21 оказался эффективным катализатором и для гетерореакции Дильса-Альдера между диеном Данишевского и ароматическими альдегидами (схема 32, табл. 13) [48]. Бензальдегид, его гало- и нитропроизводные образуют соответствующие 2,3дигидропироны с высокой энантиоселективностью (*ee* 72–79%) при высокой конверсии реагентов. Отметим, что в обоих реакциях (схемы 31 и 32) **МОF21** превосходит по показателям энантиоселективности схожий по структуре гомогенный катализатор. Число оборотов (TON) для МОКП в 3.1–4 раза выше, чем для гомогенных систем. W. Lin и др., используя Rh-модифицированные пористые ГХ МОКП на основе BINAP-содержащих лигандов, провели целый ряд энантиоселективных реакций циклизации [49]. Катализаторы **MOF22·RhCl** и **MOF22·Rh(BF4)** были получены взаимодействием ZrCl₄ с 4,4'-бис(4-карбоксифенилэтинил)BINAP (H₂L) с последующей обработкой образующегося MOKП [Zr₆(OH)₄O₄(L)₆] (**MOF22**) комплексами [Rh(nbd)Cl]₂ и [Rh(nbd)₂]BF4, соответственно [49]. **MOF22·Rh(BF4)** проявил высокую стереоселективность в восстановительной циклизации 1,6-енинов в присутствии водорода H₂

Таблица 12. Влияние природы заместителей в диенах и диенофилах на эффективность и энантиоселективность реакции Дильса-Альдера (схема 31).

\mathbf{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	\mathbb{R}^5	Конверсия, %	ee, %
MeO	Н	Н	Н	Me	90	87
MeO	Me	Н	Н	Me	32	86
MeO	Н	Me	Н	Me	79	91
MeO	Н	Н	Me	Me	30	87
Me	Н	Н	Н	Me	81	81
MeO	Н	Н	Н	Н	88	84
MeO	Н	Н	Н	Et	81	83

Таблица 13. Влияние природы заместителей в альдегидах на эффективность и энантиоселективность гетерореакции Дильса–Альдера (схема 32).

Ar	Конверсия, %	ee, %
Ph	87	78
2-F-C ₆ H ₄	89	78
4-F-C ₆ H ₄	84	79
4-Br-C ₆ H ₄	86	72
3-NO ₂ -C ₆ H ₄	83	75
4-NO ₂ -C ₆ H ₄	77	75

(схема 33). Использование **МОF22**·**Rh**(**BF**₄) в количестве 1–6 мол. % позволяет получать (*S*)-изомеры продуктов циклизации с отличной энантиоселективностью и высоким выходом (табл. 14).

В присутствии **MOF22·RhCl** (0.2–0.5 мол. % в пересчете на Rh) и AgSbF₆ (CH₂Cl₂, 25°C, 2–20 ч) различные 1,6-енины подвергаются Альдер-еновой циклизации, образуя продукты перегруппировки с практически 100% энантиоселективностью и высокими выходами [49]. Реакция имеет общий характер и позволяет синтезировать ряд заме-

щенных 3-этилидентетрагидрофуранов и 3этилиден-2-пирролидонов (схема 34).

В этой же работе [49] был получен еще один гетерогенный катализатор, проявивший высокую стереоизбирательность в реакции Посона-Кханда. Искомый катализатор (**MOF23·RhCl**), по существу, представляет собой **MOF22·RhCl**, в котором небольшая часть 4,4'-бис(4-карбоксифенилэтинил)-ВINAP лигандов замещена на 4,4'-бис(4-карбоксифенилэтинил)-2-нитро-1,1'-дифенил. В присутствии каталитических количеств **MOF23·RhCl** реакция

Схема 33.

Таблица 14. Влияние структуры 1,6-енинов и загрузки катализатора на эффективность и энантиоселективность восстановительной циклизации (схема 33).

