УДК 547.979:541.49

КОМПЛЕКСЫ ЛАНТАНИДОВ СЭНДВИЧЕВОГО ТИПА, СОДЕРЖАЩИЕ ТЕТРА-(4*-mpem*-БУТИЛБЕНЗО)-ПОРФИРИНОВЫЙ И ФТАЛОЦИАНИНОВЫЙ ЛИГАНДЫ. СИНТЕЗ И СВОЙСТВА

© 2019 г. А. И. Коптяев, Н. Е. Галанин*, Г. П. Шапошников

ФГБОУ ВО «Ивановский государственный химико-технологический университет», 153000, Россия, г. Иваново, пр. Шереметевский 7 *e-mail: nik-galanin@yandex.ru

> Поступила в редакцию 22 октября 2018 г. После доработки 1 марта 2019 г. Принята к публикации 15 марта 2019 г.

Синтезированы гетеролигандные двухпалубные комплексы лютеция, эрбия, диспрозия, гадолиния и европия, содержащие фрагменты тетра-(4-*трет*-бутилбензо)порфирина и фталоцианина. Их строение подтверждено данными масс-спектрометрии, колебательной и ЯМР ¹Н спектроскопии. Установлена зависимость спектрально-люминесцентных свойств синтезированных соединений от ионных радиусов металлов.

Ключевые слова: тетрабензопорфирин, фталоцианин, лантаниды, комплексы, синтез, спектральные свойства.

DOI: 10.1134/S0514749219070048

В силу значительных ионных радиусов и высоких координационных чисел, лантаниды способны образовывать с порфиринами И фталоцианинами двух- и трехпалубные комплексы сэндвичевого типа. Эти соединения обладают интересными прикладными свойствами И предложены, например, в качестве материалов для оптических дисплеев [1], полупроводников [2-4] и датчиков токсичных газов [5]. Сильное π - π – взаимодействие между макроциклами позволяет рассматривать сэндвичевые комплексы порфиринов в качестве моделей «специальной пары» в реакционном центре фотосинтетических бактерий [6-8].

Ранее нами сообщалось о синтезе и свойствах двухпалубных сэндвичевых комплексов ряда лантанидов, содержащих фрагменты фталоцианина незамещенного тетрабензопорфирина [9]. И Настоящая работа является продолжением исследований и касается синтеза двухпалубных сэндвичевых комплексов лантанидов, включающих хромофоры фталоцианина и трет-бутилзамещенного тетрабензопорфирина, и исследования влияния ионных радиусов металлов на спектрально-люминесцентные свойства синтезисостав рованных соединений. Входящие в порфирина объемистые алкильные группы придают комплексам, во-первых, повышенную растворимость в органических средах, и, вовторых, за счет стерических затруднений, могут приводить к искажению плоскостного строения относительно «мягкого» хромофора порфирина, что может оказывать дополнительное влияние на их свойства.

В качестве исходного соединения для синтеза сэндвичевых комплексов использовался тетра-(4трет-бутилбензо)порфирин (1), полученный по модифицированной методике [10], темплатным синтезом из 4-трет-бутилфталимида и ацетата цинка с последующим деметаллированием образующегося тетра-(4-трет-бутилбензо)порфирината цинка. Сэндвичевые комплексы 7-11 получали однореакторным методом. Навеску порфирина (1) растворяли в хинолине, добавляли 1.1 эквивалента хлорида лантанида и нагревали при кипении 2 ч, затем к реакционной массе добавляли 12 эквивалентов фталонитрила и кипятили еще 3 ч. В результате на первой стадии процесса

M = Lu (2, 7), Er (3, 8), Dy (4, 9), Gd (5, 10), Eu (6, 11).

образовывались однопалубные тетра-(4-*трет*бутилбензо)порфиринаты лантанидов (**2–6**), которые затем реагировали с фталонитрилом (схема 1).

Контроль над образованием комплексов 2-6 и 7-11 осуществляли методом электронной спектроскопии, по исчезновению в спектрах реакционных масс полос поглощения, характерных для порфирина (1) и трансформации спектров однопалубных комплексов 2-6 в спектры соединений 7-11. По окончании процесса в каждом случае реакционную массу вносили в 10%-ный раствор гидроксида калия в 50%-ном водном 2-пропаноле и отгоняли хинолин с водяным паром, при этом избыток фталонитрила подвергался шелочному гидролизу, а соединения 7–11 выпадали в осадки. Их отфильтровывали, промывали водой, высушивали и хроматографировли на колонке для отделения от побочно образующихся дифталоцианинатов лантанидов.

