УДК 547.841:541.63

СТРОЕНИЕ И КОНФОРМАЦИОННЫЙ АНАЛИЗ 5,5-БИС(БРОММЕТИЛ)-2,2-ДИФЕНИЛ-1,3-ДИОКСАНА

© 2020 г. Ш. Ю. Хажиев^{*a*}, М. А. Хусаинов^{*b*}, Р. А. Халиков^{*c*}, В. А. Катаев^{*c*}, Т. В. Тюмкина^{*d*}, Е. С. Мещерякова^{*d*}, Л. М. Халилов^{*d*}, В. В. Кузнецов^{*b*, *e*, *}

^а ПАО АНК Башнефть, 450077, Россия, Республика Башкортостан, г. Уфа, ул. К. Маркса 30, к. 1

^b ФГБОУ ВО «Уфимский государственный нефтяной технический университет», 450062, Россия, Республика Башкортостан, г. Уфа, ул. Космонавтов 1

^с ФГБОУ ВО «Башкирский государственный медицинский университет», 450008, Россия, Республика Башкортостан, г. Уфа, ул. Ленина 3

^d ФГБУН «Институт нефтехимии и катализа РАН», 450075, Россия, Республика Башкортостан, г. Уфа, пр. Октября 141

^е ФГБОУ ВО «Уфимский государственный авиационный технический университет», 450008, Россия, Республика Башкортостан, г. Уфа, ул. К. Маркса 12 *e-mail: kuzmaggy@mail.ru

> Поступила в редакцию 04 июня 2019 г. После доработки 19 ноября 2019 г. Принята к публикации 22 ноября 2019 г.

Методами спектроскопии ЯМР ¹H, ¹³С и рентгеноструктурного анализа исследовано строение 5,5-бис-(бромметил)-2,2-дифенил-1,3-диоксана. Молекулы этого соединения в кристаллическом состоянии пребывают в конформации «*кресло*», а в растворе при комнатной температуре – в состоянии равновесия между вырожденными по энергии инвертомерами «*кресла*». Величина барьера интерконверсии по данным низкотемпературного ЯМР составляет 8.9 ккал/моль. С помощью компьютерного моделирования в рамках DFT метода PBE/3ξ и в отдельных случаях riMP2/λ2 установлен маршрут интерконверсии кольца, а также расчетное значение ее потенциального барьера в различных растворителях (кластерная модель). Результаты расчета геометрии цикла соответствуют данным рентгеноструктурных измерений, а расчетная величина потенциального барьера интерконверсии согласуется с кластером, содержащим 5 молекул хлористого метилена в ближайшей сольватной оболочке молекулы исследуемого 1,3-диоксана.

Ключевые слова: 1,3-диоксан, рентгеноструктурный анализ, конформер, барьер интерконверсии, кластерная модель, компьютерное моделирование.

DOI: 10.31857/S0514749220010012

Замещенные 1,3-диоксаны являются классическими объектами конформационного анализа, а также используются в качестве реагентов тонкого органического синтеза [1–4]. Интерес к 5,5-бис-(галогенметил)аналогам обусловлен наличием дополнительных реакционных центров – атомов галогенов, способных вступать в реакции нуклеофильного замещения [5]. Конформационные свойства формалей 5,5-бис(галогенметил)-1,3-диоксанов при комнатной температуре характеризуются быстрой в шкале времен ЯМР интерконверсией цикла [6, 7], а для 2-замещенных аналогов – преимущественной формой «*кресло*» с экваториальным заместителем у атома C² кольца [8–11].

Настоящая работа посвящена изучению строения и конформационных превращений неописанного ранее 5,5-бис(бромметил)-2,2-дифенил-1,3диоксана (1) с помощью спектроскопии ЯМР на ядрах ¹H, ¹³C, рентгеноструктурного анализа и апробированного для соединений этого класса [11] DFT-метода PBE/3ζ (программное обеспечение

ПРИРОДА [12]), а также исследованию влияния природы и числа молекул растворителя на относительные энергии минимумов и переходного состояния на поверхности потенциальной энергии (ППЭ) данного соединения (кластерная модель) (схема 1).

Образец диоксана 1 получен конденсацией 2,2бис(бромметил)-1,3-пропандиола с бензофеноном (схема 2).

