УДК 547.556.9 + 547.789.61

СИНТЕЗ, СПЕКТРАЛЬНЫЕ, ЭЛЕКТРОХИМИЧЕСКИЕ И АНТИОКСИДАНТНЫЕ СВОЙСТВА 2-{5-(АРИЛ)-6-R-3-ФЕНИЛ-5,6-ДИГИДРО-4*H*-[1,2,4,5]ТЕТРАЗИН-1-ИЛ}БЕНЗОТИАЗОЛОВ

© 2020 г. Т. Г. Федорченко^{*a*, *}, Г. Н. Липунова^{*a*, *b*}, А. В. Щепочкин^{*a*, *b*}, М. С. Валова^{*a*}, А. Н. Цмокалюк^{*b*}, П. А. Слепухин^{*a*, *b*}, О. Н. Чупахин^{*a*, *b*}

^а ФГБУН «Институт органического синтеза им. И.Я. Постовского УрО РАН», 620219, Россия, г. Екатеринбург, ул. Софьи Ковалевской 22/Академическая 20 *e-mail: deryabina@ios.uran.ru

^b ΦГАОУ ВО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина», Институт Химической Технологии, 620002, Россия, г. Екатеринбург, ул. Мира 28

> Поступила в редакцию 10 июня 2019 г. После доработки 14 ноября 2019 г. Принята к публикации 22 ноября 2019 г.

Новые 2-[5-(арил)-6-R-3-фенил-5,6-дигидро-4*H*-[1,2,4,5]тетразин-1-ил]бензотиазолы синтезированы из соответствующих формазанов алкилированием и последующей циклизацией *N*-алкилпроизводных. Продукты охарактеризованы методами спектроскопии ЯМР ¹H, ¹³C, ИК, масс-спектрометрии и рентгеноструктурного анализа. Изучены электрохимические свойства и антиоксидантная активность полученных бензотиазолов.

Ключевые слова: 2-[5-(арил)-6-R-3-фенил-5,6-дигидро-4*H*-[1,2,4,5]тетразин-1-ил]-бензотиазолы, дигидротетразины, циклическая вольтамперометрия, электрохимические свойства, антиоксидантная активность. **DOI:** 10.31857/S0514749220010073

Процессы окислительной деструкции биологических компонентов в организме, индуцированные свободными радикалами, часто приводят К окислительному стрессу, который является причиной многих дегенеративных заболеваний [1, 2]. Чтобы предотвратить или уменьшить воздействие окислительного стресса на клетки, используют антиоксиданты, соединения, обладающие способностью тушить свободные радикалы [3]. В качестве таких соединений широко известны производные фенолов, аминов, как биогенных, так и синтетических, и азотистых гетероциклов (индола, карбазола, дигидропиридина, дигидроакридинов и других) [4-8]. Ранее сообщалось об антиокислительной активности тетразолилпроизводных 5,6дигидро-4*H*-[1,2,4,5]тетразина, прекурсоров для получения вердазилов [9]. Большинство антиоксидантов являются электрохимически активными соединениями, способными превращаться в стабильные свободные радикалы.

Цель данной работы – изучение электрохимических и антиоксидантных свойств вновь синтезированных 2-[5-(арил)-6-R-3-фенил-5,6дигидро-4*H*-[1,2,4,5]тетразин-1-ил]-бензотиазолов **2–5** и влияния структурных факторов на эти свойства.

Соединения 2–5 получены алкилированием 1арил-5-(бензтиазол-2-ил)-3-фенилформазанов 1 галогеналканами в спиртово-щелочной среде и последующей циклизацией *N*-алкилпроизводных (схема 1) по описанной ранее методике [10]. Все соединения охарактеризованы данными элементного анализа, ¹Н и ¹³С ЯМР, ИК спектроскопии, масс-спектрометрии и РСА на примере производного 4b (рис. 1). Производные 2a, 3a и 4a получены и описаны нами ранее [11], в данной работе приведены для сравнения.