Выходы комплексов 7–11 находятся в пределах 57–65%. Их состав и строение подтверждали данными элементного анализа, масс-спектрометрии, колебательной и ЯМР ¹Н спектроскопии.

В масс-спектрах синтезированных соединений присутствуют сигналы ионов $[M + H]^+$, значения m/zкоторых близки к рассчитанным (табл. 1). Близкое в каждом случае к теоретическому характерное изотопное расщепление сигналов анализируемых ионов подтверждает строение сэндвичевых комплексов. Важно отметить, что в масс-спектрах реакционных масс в области высоких массовых чисел отсутствуют сигналы, которые соответствовали бы трехпалубным комплексам различного состава, что свидетельствует о высокой селективности реакции комплексообразования.

ИК спектры комплексов 7–11 схожи между собой по характеру и содержат ряд общих полос, среди которых характеристическими являются полосы, соответствующие валентным колебаниям связей С–Н алкильных заместителей, скелетным колебаниям хромофоров в радикальных формах сэндвичевых комплексов [11], деформационным колебаниям *трет*-бутильных групп, валентным колебаниям связей С=С и С=N в макроциклах, валентным колебаниям связей С–С в заместителях и деформацонным колебаниям связей С–Н. Положение указанных полос в ИК спектрах соединений 7–11 приведено в табл. 2.

Соединение (М)	Найдено, Да	Вычислено, Да
7 (Lu)	1421.21	1421.51
8 (Er)	1413.33	1413.80
9 (Dy)	1409.29	1409.04
10 (Gd)	1403.21	1403.79
11 (Eu)	1398.11	1398.50

Таблица 1. Данные масс-спектров MALDI-TOF комплексов 7–11 для ионов $[M + H]^+$.

Соединение (М)	ν, (C _{Alk} –H)	γ, (R [•])	δ, (t-Bu)	v, (C=C, C=N)	ν , (C _{Alk} –C _{Alk})	δ, (С–Н)
7 (Lu)	2925	1450, 1321	1387	1645	1086	735
8 (Er)	2923	1451, 1319	1384	1645	1092	738
9 (Dy)	2923	1450, 1322	1384	1651	1093	740
10 (Gd)	2926	1453, 1311	1388	1635	1090	730
11 (Eu)	2924	1452, 1319	1384	1634	1085	735

Таблица 2. Положение полос, соответствующих валентным (ν), скелетным (γ) и деформационным (δ) колебаниям связей в ИК спектрах синтезированных соединений.

Важно отметить, что в отличие от дифталоцианинатов лантанидов [11] и комплексов состава тетрабензопорфирин-металл-фталоцианин [9], положение полос в спектрах комплексов 7–11 не зависит от ионных радиусов металлов. Вероятно, причиной этого следует считать возмущающее воздействие объемистых *трет*-бутильных групп.

Спектры ЯМР ¹Н двухпалубных комплексов, измеренные в CDCl₃ при 25°С, содержат сигналы протонов в *мезо*-положениях порфиринового (ТВР) хромофора, протонов ароматических колец фрагментов порфирина и фталоцианина (Рс) и протонов *трет*-бутильных групп. Характер спектров зависит от природы металлов и близости протонов к координационному центру. Положение сигналов и их мультиплетность в спектрах ЯМР ¹Н синтезированных соединений приведены в табл. 3.

Из представленных данных можно видеть, что по сравнению с положением сигналов протонов в спектре комплекса 7 диамагнитного лютеция, в спектре комплекса эрбия 8 наблюдается сдвиг сигналов в слабое поле, а в спектре комплекса диспрозия 9 – в сильное. Положение сигналов протонов в спектрах комплексов гадолиния 10 и европия 11 от их положения в спектре соединения 7 отличается незначительно. Следует отметить, что спектр соединения 10 имеет крайне низкое

разрешение. В целом, влияние парамагнитных ионов металлов на спектральные характеристики полученных комплексов близко к таковому для дифталоцианиновых [12, 13], дипорфириновых [14] и гетеролигандных порфирин – фталоцианиновых [15] комплексов лантанидов.