Было проведено рентгеноструктурное исследование кристаллов 1. Кристаллографические детали приведены в экспериментальной части, а диоксан 1 зарегистрирован в Кембриджской базе структурных данных под номером CCDDC 1880875.

Установлено, что структура молекулы кеталя 1 отвечает конформации *«кресло»*. При этом молекулы исследуемого соединения формируют нецентросимметричные триклинные кристаллы с пространственной группой Р₋₁. Согласно данным рентгеноструктурного анализа, асимметричная ячейка включает в себя 3 независимые молекулы со схожей геометрией (рис. 1, табл. 1). Для гетероатомной части гетероциклического кольца характерны ожидаемые длины связей С–О (1.410–1.431 Å) и значения валентных углов, близкие к 110–114°. Торсионные углы также отвечают наблюдаемым в конформации «*кресло*» значениям (табл. 1) [2, 11]. Необходимо отметить, что бромметильные заместители находятся в *гош*-положении относительно друг друга (рис. 1); ранее с помощью квантовохимических расчетов [13] было показано, что такая форма отвечает минимуму энергии по сравнению с альтернативными конформациями связей углеродгалоген в замещающих группах у атома C^5 1,3диоксанового цикла.

Данные 1D и 2D спектроскопии ЯМР ¹H и ¹³C (табл. 2) в различных растворителях с использованием режимов NOESY, COSYHH и HSQC свидетельствуют о пребывании молекул кеталя 1 при комнатной температуре в виде равновесной смеси инвертных форм. На это указывает синглетный характер метиленовых протонов дибромметильных заместителей и метиленовых протонов при магнитно-эквивалентных углеродных атомах C⁴ и C⁶ гетероциклического кольца. Последние в ходе проведения низкотемпературного эксперимента

Рис. 1. Асимметричная ячейка соединения 1 с (а) 3 независимыми молекулами, (б) молекула соединения 1 в представлении атомов эллипсоидами тепловых колебаний (*p* = 50%).

Связь	Длина связи, Å		Валентный	ф, град		Торсионный	τ, град	
	расчет	эксперимент	угол	расчет	эксперимент	угол	расчет	эксперимент
Br_1-C_8	1.987	1.944(4)	$O_1 - C_2 - O_3$	110.6	110.3(3)	$C_4 - C_5 - C_6 - O_1$	54.9	55.3(4)
$C_2 - O_1$	1.432	1.410(4)	$C_2 - O_1 - C_6$	113.5	114.0(3)	$C_6 - C_5 - C_4 - O_3$	-54.2	-55.3(4)
$C_2 - O_3$	1.432	1.431(4)	$C_2 - O_3 - C_4$	113.7	114.1(2)	$C_2 - O_3 - C_4 - C_5$	56.9	58.1(4)
C_4-O_3	1.432	1.420(4)	$C_5 - C_6 - O_1$	111.2	110.4(3)	$C_2 - O_1 - C_6 - C_5$	-58.7	-57.3(4)
$C_2 - C_9$	1.529	1.516(5)	$C_5 - C_4 - O_3$	111.9	111.7(3)	$C_4 - O_3 - C_2 - O_1$	-55.3	-56.1(4)
C ₅ -C ₈	1.529	1.511(5)	$C_4 - C_5 - C_6$	105.2	104.8(3)	$C_6 - O_1 - C_2 - O_3$	56.4	55.5(4)

Таблица 1. Избранные длины связей, валентные и торсионные углы в молекуле диоксана 1 (данные расчета приведены для изолированной молекулы в вакууме, конформер «*кресло*», PBE/3ζ).

ЯМР ¹Н в CD₂Cl₂ расщепляются в дублет с температурой коалесценции 213 К. Соответствующее расщепление наблюдается и в спектре ЯМР ¹³С. Исходя из этого, экспериментальная величина барьера интерконверсии ΔG_{298}^{\neq} составила 8.9 ккал/моль.

Полученные результаты подтверждаются данными конформационного анализа диоксана **1** в рамках расчетных приближений PBE/3ζ и для изолированной молекулы – riMP2/λ2. На ППЭ этого соединения выявлены 2 минимума:

Таблица 2. Данные спектров ЯМР ¹Н и ¹³С диоксана 1.