В спектрах ЯМР ¹Н производных **2–5** присутствует синглет NH протона при 9.52–9.62 м.д.

1, X = H (a), F (b), Cl (c), Br (d), I (e); 2, R = H; X = H (a), F (b), Cl (c), Br (d), I (e), MeO (f); 3, R = Me; X = H (a), F (b), Cl (c), Br (d), I (e); 4, R = Et; X = H (a), F (b), Cl (c), Br (d), I (e); 5, R = CH₂=CH₋; X = H (a), F (b), Cl (c), Br (d), I (e).

Широкий синглет СН₂ группы в спектре соединениий 2a-f наблюдается при 5.38-5.49 м.д. Сигнал протона у C^6 в соединениях **За–е** смещен в слабое поле по сравнению с незамещёнными 2а-е и проявляется в области 6.32-6.40 м.д.; в соединениях 4а-е – в области 6.08-6.18 м.д. В ряду соединений 3-4-5 наблюдается сильнопольный сдвиг протона в положении С⁶, для соединений 5а-е он проявляется в виде мультиплета в области 6.02-6.05 м.д. Причём, в рядах соединений За-е и 4а-е наибольшее влияние галогена на положение сигнала протона при C^6 в спектре наблюдается для Fзамещённых 3b и 4b, тогда как в ряду соединений 5а-е таких отличий не зафиксировано. Положение сигнала C^6 в соединениях 2–5 в спектрах ЯМР ¹³С зависит от заместителя R. В ряду производных 2a-f введение атома фтора приводит к смещению δC^6 от 61.99 до 62.89 м.д., переход от фтор- к иодпроизводному сопровождается смещением δC^6 в сильное поле до 61.73 м.д. Эта же закономерность сохраняется и в ряду производных **3а–е**: 66.71 (**3a**), 67.19 (**3b**), 66.64–66.39 (**3с–е**) м.д. и для производных **4а–е**: 71.73 (**4a**), 72.24 (**4b**), 71.64–71.39 (**4с–е**) м.д. Следует отметить, что сигналы С⁶ в соединениях **5а–е** (R = CH=CH₂) близки таковым для соединений **4а–е**: 71.19 (**5a**), 71.70 (**5b**), 71.06, 70.93 (**5d**, **e**) м.д.

В ИК спектрах соединений **2–5** проявляется полоса валентных колебаний NH группы в области 3150–3260 см⁻¹. В масс-спектрах соединений **2–5** регистрируется пик иона $(M + H)^+$.

Структура соединения **4b** подтверждена данными PCA (рис. 1а), соединение кристаллизуется в центросимметричной пространственной группе моноклинной системы. Тетрагидротетразиновый цикл неплоский, атом углерода C^6 выходит из среднеквадратичной плоскости остальных пяти атомов цикла на 0.619 Å, прочие атомы цикла отклоняются от плоскости не более чем на 0.04 Å. Фенильный заместитель ориентирован приблизи-

Рис. 1. Молекулярная структура соединения 4b (а) и ММВС в кристалле соединения 4b (b).

тельно в плоскости гетероцикла (торсионный угол $C^7C^3N^2N^1$ 175.9°). Бензотиазольный цикл незначительно отклоняется от плоскости тетразина (торсионный угол $N^2N^1C^2N^3$ 169.9°). Атом N^1 , соединяющий две системы π -электронной плотности уплощён, но отклоняется от плоскости соседних атомов $N^2C^2C^6$ на 0.196 Å. При этом одинарные и двойные связи в системе сопряжения хорошо различимы, разница их длин достигает 0.1 Å. Любопытно, что большие различия длин связей С–N бензтиазольного цикла $[C^2-N^3 = 1.301(3)$ Å, $N^3-C^{13} = 1.397(3)$ Å] не сопровождаются возникновением асимметрии C–S связей $[S^1-C^2 = 1.741(2)$ Å, $S^1-C^{18} = 1.743(3)$ Å].