Х	R	МОF22·Rh(BF₄) , % (в пересчете на Rh)	Выход, %	<i>ee</i> , %
0	$4-\text{Me-C}_6\text{H}_4$	3	95	95
0	Ph	3	89	96
О	$4-\text{MeO-C}_6\text{H}_4$	3	87	95
О	4-t-Bu-C ₆ H ₄	3	82	99
О	$4-CF_3-C_6H_4$	3	70	94
О	$3,5-Ph_2-C_6H_3$	1	16	88
NTs	Me	3	83	67
NTs	Ph	6	99	88

1,6-енинов с коричным альдегидом приводит к 3а,4дигидро-1*H*-циклопента[*c*]фуран-5(3*H*)-онам или -пиррол-5(3*H*)-онам (схема 35). Стереоэлектронные эффекты заместителей R в 1,6-енинах оказывают сильное влияние как на стереоселективность реакции, так и на выход продуктов (табл. 15). Для большинства субстратов были получены средние и высокие значения *ee*.

V. ОКИСЛЕНИЕ СУЛЬФИДОВ В СУЛЬФОКСИДЫ

Первым примером ГХ МОКП, который был использован для каталитического сульфоксидирования органических сульфидов, по-видимому, является пористый МОКП [Zn₂(bdc)(Lac)] (**MOF24**), синтезированный из Zn(NO₃)₂, молочной

Таблица 15. Влияние структуры 1,6-енинов и загрузки катализатора на эффективность и энантиоселективность реакции Посона-Кханда (схема 35).

Х	R	Выход, %	<i>ee</i> , %
0	4-Cl-C ₆ H ₄	80	82
О	$4-CF_3-C_6H_4$	80	55
0	4-MeO-C ₆ H ₄	62	67
0	4-Me-C ₆ H ₄	67	83
0	Ph	79	87
0	4- t -Bu-C ₆ H ₄	60	81
NTs	Me	91	58
NTs	Ph	88	10
C(CO ₂ Me)	Me	80	70
C(CO ₂ Me)	Ph	85	12

Схема 36.

$$R^{1} R^{2} + H_{2}O_{2} \xrightarrow{MOF25 (0.04 \text{ MOR. \%})} O_{1} R^{1} S_{R^{2}}$$

\mathbb{R}^1	R^2	Выход, %	<i>ee</i> , %
Me	Ph	44	56 (R)
Et	Ph	67	56(<i>R</i>)
Me	4-Me-C ₆ H ₄	35	39(<i>R</i>)
Me	4-MeO-C ₆ H ₄	69	40(<i>R</i>)
Me	4-Cl-C ₆ H ₄	53	41(<i>R</i>)
Me	$2-Cl-C_6H_4$	6	13(<i>R</i>)
H ₂ C=CH	Ph	15	64(<i>R</i>)
Me	2-Naphth	27	65(<i>R</i>)
Me	PhCH ₂	79	80(<i>R</i>)

Таблица 16. Влияние заместителей в сульфидах на эффективность и энантиоселективность реакции сульфоксидирования (схема 36).

(*R*- или *S*-Lac) и терефталевой (bdc) кислот [50]. Данный МОКП показал высокую каталитическую активность и селективность (сульфоны при этом образуются в малых количествах) в окислении арил(алкил)сульфоксидов с небольшими алкильными заместителями. Асимметрическая индукция, однако, при этом практически не проявляется [50, 51]. Вместе с тем **МОF24** оказался эффективным хиральным сорбентом, позволяющим проводить энантиоселективную сорбцию сульфоксидов и добиваться ~20% *ее* в пользу *S*-изомеров [52]. Одновременное использование каталитической и сорбционной активностей **МОF24** позволило реализовать одностадийное превращение несимметричных сульфидов в энантиомерно обогащенные сульфоксиды.

В 2013 г Танака с сотр. [53] опубликовал данные о каркасном МОКП [$Cu_2(5,5'-BDA)_2$] (**MOF25**) на основе (*R*)-BINOL-5,5'-дикарбоновой кислоты (5,5'-BDA), который катализирует окисление несимметричных сульфидов. В присутствии **MOF25** (0.04 мол. %) различные сульфиды в мягких условиях окисляются перекисью водорода или ее комплексом с мочевиной (схема 36), образуя сульфоксиды с высоким выходом и энантиомерным избытком до 82% в пользу *R*-стереоизомеров (табл. 16). Важно отметить, что образования сульфонов в этих условиях не происходит, а отделенный от реакционной смеси **MOF25** может быть использован повторно [53].