Известно, что дифталоцианиновые комплексы лантанидов в основном состоянии существуют в нейтрально-радикальной «зеленой» форме, но могут быть легко восстановлены, например, гидразингидратом до анионной «синей» формы [16–18]. Эти формы могут быть идентифицированы методом электронной спектроскопии.

Положение полос в электронных спектрах поглощения «зеленых» (в $CHCl_3$) и «синих» (в $ДM\Phi A + 1\% NH_2NH_2 \cdot H_2O$) форм соединений 7–11 представлены в табл. 4.

Спектры поглощения «зеленых» форм комплексов 7–11 содержат интенсивные полосы Qв области 659–670 нм, сопровождаемые спутниками при 596–602 нм, а также полосы при 456– 458 нм, характерные для радикальных форм двухпалубных комплексов лантанидов. При восстановлении соединений полосы Q расщепляются на две компоненты, длинноволновую Q_1 (618–629 нм) и более интенсивную коротковолновую Q_2 (672– 696 нм), а полосы, соответствующие электронным

Соединение (М)	мезо	α-Pc	β-Ρc	ТБП	<i>t</i> -Bu
7 (Lu)	9.23 c	8.36 – 8.34 м	8.26 – 8.24 м	7.62 – 7.59 м	1.60 c
8 (Er)	13.93 c, 13.66 c, 13.42 c	19.62 уш. с.	8.87 – 8.70 м	8.51 – 8.31 м	1.70 – 1.56 м
9 (Dy)	-16.18 c, -16.30 c	-72.23	уш. с.	–39.82 уш.с.	2.69 – 2.35 м
10 (Gd)	9.56 c, 9.24 c	8.11 – 7.57 м			1.60 – 1.27 м
11 (Eu)	9.23 c	8.37 – 8.25 м	7.93 – 7.90 м	8.00 — 7.98 м, 7.80 — 7.75 м	1.35 – 1.28 м

Таблица 3. Положение (δ, м.д.) и мультиплетность сигналов протонов в спектрах ЯМР ¹Н комплексов 7–11.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 55 № 7 2019

переходам в радикальных фрагментах, исчезают. Кроме того, в области 392–424 нм в спектрах обеих форм (за исключением «зеленой» формы комплекса 7) присутствуют полосы средней интенсивности, соответствующие полосам *В* тетрабензопорфиринового хромофора. Полосы *В* фталоцианинового фрагмента для всех соединений находятся в области 338–341 нм.

Электронный спектр поглощения «зеленой» формы комплекса 7 (рис. 1, *I*) по характеру весьма близок к спектру «зеленой» формы *трет*бутилзамещенного дифталоцианината лютеция [18], и отличается незначительным (~ 5 нм) гипсохромным сдвигом основных полос поглощения.

В спектре отсутствуют полосы в области 392– 424 нм, соответствующие полосе *В* тетрабензопорфиринового лиганда. Это может свидетельствовать о сильном искажении порфиринового хромофора с частичным нарушением его ароматичности. Увеличение расстояния между хромофорами в комплексе европия **11**, связанное с увеличением

Рис. 2. Электронные спектры поглощения в ДМФА + 1% NH₂NH₂·H₂O: *1* – соединение **7**, *2* – соединение **11**.

ионного радиуса металла, приводит, очевидно, к уменьшению степени искажения порфиринового фрагмента, что обусловливает появление в спектре поглощения (рис. 1, 2) полосы в области 397 нм. В остальном, характер спектра поглощения не изменяется.

В спектре поглощения «синей» формы комплекса 7 (рис. 2, *I*) уже появляется полоса при 417 нм, что указывает на уменьшение степени искажения фрагмента тетрабензопорфирина при восстановлении комплекса, а в спектре «синей» формы соединения **11** (рис. 2, *2*) интенсивность этой полосы значительно увеличивается, кроме того, наблюдается ее слабо выраженное расщепление на две компоненты, при 417 и 392 нм.