Этильный и фторфенильный заместители располагаются в (псевдо)аксиально в *транс*-конфигурации. Атомы азота N^4 и N^5 имеют тригональнопирамидальную конфигурацию. Молекулярная кристаллическая упаковка характеризуется наличием межмолекулярных водородных связей (MMBC)

Рис. 2. Молекулярная структура соединения 7.

 N^4 H…N³ [-*x*+1/2, *y*-1/2, -*z*+1/2] с расстоянием N…N 2.996Å и углом N^4 H⁴N³ 160° (рис. 1b). Данные связи объединяют молекулы в полимерные ленты, ориентированные вдоль оси 0b.

Ранее [10, 12] было показано, что электроноакцепторный заместитель X в ароматическом фрагменте у N¹ в исходных формазанах 1 способствует дальнейшему алкилированию соединений 2, которые можно рассматривать как производные дигидротетразина. В случае X = I (соединение 1е) колоночной хроматографией продуктов циклизации наряду с соединением 5е нами был выделен продукт, который по данным масс-спектрометрии и ЯМР ¹Н спектроскопии (отсутствует сигнал NH протона и регистрируются сигналы аллильного фрагмента), соответствует структуре 2-{4-аллил-5-(4-иодфенил)-3-фенил-6-винил-5,6-дигидро-4*H*-[1,2,4,5]тетразин-1-ил}-бензотиазола (6).

Следует отметить, что замещение по NH группе может протекать и в других условиях. Так, при попытке получения комплекса меди с производным дигидротетразина **2a** в ацетоне, колоночной хроматографией реакционной массы был выделен продукт **7**, структура которого была определена рентгеноструктурным анализом (рис. 2).

По данным РСА в этом соединении атом N^2 связан с пропан-2-оном. Соединение 7 кристаллизуется в центросимметричной пространственной группе триклинной системы. Тетрагидротетразиновый цикл неплоский, конформационно существенно отличается от рассмотренного выше. Атомы $N^1N^2C^3C^6$ лежат практически в одной плоскости (с отклонением не более 0.025 Å), атом N^4 выходит из данной плоскости на 0.330 Å, а атом N^5 – на 0.847 Å. Атомы N^4 и N^5 имеют тригонально-пирамидальную геометрию, заместители при данных атомах располагаются (псевдо)аксиально в *транс*-конфигурации. Фенил при C^3 развёрнут относительно плоскости тетразина, торсионный угол $N^2C^3C^{16}C^{17}$ составляет 32.9°. Распределение длин связей в системе сопряжения с участием гидразонного фрагмента тетрагидротетразина близко к рассмотренному выше. В кристаллах наблюдаются укороченные контакты S…S [1-x, 1-y, -z] (3.40 Å, на 0.20 Å меньше суммы радиусов Ван-дер-Ваальса). В спектре ЯМР ¹Н производного 7 сигнал протонов СН₂ группы при C⁶ сдвинут в сильное поле (4.33 м.д.), а CH₂ группа пропанона регистрируется в виде двух уширенных синглетов (4.93 и 6.36 м.д.).

Электрохимические свойства производных дигидротетразинов 2–5 были изучены в ацетонитриле с использованием циклической вольтамперометрии, данные суммированы в таблице 1. Для всех соединений характерны два пика окисления: первый при потенциале в области 0.10–0.18 В, за исключением соединения 2f, второй при потенциалах 0.60–0.81 В и только один пик восстановления. В качестве примера приведена циклическая вольтамперограмма соединения 4a на рис. 3a.

Для изучения первой стадии процесса окисления на примере соединения **4a** регистрировали циклическую вольтамперограмму, в которой потенциал анода не превышал значений второй стадии окисления. Следует отметить, что площадь пика окисления больше площади пика восстановления в 1.6 раза, потенциалы пиков восстановления и окисления отличаются на 160 мВ. Поэтому мы не можем идентифицировать процесс даже как квазиобратимый. Можно предположить, что окисление соединения **4a** при потенциалах близких к первой стадии происходит с переносом большего числа электронов, чем в процессе восстановления.