Растворитель	Протоны	ЯМР ¹ Н, б, м.д. ^а	Атомы углерода	ЯМР ¹³ С, б, м.д.
CDCl ₃	CH ₂ Br	3.6 c	C^2	101.8
	CH_2O	4.0 c	C^4, C^6	66.5
	C_6H_5	7.3–7.6 м	C^5	38.0
			C^{7}, C^{8}	35.5
			C _{apon.}	126.4-140.9
CD_2Cl_2	CH ₂ Br	3.6 c	C^2	101.6
(298 K)	CH_2O	4.0 c	C^4, C^6	66.4
	C_6H_5	7.3–7.5 м	C^5	37.9
			C^7, C^8	35.6
			Саром	126.2-141.2
(213 K)	CH ₂ Br	3.6 д	\mathbf{C}^2	101.2
	CH_2O	3.9 c	C^4, C^6	66.2
	C_6H_5	7.3–7.5 м	C^5	37.9
			C^{7}, C^{8}	35.3, 36.7
			C _{apon.}	124.6-128.3
ДМСО - <i>d</i> ₆	CH ₂ Br	3.4 c	\dot{C}^2	100.9
	CH_2O	3.9 c	C^4, C^6	66.6
	C_6H_5	7.3–7.5 м	C^5	37.3
			C^{7}, C^{8}	36.2
			C _{apon.}	125.9–141.1
C_6D_6	CH ₂ Br	3.1 c	\dot{C}^2	101.9
	CH_2O	3.6 c	C^4, C^6	66.2
	C_6H_5	7.0—7.5 м	C^5	37.8
			C^{7}, C^{8}	35.5
			C _{apon.}	126.6-141.9

^ас – синглет; д – дублет; м – мультиплет.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 1 2020

гис. 2. зависимость энергии кластера диоксан 1(0) СП₂СП₂СП₂ от величины торсионного угла τ О³-С⁴-С⁵-С⁶ при 0 К.

«кресло» (K) и 2,5-*твист*-форма (2,5-T), а также переходное состояние (ПС), отвечающее конформации «*полукресло*» (схема 3). Расчетные значения длин связей, а также валентных и торсионных углов для конформера K близки к данным рентгеноструктурного эксперимента (табл. 1).

Относительные энергии всех форм, отвечающих стационарным точкам на ППЭ для изолированной

Рис. 3. Переходное состояние кластера 1@5CH₂Cl₂

молекулы диоксана 1, а также для кластеров с растворителями представлены в табл. 3.

Расчетные различия в энергии между формами К и 2,5-Т в кластерах с растворителем (РВЕ/3ζ, ΔG_{298}^0) растут по сравнению со свободной молекулой диоксана 1 (табл. 3). Возрастает также и значение высоты потенциального барьера ΔG_{298}^{\neq} . При этом в случае кластера 1@5CH₂Cl₂ расчетный

	Конформер	<i>-Е</i> 0 ^б , Хартри	ΔE_0^0 ,	ΔH_{298}^0 ,	ΔG_{298}^0 ,	ΔS_{298}^0 ,
Растворитель	(конформация)		ккал/моль	ккал/моль	ккал/моль	кал/моль · К
			(ΔE_0^{\neq})	(ΔH_{298}^{\neq})	$(\Delta G^{ eq}_{298})$	(ΔS^{\neq}_{298})
_	K	5993.778232	0	0	0	0
_	2,5-T	5993.776440	1.12	1.21	0.41	2.67
_	(ПC)	5993.766142	(7.59)	(7.37)	(7.06)	(1.04)
_	K^{a}	5990.487591	0	0	0	0
_	$2,5-T^{a}$	5990.484313	2.06	2.14	1.23	3.04
_	$(\Pi C)^{a}$	5990.472571	(9.04)	(9.22)	(8.60)	(2.10)
5 CHCl ₃	ĸ	13087.561564	0	0	0	0
-	2, 5 -T	13087.560206	0.85	0.91	0.78	0.43
	(ПC)	13087.550008	(7.25)	(6.98)	(7.72)	(-2.48)
$5 \text{ CH}_2 \text{Cl}_2$	K	10790.348269	0	0	0	0
	2,5-T	10790.344978	2.07	2.16	0.86	4.38
	(ПC)	10790.335995	(7.70)	(7.41)	(8.33)	(-3.07)
10 CH ₂ Cl ₂	K	15586.918992	0	0	0	0
	2,5-T	15586.916788	1.38	1.38	1.78	-1.37
	(ПC)	15586.906675	(7.73)	(7.31)	(9.67)	(-7.91)
5 C ₆ H ₆	ĸ	7153.408643	0	0	0	0
	2,5-T	7153.406458	1.37	1.36	2.45	-3.67
	(ПC)	7153.394712	(8.74)	(8.36)	(10.57)	(-7.44)

Таблица 3. Энергетические параметры конформационных превращений молекул диоксана 1 по данным PBE/3ζ и riMP2/λ2^a.