VI. ПРОЧИЕ ТРАНСФОРМАЦИИ

Исследовательской группой под руководством Н. Jiang недавно [53] были синтезированы два циркониевых ГХ МОКП MOF26 и MOF27, содержащих в своей структуре каталитическиактивные Mn³⁺-саленовые фрагменты – Cy-salen и Ph-salen (см. рисунок). Оба МОКП проявили высокую каталитическую активность в реакции асимметрического С-Н азидирования арилалканов системой NaN₃/PhIO (табл. 17). Реакция протекает в присутствии 0.5 мол. % катализатора (ацетон, 25°С), приводя к 1-азодио-1-арилалканам с высокой региои энантиоселективностью (ее достигают 93%). Более того, MOF26 и MOF27 проявляют заметно высокую стереоизбирательность более по сравнению с гомогенными катализаторами Суsalen и Ph-salen (особенно учитывая, что последние были использованы в количестве 5 мол. %).

В работе [54] описывается использование модифицированного хиральными лигандами МОКП MIL-101 для асимметрического восстановления имина силикохлороформом в мягких условиях (схема 37, табл. 18). ГХ катализатор – [MIL-101(L)₂] (**MOF28**) – приготовлен путем обработки предварительно активированного **MIL-101** хиральным лигандом L на основе замещенного *N*-формилпролина. Реакция проходит с 10 мол. % **MOF28** или самого лиганда с довольно низкой энантиоселективностью (*ее* до 37%).

Таблица 17. Влияние природы катализатора на эффективность и энантиоселективность реакций С_{*sp*3}–Н азидирования арилалканов в присутствии PhIO.

Реакция	Катализатор	Конверсия, %	Селективность, %	ee, %
	MOF26	82	72	75
NaN ₃ , PhIO N ₃	MOF27	82	76	93
Ph Et Cat Ph Et	Cy-salen	63	43	62
	Ph-salen	65	45	80
	MOF26	80	71	70
Ph NaN ₃ , PhIO N ₃	MOF27	79	64	45
Ph Cat Ph Ph	Cy-salen	56	62	21
	Ph-salen	47	57	14
Na	MOF26	78	65	60
Et NaN ₃ , PhIO	MOF27	81	67	70
Br Cat Et	Cy-salen	45	46	20
Br	Ph-salen	50	35	36

Реакция Фриделя-Крафтса между индолом и *N*сульфанилальдиминами катализируется МОКП $[Cu_2(L)(H_2O)_2]$ (**MOF29**), полученным из $Cu(NO_3)_2$ и производного (*R*)-1,1'-бинафтил-2,2'-фосфорной кислоты (H₄L) (схема 38) [55]. Реакция приводит к преимущественному образованию *R*-изомеру образующегося аддукта с *ee* 42%. Интересно отметить, что метиловый эфир указанной кислоты (Me₄L) способствуют преимущественному образованию *S*изомера (*ee* 40%). Энантиоселективное присоединение фенилборных кислот к *N*-тозилальдиминам легко реализуется в присутствии 3 мол. % гетерогенного катализатора **MOF2·Rh(acac)**, приготовленного из ГХ МОКП [Zr₆(μ_3 -O)₄(μ_3 -OH)₄(L)₆] (**MOF2**) и [Rh(acac)(C₂H₄)]₂ [22]. Реакция позволяет получать оптически активные замещенные (*S*)-*N*-тозилдифениламины с ~98% энантиоселективностью и высоким выходом (схема 39). Контрольный гомогенный катализатор проявил в этой реакции

Таблица 18. Влияние природы катализатора на температуры на эффективность и энантиоселективность восстановления имина силикохлороформом (схема 37).

Катализатор	Температура, °С	Выход, %	<i>ee</i> , %
MOF28	0	68	34
MOF28	25	81	37
L	25	71	21
L	0	74	30

Схема 38.

 H_4L : R = COOH.

МОF29: 42% *ее* (*R*-изомер) **Me**₂L: 40% *ее* (*S*-изомер)

Схема 39.

более низкую активность и асимметрическую индукцию.