Увеличение ионных радиусов металлов при переходе от лютеция к европию в комплексах 7–11 приводит (табл. 4) к последовательному батохромному сдвигу максимумов полос Q в их спектрах поглощения, причем эта зависимость весьма близка к линейной (рис. 3, а). В спектрах

Соединение (М)	Форма	$\lambda_{\text{макс}}$, нм (log ε)					
7 (Lu)	«зеленая»	659 (5.10)	596 (4.46)	456 (4.58)			340 (5.27)
	«синяя»	696 (4.66)	618 (4.96)		417 (4.21)		339 (5.33)
8 (Er)	«зеленая»	662 (5.08)	598 (4.36)	456 (4.48)	424 (4.40)		338 (5.21)
	«синяя»	690 (4.65)	622 (4.95)		421 (4.22)		340 (5.15)
9 (Dy) «3	«зеленая»	664 (5.10)	601 (4.94)	458 (4.44)	419 (4.38)		340 (4.97)
	«синяя»	684 (4.67)	625 (4.96)		416 (4.30)		340 (5.03)
10 (Gd)	«зеленая»	667 (4.99)	602 (4.43)	458 (4.50)		400 (4.72)	341 (4.89)
	«синяя»	674 (4.65)	627 (4.95)		417 (4.62)	394 (4.73)	339 (5.07)
11 (Eu)	«зеленая»	670 (5.00)	602 (4.42)	456 (4.51)		397 (4.78)	339 (4.92)
	«синяя»	672 (4.72)	629 (4.95)		417 (4.60)	392 (4.72)	338 (5.05)

Таблица 4. Электронные спектры поглощения комплексов 7-11.

Рис. 3. Зависимость максимумов полос *Q* от ионных радиусов металлов в электронных спектрах поглощения «зеленых» (а) и «синих» (б) форм комплексов 7–11.

«синих» форм сэндвичевых комплексов 7–11 с увеличением ионных радиусов металлов наблюдается уменьшение степени расщепления полосы Q. При этом максимумы компонент Q_1 претерпевают гипсохромный сдвиг, а Q_2 – батохромный. Зависимости положений максимумов компонент (рис. 3, δ) от ионных радиусов лантанидов также линейны.

Причиной батохромного сдвига максимумов полос Q в спектрах «зеленых» форм комплексов 7– 11 при увеличении ионных радиусов металлов следует считать уменьшение степени искажения фрагмента тетрабензопорфирина, следствием чего является увеличение степени перекрывания π - π – орбиталей двух хромофоров. При восстановлении комплексов оба тетрапирролльных остатка становятся изоэлектронными, что приводит к увеличению степени симметрии молекулярных орбиталей. С ростом ионных радиусов металлов также увелич

Рис. 4. Нормализованные спектры поглощения и флуоресценции комплекса **8** в бензоле.

чивается степень π - π – взаимодействия хромофоров, при этом энергия орбитали e_3^* возрастает, что приводит к увеличению энергии электронного перехода $b_1 \rightarrow e_3^*$, соответствующего полосе Q_1 [19], а энергия орбитали e_1^* уменьшается, вследствие чего снижается энергия электронного перехода $a_2 \rightarrow e_1^*$, соответствующего полосе Q_2 . Поэтому в спектрах поглощения «синих» форм в ряду комплексов (7 \rightarrow 11) компонента Q_1 сдвигается гипсохромно, а Q_2 – батохромно. Подобное спектральное поведение характерно и для замещенных дифталоцианинатов лантанидов [20].

Известно, что флуоресценция дифталоцианиновых комплексов лантанидов имеет весьма низкую интенсивность [21]. Установлено, что «зеленые» формы гетеролигандных комплексов 7–9 также обладают флуоресценцией невысокой интенсивности в растворах бензола. В табл. 5 приведены положения их полос поглощения Q (λ_Q), полос испускания ($\lambda_{\rm Em}$) при $\lambda_{\rm возб.}$ 660 нм, Стоксов сдвиг и относительный квантовый выход флуоресценции (Φ_F), рассчитанный по методике [22], с использованием фталоцианината цинка в качестве стандарта ($\Phi_{St} = 0.30$ в бензоле [23]).

На рис. 4, *а*, *б* представлены нормализованные спектры поглощения и флуоресценции соединения **8**.