^а Расчет в приближении riMP2/λ2.

^б С учетом ZPE.

и экспериментальный результаты достаточно близки (8.9 и 8.33 ккал/моль соответственно). Расчетная зависимость энергии данного кластера от внутрициклического торсионного угла представлена на рис. 2. Следовательно, первичная сольватная оболочка в данном случае с высокой вероятностью может содержать 5-6 молекул хлористого метилена (рис. 3). Ранее нами было показано, что вероятное число молекул растворителя в кластере с молекулами насыщенных гетероциклов – 1,3-диоксанов [14] и тетрагидро-1,3-оксазинов [15] – при стандартных условиях не должно превышать 10. При этом растворитель оказывает определенное влияние на величину ΔG_{298}^{\sharp} . Это следует как из данных табл. 3, так и из экспериментальных результатов. В частности, значение ΔG_{298}^{\neq} для ближайшего аналога диоксана 1 – 5,5-диметил-2,2-дифенил-1,3-диоксана – в растворе CS₂ составляет 9.6 ккал/моль [2].

Следует также отметить отсутствие на ППЭ промежуточного минимума (1,4-*твист*-формы), характерного для равновесия молекул незамещенного, а также 2-, 4-, 5-, 2,5- и 4,4-замещенных 1,3-диоксанов [11].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР получены на спектрометре Bruker Avance 400 (ФРГ) с рабочими частотами 400.13 (¹H) и 100.62 (¹³C) МГц (растворы в CDCl₃, CD₂Cl₂, ДМСО- d_6 , C_6D_6); внутренним стандартом является сигнал соответствующего растворителя. Все растворители ЯМР обладают чистотой 99.5–99.8% (Sigma-Aldrich).

Рентгеноструктурный анализ проведен на автоматическом четырехкружном дифрактометре

XCalibur Eos (США), (графитовый монохроматор, Мо K_{a} -излучение, λ 0.71073 Å, ω -сканирование, 20_{max} 62°). Сбор и обработка данных произведены с помощью программы CrysAlis^{Pro} Oxford Diffraction Ltd., версия 1.171.36.20. Структуры расшифрованы прямым методом и уточнены полноматричным методом наименьших квадратов в анизотропном приближении для неводородных атомов. Атомы водорода локализованы в разностном синтезе Фурье и уточнены изотропно. Расчеты выполнены по программе SHELX97 [16]. Кристаллографические данные и детали рентгеноструктурного эксперимента: Т 293(2) К; кристаллическая система – триклинная; пространственная группа Р1; а 9.8063(5) Å, b 11.4309(4) Å, c 23.4002(15) Å; β 91.837(4)°, V 2559.5(2) Å³; Z 6; р_{выч} 1.659 мг/мм³; µ 4.755 мм⁻¹; F(000) 1272.0; область сканирования по 0 4.54-58.52°; область индекса отражений $-10 \le h \le 12$, $-13 \le k \le 15, -27 \le l \le 29$; независимых отражений 11759 (R_{int} 0.0289), GOOF 0.976; для отражений с $I_{\rm hkl} > 2\sigma(I) R_1 0.0477, wR_2 0.0788; для всех отраже$ ний *R*₁ 0.1170, w*R*₂ 0.0969; $\Delta \rho_{\min}/_{\max}$ 0.66/-0.74 eÅ⁻³.

Первоначальная оптимизация геометрии конформера «кресло» кеталя **1** проводилась в рамках программного обеспечения НурегСhem 8.0 (метод AM1) [17], далее – с помощью метода PBE/3 ζ и для свободной молекулы – приближения riMP2/ λ 2 (ПРИРОДА [12]). Моделирование интерконверсии цикла проводили сканированием торсионного угла СССО в пределах –60÷25° (рис. 2). Значения потенциальных барьеров установлены с помощью процедуры поиска ПС в рамках программного обеспечения ПРИРОДА. Принадлежность стационарных точек ППЭ к ПС подтверждалась наличием одной мнимой частоты в соответствующем гессиане, а к минимуму – отсутствием мнимых частот. Модельные кластеры формировали последовательным добавлением молекул растворителя в окрестность исследуемого 1,3-диоксана с помощью программных средств HyperChem, после чего полученную систему оптимизировали в рамках PBE/3ζ.