ЗАКЛЮЧЕНИЕ

Представленные результаты демонстрируют перспективность применения ГХ МОКП для асимметрического катализа важнейших органических реакций. Катализаторы на основе ГХ правило, обладают МОКП, как высокой каталитической активностью, а в ряде примеров, характеризуются и высокой асимметрической индукцией, которая сопоставима или даже превосходит таковую для гомогенных катализаторов. Во многих случаях возможно многократное использование ГХ МОКП при незначительном или заметном снижении их каталитической активности стереоизбирательности. Среди И наиболее эффективных и распространенных типов ГХ МОКП. пригодных для асимметрического катализа. набольшим потенциалом обладают полимеры, построенные из хиральных лигандов саленового типа и производных BINAP. Вместе с тем стоит отметить, что наилучшие показатели энатиоселективности показывают ГХ МОКП, в структуру которых входят довольно сложные энантиочистые органические лиганды, синтез которых может представлять отдельную задачу. Поэтому рациональный дизайн и разработка новых ГХ МОКП на основе доступных хиральных лигандов (например, природного происхождения) остается на сегодня актуальным задачей. Ее решение позволит, во многом, существенно продвинуться к более широкомасштабному введению ГХ МОКП в практику энантиоселективного органического синтеза.

ФОНДОВАЯ ПОДДЕРЖКА

Обзор подготовлен при поддержке базового бюлжетного финансирования.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Mikami K., Lautens M. New Frontiers in Asymmetric Catalysis. Weinheim, J. Wiley & Sons Inc., 2007.
- 2. Мальцев О.В., Белецкая И.П., Злотин С.Г. Усп. хим. 2011, 80, 1119. [Maltsev O.V., Beletskaya I.P., Zlotin S.G. Russ. Chem. Rev. 2011, 80, 1067.] doi 10.1070/ RC2011v080n11ABEH004249
- 3. Павлов В.А., Павлова Т.Н. Усп. хим. 2012, 81, 823. [Pavlov V.A., Pavlova T.N. Russ. Chem. Rev. 2012, 81, 823.] doi 10.1070/RC2012v081n09ABEH004305
- 4. Beletskava I.P., Averin A.D. Curr. Organocatal. 2016, 3. 60. doi 10.2174/2213337202666150505230013
- 5. Beletskaya I.P., Nájera C., Yus M. Chem. Rev. 2018, 118, 5080. doi 10.1021/acs.chemrev.7b00561
- 6. Anokhin M.V., Feofanov M.N., Averin A.D., Beletskaya I.P. ChemistrySelect. 2018, 3, 1388. doi 10.1002/slct.201703028
- 7. Клабуновский Е.И. Катализ в промышленности. 2005.3.
- 8. Blaser H.-U., Federsel H.-J. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Second Edition. Weinheim: J. Wiley & Sons Inc., 2010.
- 9. Юткин М.П., Дыбцев Д.Н., Федин В.П. Усп. хим. 2011, 80, 1061. [Yutkin M.P., Dybtsev D.N., Fedin V.P. Russ. Chem. Rev. 2011, 80, 1009.] doi 10.1070/ RC2011v080n11ABEH004193
- 10. Corma A., García H., Llabrés i Xamena F.X. Chem. Rev. 2010, 110, 4606. doi 10.1021/cr9003924
- 11. Xu W., Thapa K.B., Ju Q., Fang Z., Huang W. Coord. Chem. Rev. 2018, 373, 199. doi 10.1016/ j.ccr.2017.10.014
- 12. Yang D., Gates B.C. ACS Catal. 2019, 9, 1779. doi 10.1021/acscatal.8b04515
- 13. Ma L., Abney C., Lin W. Chem. Soc. Rev. 2009, 38, 1248. doi 10.1039/B807083K
- 14. Wang C., Zheng M., Lin W. J. Phys. Chem. Lett. 2011, 2, 1701. doi 10.1021/jz200492d
- 15. Leus K., Liu Y.-Y., Van Der Voort P. Cat. Rev.-Sci. Eng. 2014, 56, 1. doi 10.1080/01614940.2014.864145
- 16. Chughtai A.H., Ahmad N., Younus H.A., Laypkovc A., Verpoort F. Chem. Soc. Rev. 2015, 44, 6804. doi 10.1039/C4CS00395K