Можно видеть, что спектр флуоресценции комплекса 8 весьма близок к зеркальному отражению его спектра поглощения, причем такое спектральное поведение характерно и для других синтезированных комплексов. В ряду соединений 7–11 особое место занимает комплекс лютеция 7, который обладает минимальным Стоксовым

Соединение (М)	λ _Q , нм	λ_{Em} , нм	Стоксов сдвиг, нм	Φ_F
7 (Lu)	659	670	11	0.010
8 (Er)	661	691	30	0.014
9 (Dy)	665	693	28	0.013
10 (Gd)	667	693	26	0.008
11 (Eu)	670	695	25	0.034

Таблица 5. Спектрально-люминесцентные свойства комплексов 7–11 в бензоле.

сдвигом, что обусловлено, вероятно, особенностями его геометрического строения. Для остальных соединений величины Стоксовых сдвигов уменьшаются с увеличением ионных радиусов лантанидов, причем и эта зависимость близка к линейной (рис. 5).

Относительные квантовые выходы флуоресценции (табл. 5) незначительны и составляют около 3– 5% от квантового выхода флуоресценции фталоцианината цинка, за исключением комплекса европия **11**, для которого квантовый выход по отношению к стандарту составляет ~11%. Это связано, по нашему мнению, с наименьшим искажением порфиринового фрагмента молекулы и, соответственно, с наименьшими потерями энергии при внутренней безызлучательной конверсии.

Таким образом, в результате работы синтезированы гетеролигандные сэндвичевые комплексы лантанидов, содержащие хромофоры тетра-(4*трет*-бутилбензо)порфирина и фталоцианина, и установлена зависимость их спектрально-люминесцентных свойств от ионных радиусов металлов, входящих в их состав.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Элементный анализ полученных соединений выполнен на приборе FlashEA 1112 CHNS–O Analyzer. Масс-спектры (MALDI-TOF, матрица – 4-гидроксиазобензол-2-карбоновая кислота) зарегистрированы на приборе Shimadzu AXIMA Confidence, ИК спектры – на спектрофотометре Avatar 360 FT-IR в области 400–4000 см⁻¹ в таблетках KBr, спектры ЯМР ¹Н – на приборе Bruker Avance-500 (500.13 МГц) в CDCl₃ (25°С, внутренний стандарт – ТМС). Электронные спектры поглощения измерены на спектрофотометре Helios Zeta, спектры флуоресценции – на спектрофлуориметре Shimadzu RF-6000 ($\lambda_{возб}$ 660 нм) в кварцевых прямоугольных кюветах с толщиной поглощающего слоя 10 мм при 25°С. Для спектральных измерений использовали хлороформ, ДМФА и бензол квалификации «хч», полученные от фирмы «Экос-1».

4-*трет*-Бутилфталимид синтезирован по методике [10].

Тетра-(4-*трет*-Бутилбензо)порфирин (1). Смесь 2.0 г (0.01 моль) 4-трет-бутилфталимида и 4.4 г (0.02 моль) дигидрата ацетата цинка нагревали 40 мин при 330°С, реакционную массу охлаждали, измельчали, растворяли в 100 мл H₂SO₄. выдерживали 2 ч при 20°С и выливали в 200 мл воды. Выпавший осадок отфильтровывали, промывали 200 мл воды, 50 мл 10%-ного раствора NH₃ и высушивали. Остаток растворяли в дихлорметане и хроматографировали на колонке, заполненной силикагелем 60 (Merck) (элюент – дихлорметан), собирая основную зеленую зону. Выход 0.35 г (20%), мелкокристаллический порошок темно-зеленого цвета. Масс-спектр, m/z: 734.96 $[M + H]^+$. Электронный спектр поглощения (дихлорметан), λ_{макс}, нм (*A*/*A*_{макс}): 413 (0.85), 427 (1.00), 597 (0.28), 604 (0.27), 612 пл., 662 (0.22).

Рис. 5. Зависимость Стоксовых сдвигов от ионных радиусов металлов для комплексов 8–11.