5,5-Бис(бромметил)-2,2-дифенил-1,3-диоксан (1). Эквимолярную смесь (0.02 моль, 5.24 г) 2,2-бис-(бромметил)-1,3-пропандиола (Sigma-Aldrich) и бензальдегида (3.64 г) в 50 мл бензола кипятили в присутствии 0.1 г *п*-толуолсульфокислоты (ПТСК) с обратным холодильником до прекращения выделения воды в ловушке Дина-Старка, промывали 5%-ным раствором гидрокарбоната натрия (10 мл), затем водой (2×10 мл), растворитель отгоняли, а остаток дважды перекристаллизовывали из 95% EtOH. Выход продукта составил 0.85 г (10%). Температура плавления 78–79°С.

БЛАГОДАРНОСТИ

Структурные исследования диоксана 1 проведены в Центре коллективного пользования «Агидель» при Институте нефтехимии и катализа РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Минобрнауки Российской Федерации в рамках реализации проекта № 16.1969.2017/4.6.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рахманкулов Д.Л., Караханов Р.А., Злотский С.С., Кантор Е.А., Имашев У.Б., Сыркин А.М. Итоги науки и техники. Технология органических веществ. М.: ВИНИТИ, **1979**, *5*, 6.
- Внутреннее вращение молекул. Ред. В.Дж. Орвилл-Томас. М.: Мир, 1977, 355.
- Кузнецов В.В. *ХГС*. 2006, *42*, 643–654. [Kuznetsov V.V. *Chem. Heterocycl. Comp.* 2006, *42*, 559–569.] doi 10.1007/s10593-006-0127-х
- Кузнецов В.В. Изв. АН. Сер. хим. 2005, 54, 1499– 1507. [Kuznetsov V.V. Russ. Chem. Bull. 2005, 54, 1543–1551.] doi 10.1007/s11172-006-0001-0
- 5. Курмаева Е.С., Чалова О.Б., Чистоедова Г.И., Лапука Л.Ф., Киладзе Т.К., Кантор Е.А., Рахманкулов Д.Л. *ЖОрХ*. **1985**, *21*, 131–135.