Для изучения природы продуктов окисления было выполнено электрохимическое генериро-

Рис. 3. Циклическая вольтамперограмма соединения 4а.

вание их в течение 400, 600 и 900 с. Полученные продукты исследовали на ЭПР спектрометре, измеряли концентрацию парамагнитных частиц в исследуемом растворе, зависимость концентрации от времени генерирования представлена на рис. 4.

Сравнение спектра ЭПР электрохимически генерированных парамагнитных частиц и спектра вердазила 9, полученного химическим окислением соединения 4а [11], показало, что они практически идентичны (рис. 5). На основании этого и с учетом того, что ЦВ проводили в атмосфере аргона, можно было предположить, что одним из продуктов первого процесса окисления является катион-радикал 8 (схема 3). Спиновая плотность на ядрах азота этого продукта и вердазила 9, вероятно, близкая, а возможное влияние водорода при N⁴ у электрохимически окисленной формы 4а в ЭПР спектре не проявляется из-за плохой разрешенности спектра, зарегистрированного при комнатной температуре.

Для уточнения структуры парамагнитного продукта электрохимического окисления соединения **4a** проведены квантово-химические расчеты спектров ЭПР катион-радикала **8** и вердазила **9**, выполненные в рамках теории функциональной

Рис. 4. Зависимость концентрации парамагнитных частиц от времени генерирования.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 1 2020

Рис. 5. ЭПР спектры: 1 – электрохимически окисленной формы соединения 4a; 2 – вердазила 9.

плотности (DFT) с геометрической оптимизацией на основании метода UB3LYP в базисном наборе 6-31+G(d). Константы сверхтонкого взаимодействия (СТВ) вычисляли по методу UB3LYP в базисе IGLO-III [13]. Вычисления выполнены в программе ORCA [14]. Моделирование спектров ЭПР проводили с помощью программы EasySpin [15]. Сравнение расчетных спектров с экспериментальным (рис. 6) показывает, что спектр окисленной формы соединения 4а и расчётный спектр вердазила 9 практически совпадают. На основании полученных данных можно сделать вывод, что продуктом электрохимического окисления соединения 4а при потенциале, соответствующем первому пику окисления, является вердазил 9, а не катионвердазила 8. Можно предположить, что стабилизация вердазила в этих условиях имеет место в результате депротонирования катион-радикала под влиянием полярной среды (ацетонитрила).

Второй процесс окисления необратимый. Наиболее вероятный вариант, что в этом случае имеет место трансформация тетрагидротетразинового цикла в триазольный. Описаны примеры образования производных триазола из формазанов [16], из вердазилов как продукта автотрансформации [17] или в процессе синтеза вердазилов как побочный продукт [18], причем, в последнем случае структура замещенного триазола подтверждена методом РСА.

Природа заместителя R и атома галогена слабо влияет на значения потенциалов окисления (см. таблицу). Для соединений **5а–е** (R = CH=CH₂) наблюдается небольшой сдвиг первого процесса к более положительному потенциалу по сравнению с соответствующим процессом для соединений **2а–е** (R = H). В ряду соединений **2а–f** наименее положительный потенциал первого процесса имеет соединение с наиболее электронодонорной группой **2f** (X = OMe).

Антиоксидантную активность (АОА) дигидротетразинов изучали в ряду соединений 2a-f, на которых можно было проследить влияние заместителя X, и соединений 2-5a, чтобы выявить влияние заместителя R. Оценку АОА проводили спектрофотометрическим методом, основанным на реакции переноса атома водорода к стабильному хромоген-радикалу – 2,2-дифенил-1-пикрилгидразилу (ДФПГ) [19]. В качестве стандарта был выбран Витамин C (Vc). К растворам дигидро-

Рис. 6. ЭПР спектры: *1* – электрохимически окисленной формы соединения **4a**; (экспериментальный); *2* – радикала **9** (расчётный) (a); *3* – катион-вердазила **8** (расчётный) (b).