- 17. Gheorghe A., Tepaske M.A., Tanase S. Inorg. Chem. Front. 2018, 5, 1512. doi 10.1039/C8QI00063H
- 18. Wen Y., Zhang J., Xu Q., Wu X.-T., Zhu Q.-L. Coord. Chem. Rev. 2018, 376, 248. doi 10.1016/ j.ccr.2018.08.012
- 19. Bhattacharjee S., Khan M.I., Li X., Zhu Q.-L., Wu X.-T. Catalysts. 2018, 8, 120. doi 10.3390/ catal8030120
- 20. Seo J.S., Whang D., Lee H., Jun S.I., Oh J., Jeon Y.J., Kim K. Nature. 2000, 404, 982, doi 10.1038/35010088
- 21. Falkowski J.M., Sawano T., Zhang T., Tsun G., Chen Y., Lockard J.V., Lin W. J. Am. Chem. Soc. 2014, 136, 5213. doi 10.1021/ja500090v
- 22. Sawano T., Ji P., McIsaac A.R., Lin Z., Abney C.W., Lin W. Chem. Sci. 2015, 6, 7163. doi 10.1039/ C5SC02100F
- 23. Nguyen K.D., Kutzscher C., Drache F., Senkovska I., Kaskel S. Inorg. Chem. 2018, 57, 1483. doi 10.1021/ acs.inorgchem.7b02854
- 24. Han Q., He C., Zhao M., Qi B., Niu J., Duan C. J. Am. Chem. Soc. 2013, 135, 10186. doi 10.1021/ja401758c
- 25. Han Q., Qi B., Ren W., He C. Niu J., Duan C. Nat. Commun. 2015, 6, 10007. doi 10.1038/ncomms10007
- 26. Xia Q., Li Z., Tan C., Liu Y., Gong W., Cui Y. J. Am. Chem. Soc. 2017, 139, 8259. doi 10.1021/ jacs.7b03113
- 27. Li Z., Liu Y., Xia Q., Cui Y. Chem. Commun. 2017, 53, 12313. doi 10.1039/C7CC06979K
- 28. Xi W., Liu Y., Xia Q., Li Z., Cui Y. Chem. Eur. J. 2015, 21, 12581. doi 10.1002/chem.201501486
- 29. Zhu C., Xia Q., Chen X., Liu Y., Du X., Cui Y. ACS Catal. 2016, 6, 7590. doi 10.1021/acscatal.6b02359
- 30. Du X., Li Z., Liu Y., Yang S., Cui Y. Dalton Trans. 2015, 44, 12999. doi 10.1039/C5DT01682G
- 31. Li J., Ren Y., Qia C., Jiang H. Chem. Commun. 2017, 53, 8223. doi 10.1039/C7CC03499G
- 32. Mo K., Yang Y., Cui Y. J. Am. Chem. Soc. 2014, 136, 1746. doi 10.1021/ja411887c
- 33. Li Z., Liu Y., Kang X., Cui Y. Inorg. Chem. 2018, 57, 9786. doi 10.1021/acs.inorgchem.8b01630
- 34. Bonnefoy J., Legrand A., Quadrelli E.A., Canivet J., Farrusseng D. J. Am. Chem. Soc. 2015, 137, 9409. doi 10.1021/jacs5b05327
- 35. Serra-Crespo P., Ramos-Fernandez E.V., Gascon J., Kapteijn F. Chem. Mater. 2011, 23, 2565. doi 10.1021/ cm103644b
- 36. Liu L., Zhou T.-Y., Telfer S.G. J. Am. Chem. Soc. 2017, 139, 13936. doi 10.1021/jacs.5b05327
- 37. Zhu W., He C., Wu P., Wu X., Duan C. Dalton Trans. 2012, 41, 3072. doi 10.1039/C2DT12153K
- 38. Liu Y., Xi X., Ye C., Gong T., Yang Z., Cui Y. Angew. Chem. Int. Ed. 2014, 53, 13821. doi 10.1002/ anie.201408896