Сэндвичевые комплексы 7-11 (обшая методика). В раствор 50 мг (0.07 ммоль) пор-10 хинолина фирина (1) в МЛ вносили 0.08 ммоль гексагидрата хлорида лантанида, нагревали при кипении 2 ч, к реакционной массе добавляли 100 мг (0.84 ммоль) фталонитрила и выдерживали при кипении еще 3 ч. Реакционную массу охлаждали, вносили в 100 мл 10%-ного раствора гидроксида калия в 50%-ном водном 2-пропаноле и отгоняли хинолин с водяным паром. Выпадавшие осадки отфильтровывали, промывали 50 мл воды и высушивали. Остатки растворяли в дихлорметане и хроматографировали на колонке, заполненной силикагелем 60 (Merck) (элюент смесь дихлорметана и ацетона. 100:2 по объему). собирая первую зеленую зону. Растворитель удаляли, полученные комплексы высушивали в течение 3 ч при температуре 110°С.

[Тетра-(4-*трет***-бутилбензо)порфиринато]-[фталоцианинато]лютеций (7).** Выход 60 мг (63%), темно-зеленый порошок, хорошо растворим в бензоле, хлороформе, ДМФА. Найдено, %: С 71.88; H 4.95; N 11.67. С₈₄H₆₈LuN₁₂. Вычислено, %: С 71.03; H 4.83; N 11.83.

[Тетра-(4-*трет*-бутилбензо)порфиринато]-[фталоцианинато]эрбий (8). Выход 62 мг (65%), темно-зеленый порошок, хорошо растворим в бензоле, хлороформе, ДМФА. Найдено, %: С 71.66; Н 4.97; N 11.71. С₈₄H₆₈ErN₁₂. Вычислено, %: С 71.41; H 4.85; N 11.90.

[Тетра-(4-*трет*-бутилбензо)порфиринато]-[фталоцианинато]диспрозий (9). Выход 63 мг (65%), темно-зеленый порошок, хорошо растворим в бензоле, хлороформе, ДМФА. Найдено, %: С 71.91; H 5.01; N 11.65. С₈₄H₆₈DyN₁₂. Вычислено, %: С 71.65; H 4.87; N 11.94.

[Тетра-(4-*трет***-бутилбензо)порфиринато]-[фталоцианинато]гадолиний (10).** Выход 55 мг (57%), темно-зеленый порошок, хорошо растворим в бензоле, хлороформе, ДМФА. Найдено, %: С 71.72; H 5.10; N 11.58. С₈₄H₆₈GdN₁₂. Вычислено, %: С 71.92; H 4.89; N 11.98.

[Тетра-(4-*трет*-бутилбензо)порфиринато]-[фталоцианинато]европий (11). Выход 57 мг (59%), темно-зеленый порошок, хорошо растворим в бензоле, хлороформе, ДМФА. Найдено, %: С 72.51; H 5.13; N 11.77. С₈₄H₆₈EuN₁₂. Вычислено, %: С 72.19; H 4.90; N 12.03.