Соединение	Eox1, B	Eox2, B	Соединение	Eox1, B	Eox2, B
2a	0.10	0.66	4 a	0.11	0.70
2b	0.13	0.73	4b	0.11	0.74
2c	0.14	0.70	4c	0.11	0.62
2d	0.14	0.70	4d	0.12	0.75
2e	0.15	0.70	4 e	0.14	0.72
2f	0.03	0.60	5a	0.16	0.73
3 a	0.12	0.73	5b	0.16	0.76
3b	0.12	0.75	5c	0.17	
3c	0.13	0.75	5d	0.17	0.81
3d	0.13	0.74	5e	0.18	0.72
3e	0.15	0.74			

Электрохимические параметры соединений 2–5.

тетразинов (концентрация от 5 до 50 µМ) в метаноле добавляли растворённый в метаноле ДФПГ (200 µМ). Реакционную пробирку, завёрнутую в фольгу, выдерживали 30 мин при 30°С. Оптическую плотность измеряли при длине волны 517 нм, соответствующей максимуму поглощения ДФПГ. Значение АОА исследуемых веществ вычисляли по формуле:

где А_{исслед.р.} – оптическая плотность раствора, содержащего ДФПГ и исследуемое соединение;

AOA =
$$(1 - \frac{A_{\text{исслед.р.}}}{A_{\text{контр.p.}}}) \times 100\%$$

А_{контр.р.} – оптическая плотность раствора ДФПГ, не содержащего исследуемое соединение. Эффективную ингибирующую концентрацию (IC₅₀), снижающую концентрацию ДФПГ на 50% от первоначальной, получали из кривой зависимости процента ингибирования ДФПГ от концентрации образца с использованием программы OriginPro 8.5 (Model DoseResp). Данные представлены на рисунках 7, 8.

При рассмотрении влияния заместителя R на AOA установлено, что более эффективно взаимодействует с ДФПГ незамещённый дигидротетразин **2a** (IC₅₀ = 7.2 μ M), соединения с этильным и винильным заместителями показывают близкие результаты [19.6 (**4a**) и 21.4 (**5a**) μ M], существенно уступая Витамину C (IC₅₀ = 10.5 μ M) (рис. 8а). Неожиданно, что метил-замещённый дигидротетразин **3a** оказался в этом ряду самым неактивным (IC₅₀ = 28.2 μ M). Влияние заместителя X в ароматическом фрагменте тетрагидротетразинового цикла определяется его донорно-акцепторными свойствами, чем сильнее выражены электронодонорные свойства, тем выше AOA. Она уменьшается в ряду MeO > F > H > Br > Vc > I > Cl (рис. 8b). Несмотря на большой отрицательный индуктивный эффект атома фтора, положительный мезомерный эффект оказывается более значимым настолько, что фторзамещённый дигидротетразин **2b** (IC₅₀ = 6.1) лишь немного уступает в антиоксидантной активности метокси-замещённому дигидротетразину **2f** (IC₅₀ = 4.1) и значительно превосходит Витамин C.

Как и следовало ожидать, наиболее электрохимически активные дигидротетразины 2f, a, b, d

Рис. 7. Значения IC₅₀ дигидротетразинов **2а-f** и **2-5а**.

Рис. 8. Зависимость процента ингибирования ДФПГ от концентрации дигидротетразинов (a) **2–5a**: *1* – Vc, *2* – **2a**, *3* – **3a**, *4* – **4a**, *5* – **5a**; и (б) **2a–f**: *1* – Vc, *2* – **2a**, *3* – **2b**, *4* – **2c**, *5* – **2d**, *6* – **2e**, *7* – **2f**.

показали более высокую антиоксидантную активность по сравнению с остальными исследуемыми соединениями.