- Бочкор С.А., Лапука Л.Ф., Курмаева Е.С., Чалова О.Б., Злотский С.С., Рахманкулов Д.Л. XГС. 1987, 607– 608. [Bochkor S.A., Lapuka L.F., Kurmaeva E.S., Chalova O.B., Zlotskii S.S., Rakhmankulov D.L. Chem. Heterocycl. Compd. 1987, 23, 500–502.] doi 10.1007/ BF00476374
- Хажиев Ш.Ю., Хусаинов М.А., Кантор Е.А. *ЖОХ*. 2011, 81, 155–156. [Khazhiev Sh.Yu., Khusainov М.А., Kantor E.A. *Russ. J. Gen. Chem.* 2011, 81, 153–154.] doi 10.1134/S1070363211010282
- Хажиев Ш.Ю., Хусаинов М.А., Халиков Р.А., Тюмкина Т.В., Мещерякова Е.С., Халилов Л.М., Кузнецов В.В. *ЖОрХ*. 2018, 54, 1069–1072. [Khazhiev Sh.Yu., Khusainov М.А., Khalikov R.A., Tyumkina T.V., Meshcheryakova E.S., Khalilov L.M., Kuznetsov V.V. *Russ. J. Org. Chem.* 2018, 54, 1076– 1079.] doi 10.1134/S1070428018070175
- Хажиев Ш.Ю., Хусаинов М.А., Халиков Р.А., Тюмкина Т.В., Мещерякова Е.С., Халилов Л.М., Кузнецов В.В. *ЖОХ*. 2018, 88, 369–374. [Khazhiev Sh.Yu., Khusainov M. A., Khalikov R.A., Tyumkina T.V., Meshcheryakova E.S., Khalilov L.M., Kuznetsov V.V. *Russ. J. Gen. Chem.* 2018, 88, 397– 402.] doi 10.1134/S1070363218030040
- Хажиев Ш.Ю., Хусаинов М.А., Халиков Р.А., Тюмкина Т.В., Мещерякова Е.С., Халилов Л.М., Кузнецов В.В. *ЖОХ*. 2019, *89*, 197–201. [Khazhiev Sh.Yu., Khusainov М.А., Khalikov R.A., Tyumkina T.V., Meshcheryakova E.S., Khalilov L.M., Kuznetsov V.V. *Russ. J. Gen. Chem.* 2019, *89*, 199– 203.] doi 10.1134/S0044460X19020057
- Кузнецов В.В. ЖОрХ. 2014, 50, 1247–1265. [Kuznetsov V.V. Russ. J. Org. Chem. 2014, 50, 1227– 1246.] doi 10.1134/S1070428014090012
- Лайков Д.Н., Устынюк Ю.А. Изв. РАН. Сер. хим. 2005, 804–810. [Laikov D.N., Ustynyuk Yu.A. Russ. Chem. Bull. 2005, 54, 820–826.] doi 10.1007/s11172-005-0329-х
- Хажиев Ш.Ю., Хусаинов М.А., Кантор Е.А. *ЖОрХ*. 2011, 47, 454–456. [Khazhiev Sh.Yu., Khusainov М.А., Kantor E.A. *Russ. J. Org. Chem.* 2011, 47, 450–452.] doi 10.1134/ S1070428011030225
- Раскильдина Г.З., Спирихин Л.В., Злотский С.С., Кузнецов В.В. *ЖОрХ*. 2019, 55, 601–607. [Raskildina G.Z., Spirikhin L.V., Zlotskij S.S., Kuznetsov V.V. *Russ. J. Org. Chem.* 2019, 55, 502–507.] doi 10.1134/ S1070428019040146
- Кузнецов В.В. ЖСХ. 2018, 59, 1425–1430. [Kuznetsov V.V. Russ. J. Struct. Chem. 2018, 59, 1374– 1380.] doi 10.26902/JSC20180617
- Sheldrick G. M. Acta Crystallogr. 2008, A64, 112–122. doi 10.1107/S0108767307043930
- 17. HyperChem 8.0. http://www.hyper.com.

Structure and Conformational Analysis of 5,5-Bis(bromomethyl)-2,2-diphenyl-1,3-dioxane

Sh. Yu. Khazhiev^{*a*}, M. A. Khusainov^{*b*}, R. A. Khalikov^{*c*}, V. A. Kataev^{*c*}, T. V. Tyumkina^{*d*}, E. S. Mesheryakova^{*d*}, L. M. Khalilov^{*d*}, and V. V. Kuznetsov^{*b*, *e*, *}

^a PAO ANK Bashneft, 450077, Russia, Republic of Bashkortostan, Ufa, ul. K. Maksa 30, k. 1 ^b Ufa State Petroleum Technological University.

450062, Russia, Republic of Bashkortostan, Ufa, ul. Kosmonavtov 1

^c Bashkir State Medical University, 450008, Russia, Republic of Bashkortostan, Ufa, ul. Lenina 3

^d Institute of Petrochemistry and Catalysis of Russian Academy of Science, 450075, Russia, Republic of Bashkortostan, Ufa, pr. Oktvabrva 141

^e Ufa State Aviation Technical University, 450008, Russia, Republic of Bashkortostan, Ufa, ul. K. Marksa 12 *e-mail: kuzmaggy@mail.ru

Received June 4, 2019; revised November 19, 2019; accepted November 22, 2019

The structure of 5,5-bis(bromomethyl)-2,2-diphenyl-1,3-dioxane was investigated using NMR ¹H, ¹³C and X-ray data. Molecules of this compound in crystalline phase have a *chair* conformation and in solution at room temperature are in the equilibrium state between two degenerated in energy *chair* invertomers. According to the low-temperature NMR result the barrier of interconversion is 8.9 kcal/mol. The rout and the calculative barrier of ring interconversion in different solvents (cluster model) were established by the computer simulation using DFT approach PBE/3\xi and in certain cases by riMP2/ λ 2. Results of geometry calculation correspond to the X-ray data and the calculative value of interconversion barrier quite agrees with cluster that contains 5 molecules of methylene chloride in the nearest solvate shell of investigated 1,3-dioxane.

Keywords: 1,3-dioxane, X-ray analysis, conformer, barrier of interconversion, cluster model, computer simulation