БЛАГОДАРНОСТИ

Исследования проведены с использованием ресурсов Центра коллективного пользования научным оборудованием ФГБОУ ВО «ИГХТУ».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Nicholson M.M. Phthalocyanines–Properties and Applications. Eds. C.C. Leznoff, A.B.P. Lever. VCH, New York. 1993, 3, 71. doi 10.1002/adma.19930051218
- Andre J.J., Holezer K., Petit P., Riou M.T., Clarisse C., Even R., Fourmigue M., Simon J. *Chem. Phys. Lett.* 1985, *115*, 463. doi 10.1016/0009-2614(85)85171-X
- Turek P., Petit P., Andre J.J., Simon J., Even R., Boudjema B., Guillaud G., Maitrot M. J. Am. Chem. Soc. 1987, 109, 5119. doi 10.1021/ja00251a012
- Maitrot M., Guillaud G., Boudjema B., Andre J.J., Strzelecka H., Simon J., Even R. *Chem. Phys. Lett.* 1987, 133, 59. doi 10.1016/0009-2614(87)80053-2
- Souto J., Rodriguez M.L., Desaja J.A., Aroca R. Int. J. Electron. 1994, 76, 763. doi 10.1080/ 00207219408925975
- Buchler J.W., Elsässer K., Kihn-Botulinski M., Scharbert B. Angew. Chem. Int. Ed. Engl. 1986, 25, 286. doi 10.1002/anie.198602861
- Buchler J.W. Comments Inorg. Chem. 1987, 6, 175. doi 10.1080/02603598708072289
- Buchler J.W., Nawra M. Inorg. Chem. 1994, 33, 2830. doi 10.1021/ic00091a025
- Галанин Н.Е., Шапошников Г.П. ЖОрХ. 2012, 48, 853. [Galanin N.E., Shaposhnikov G.P. Russ. J. Org. Chem. 2012, 48, 851.] doi 10.1134/S1070428012060176
- 10. Копраненков В.Н., Тарханова Е.А., Лукьянец Е.А. *ЖОрХ*. **1979**, *15*, 642.
- 11. Ostendorp G., Homborg H. Z. Anorg. Allg. Chem. **1996**, 622, 1222. doi 10.1002/zaac.19966220720
- Мартынов А.Г., Сафонова Е.А., Горбунова Ю.Г., Цивадзе А.Ю. ЖНХ. 2010, 55, 359 [Martynov A.G., Safonova E.A., Gorbunova Yu.G., Tsivadze A.Yu. Russ. J. Inorg. Chem. 2010, 55, 347.] doi 10.1134/ S0036023610030083
- Martynov A.G., Gorbunova Y.G., Tsivadze A.Yu. Dalton Trans. 2011, 40, 7165. doi 10.1039/C1DT10455A
- Coutsolelos A.G., Spyrouljas G.A. Polyhedron. 1994, 13, 647. doi 10.1016/S0277-5387(00)84741-5
- Wang R., Li R., Li Y., Zhang X., Zhu P., Lo P.C., Ng D.K.P., Pan N., Ma C., Kobayashi N., Jiang J. *Chem. Eur. J.* 2006, *12*, 1475. doi 10.1002/chem.200500733

- 16. Chang A.T., Marchon J.C. Inorg. Chim. Acta. 1981, 53, L241. doi 10.1016/S0020-1693(00)84810-0
- Słota R., Dyrda G., Hofer M., Mele G., Bloise E., del Sole R. Molecules. 2012, 17, 10738. doi 10.3390/molecules170910738
- Томилова Л.Г., Дюмаев К.М., Ткаченко О. П. Изе. АН, Сер. хим. 1995, 44, 425. [Tomilova L.G., Dyumaev K.M, Tkachenko O.P. Russ. Chem. Bull. 1995, 44, 410.] doi 10.1007/BF00702376
- 19. van Cot T.C., Gasyna Z., Schatz P.N. J. Phys. Chem. 1995, 99, 4820. doi 10.1021/j100013a061
- 20. Liu W., Jiang J., Du D., Arnold D.P. Aust. J. Chem. 2000, 53, 131. doi 10.1071/CH99168
- Smola S.S., Snurnikova O.V., Fadeyev E.N., Sinelshchikova A.A., Gorbunova Y.G., Lapkina L.A., Tsivadze A.Yu., Rusakova N.V. *Macroheterocycles*. 2012, *5*, 343. doi 10.6060/mhc2012.121193r
- 22. Brouwer A.M. Pure Appl. Chem. 2011, 83, 2213. doi 10.1351/PAC-REP-10-09-31
- 23. Seybold P.G., Gouterman M. J. Mol. Spectrosc. 1969, 31, 1. doi 10.1016/0022-2852(69)90335-X

Sandwich-type Lanthanide Complexes, Containing Tetra-(4-*tert*-butylbenzo)porphyrine and Phthalocyanine Ligands. Synthesis and Properties

A. I. Koptyaev, N. E. Galanin*, and G. P. Shaposhnikov

Ivanovo State University of Chemistry and Technology, 153000, Russia, Ivanovo, pr. Sheremetevskij 7 *e-mail: nik-galanin@yandex.ru

Received October 22, 2018; revised March 1, 2019; accepted March 15, 2019

Heteroligand double-decker complexes of lutetium, erbium, dysprosium, gadolinium and europium containing fragments of tetra-(4-*tert*-butylbenzo)porphyrin and phthalocyanine were synthesized. Their structure is confirmed by the data of mass spectrometry, vibrational and ¹H NMR spectroscopy. The dependence of the spectral-luminescent properties of the synthesized compounds on the ionic radii of metals has been established.

Keywords: tetrabenzoporphyrin, phthalocyanine, lanthanides, complexes, synthesis, spectral properties