Таким образом, новые 2-{5-(арил)-6-R-3-фенил-5,6-дигидро-4*H*-[1,2,4,5]тетразин-1-ил}-бензотиазолы легко окисляются и обладают антирадикальной активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все использованные растворители были высушены и перегнаны по стандартной процедуре. Все использованные реагенты были заказаны в «Sigma-Aldrich» и использованы без предвари-тельной подготовки. Температуры плавления определены с помощью аппарата Stuart SMP3. Контроль за ходом чистотой полученных реакций И продуктов осуществлен методом TCX на пластинах Sorbfil ПТСХ-АФ-А-УФ. Колоночная хроматография проведена с использованием силикагеля Kieselgel 60 (размер частиц 0.040-0.063 мм, 230-400 меш). Спектры ЯМР получали на спектрометре Bruker Avance III-500 МГц. ИК спектры поглощения записывали с помощью приставки DRA на спектрофотометре Spectrum One (Perkin Elmer). УФ спектры зарегистрированы на спектрофотометре UV2600 фирмы Shimadzu (Япония) в метаноле. Массспектры записаны на приборе Bruker Daltonics maXis impact HD, метод ионизации ESI. Элементный анализ проведён с помощью автоматического элементного анализатора CHNS PE 2400, серия II (Perkin Elmer Instruments). ЭПР спектры были записаны с помощью спектрометра Bruker Elexsys E 500 X-band, оборудованного системой ER4131VT. Растворы образцов в ацетонитриле были разбавлены до концентрации около 10^{-4} M.

Рентгеноструктурные исследования проведены на оборудовании ЦКП «САОС» ИОС УрО РАН. Эксперименты проведёны на автоматическом четырёх-кружном дифрактометре с ССД-детектором «Xcalibur 3» по стандартной процедуре [МоК_α-излучение, графитовый монохроматор, ωсканирование с шагом 1° при Т 295(2) К]. Введена эмпирическая поправка на поглощение. Структуры соединений 4b и 7 определены прямым статистическим методом и уточнены полноматричным МНК по F^2 в анизотропном приближении для всех неводородных атомов. Атомы водорода С-Н связей помещены в геометрически рассчитанные положения, протоны NH-групп уточнены независимо в изотропном приближении. Все расчеты проведены с использованием программного пакета SHELXTL [20].

Циклическую вольтамперометрию проводили с помощью потенциостата Metrohm Autolab PGSTAT128N со стандартной трёхэлектродной конфигурацией. Трёхэлектродная ячейка состоит из рабочего электрода со стеклоуглеродным диском (*d* 2 мм), электрода сравнения Ag/AgNO₃ (0.01 M) и стеклоуглеродного стержневого противоэлектрода. Измерения проводили в безводном ацетонитриле с тетрабутиламмония тетрафторборатом (0.1 M) в качестве вспомогательного электролита в атмосфере аргона с шагом сканирования 100 мВ/с. Потенциал электрода $Ag/AgNO_3$ откалиброван с помощью ферроцен/ферроцениум окислительновосстановительной пары (Fc/Fc⁺).

Формазаны **1а-е** были синтезированы по известным методикам [10, 21, 22].

Общая методика получения 2-(5-арил-3фенил-5,6-дигидро-4*H*-[1,2,4,5]тетразин-1-ил)бензотиазолов 2–5. К суспензии 5-(бензотиазол-2ил)-1-арил-3-фенилформазана (0.8 ммоль) в 20 мл этанола добавляли 30% водный раствор гидроксида натрия (0.9 ммоль). К полученному тёмнофиолетовому раствору добавляли соответствующий алкил-галогенид (8.0 ммоль), смесь кипятили 15 минут. Растворитель отгоняли под вакуумом. К реакционной массе добавили 30 мл гептана, кипятили в течение часа. Гептан отгоняли под вакуумом. Продукт выделяли из реакционной массы колоночной хроматографией на силикагеле (гексан– хлороформ, 2:1).