- Kutzscher C., Nickerl G., Senkovska I., Bon V., Kaskel S. *Chem. Mater.* 2016, 28, 2573. doi 10.1021/ acs.chemmater.5b04575
- Dong X.-W., Yang Y., Che J.-X., Zuo J., Li X.-H., Gao L., Hua Y.-Z., Liu X.-Y. *Green Chem.* 2018, 20, 4085. doi 10.1039/C8GC01323C
- Fan Y., Ren Y., Li J., Yue C., Jiang H. *Inorg. Chem.* 2018, 57, 11986. doi 10.1021/acs.inorgchem.8b01551
- Yu Y.-H., Ye H.-T., Hou G.-F., Ren C.-Y., Gao J.-S., Yan P.-F. Cryst. Growth Des. 2016, 16, 5669. doi 10.1021/acs.cgd.6b00593
- Hu Y.-H., Liu C.-X., Wang J.-C., Ren X.-H., Kan X., Dong Y.-B. *Inorg. Chem.* 2019, *in press.* doi 10.1021/ acs.inorgchem.8b02132
- 44. Jeong K.S., Go Y.B., Shin S.M., Lee S.J., Kim J., Yaghi O.M., Jeong N. *Chem. Sci.* 2011, 2, 877. doi 10.1039/C0SC00582G
- 45. Lee M., Shin S.M., Jeong N., Thallapally P.K. *Dalton Trans.* **2015**, *44*, 9349. doi 10.1039/C5DT01322D
- Lee M.S., Shin S.M., H.J. Kim, Jeong N. Bull. Korean Chem. Soc. 2015, 36, 1282. doi 10.1002/ bkcs.10228
- Tanaka K., Nagase S., Anami T., Wierzbicki M., Urbanczyk-Lipkowska Z. *RSC Adv.* 2016, *6*, 111436. doi 10.1039/C6RA23740A

- Xia Q., Liu Y., Li Z., Gong W., Cui Y. Chem. Commun. 2016, 52, 13167. doi 10.1039/C6CC06019F
- Sawano T., Thacker N.C., Lin Z., McIsaac A.R., Lin W. J. Am. Chem. Soc. 2015, 137, 12241. doi 10.1021/ jacs.5b09225
- Dybtsev D.N., Nuzhdin A.L., Chun H., Bryliakov K.P., Talsi E.P., Fedin V.P., Kim K. *Angew. Chem. Int. Ed.* 2006, 45, 916. doi 10.1002/anie.200503023
- 51. Dybtsev D.N., Yutkin M.P., Samsonenko D.G., Fedin V.P., Nuzhdin A.L., Bezrukov A.A., Bryliakov K.P., Talsi E.P., Belosludov R.V., Mizuseki H., Kawazoe Y., Subbotin O.S., Belosludov V.R. *Chem. Eur. J.* **2010**, *16*, 10348. doi 10.1002/ chem.201000522
- Nuzhdin A.L., Dybtsev D.N., Bryliakov K.P., Talsi E.P., Fedin V.P. J. Am. Chem. Soc. 2007, 129, 12958. doi 10.1021/ja076276p.54
- Li J., Ren Y., Yue C., Fan Y., Qi C., Jiang H. ACS Appl. Mater. Interfaces. 2018, 10, 36047. doi 10.1021/ acsami.8b14118
- Chen J., Chen X., Zhang Z., Bao Z., Xing H., Yang Q., Ren Q. *Mol. Catal.* 2018, 445, 163. doi 10.1016/ j.mcat.2017.11.012
- Zheng M., Liu Y., Wang C., Liu S., Lin W. Chem. Sci. 2012, 3, 2623. doi 10.1039/C2SC20379K

Metal-Organic Frameworks in Asymmetric Catalysis: Recent Advances

A. V. Artem'ev^{a, b} and V. P. Fedin^{a, b, *}

^a Nikolaev Institute of Inorganic Chemistry, SB, RAS, 630090, Russia, Novosibirsk, pr. Acad. Lavrentieva 3 ^b Novosibirsk State University, (National Research University), Department of Natural Sciences,

> 630090, Russia, Novosibirsk, ul. Pirogova 2 *e-mail: cluster@niic.nsc.ru

Received February 06, 2019; revised March 04, 2019; accepted March 15, 2019

The recent advances in the application of homochiral metal-organic frameworks (MOF's) in asymmetric catalysis of the organic reactions are reviewed.

Keywords: metal-organic frameworks, asymmetric heterogeneous catalysis, enantioselectivity, homochirality, coordination compounds, ligands