2-(3,5-Дифинил-5,6-дигидро-4*H***-[1,2,4,5]тетразин-1-ил)-бензотиазолы 2а, 3а, 4а** описаны ранее [11].

2-{3-Фенил-5-(4-фторфенил)-5,6-дигидро-4*H***-[1,2,4,5]тетразин-1-ил}-бензотиазол** (**2b**). Выход 137 мг (44%), т.пл. 171–173°С (МеОН). ИК спектр, v, см⁻¹: 3144, 1598, 1530, 1503, 1447, 1280, 1171, 1059, 762, 685. Спектр ЯМР ¹Н, δ, м.д.: 5.45 уш.с (2H, CH₂), 7.08–7.17 м (3H_{аром}), 7.56–7.50 м (4H_{аром}), 7.76 д (1H_{аром}, *J* 7.1 Гц), 7.89–7.91 м (2H_{аром}), 9.56 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 55.15, 62.89, 115.67, 115.86, 118.99, 119.37, 119.43, 121.34, 125.79, 126.04, 128.61, 130.63, 130.85, 131.32, 145.17, 145.96, 152.11, 156.98, 158.88, 166.75. Массспектр, *m/z*: 390.1183 [*M* + H]⁺. Найдено, %: С 64.74; H 4.11; N 17.95. С₂₁Н₁₆FN₅S. Вычислено, %: С 64.76; H 4.14; N 17.98.

2-{3-Фенил-5-(4-хлорфенил)-5,6-дигидро-4*H*-**[1,2,4,5]тетразин-1-ил}-бензотиазол (2с).** Выход 201 мг (62%), т.пл. 191–193°С (МеОН). ИК спектр, v, см⁻¹: 3136, 1595, 1533, 1503, 1446, 1279, 1166, 1058, 744, 687. Спектр ЯМР ¹Н, δ, м.д.: 5.49 уш.с (2H, CH₂), 7.07 т (1H_{аром}, *J* 7.7 Гц), 7.24–7.39 м (5H_{аром}), 7.47–7.59 м (4H_{аром}), 7.77 д (1H_{аром}, *J* 7.6 Гц), 7.85– 7.95 м (2H_{аром}), 9.58 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 62.89, 119.03, 119.20, 121.34, 121.46, 125.80, 126.06, 126.35, 128.61, 129.06, 130.66, 130.85, 131.26, 145.04, 148.47, 152.08, 166.69. Массспектр: m/z: 406.0880 $[M + H]^+$. Найдено, %: С 62.12; H 3.96; N 17.23. C₂₁H₁₆ClN₅S. Вычислено, %: C 62.14; H 3.97; N 17.25.

2-{5-(4-Бромфенил)-3-фенил-5,6-дигидро-4*H***-[1,2,4,5]тетразин-1-ил}-бензотиазол** (**2**с). Выход 187 мг (52%), т.пл. 182–184°С (МеОН). ИК спектр, v, см⁻¹: 3143, 1597, 1532, 1502, 1445, 1279, 1165, 1058, 745, 689. Спектр ЯМР ¹Н, δ, м.д.: 5.49 уш.с (2H, CH₂), 7.09 т (1H_{аром}, *J* 7.3 Гц), 7.24–7.31 м (3H_{аром}), 7.47–7.58 м (6H_{аром}), 7.77 д (1H_{аром}, *J* 7.7 Гц), 7.87– 7.91 м (2H_{аром}), 9.57 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 61.86, 114.29, 119.04, 119.62, 121.34, 121.46, 125.81, 126.06, 128.62, 130.67, 130.86, 131.26, 145.02, 148.91, 152.08, 166.69. Масс-спектр, *m/z*: 450.0256 [*M* + H]⁺. Найдено, %: С 55.98; Н 3.55; N 15.53. C₂₁H₁₆BrN₅S. Вычислено, %: С 56.01; Н 3.58; N 15.55.

2-{5-(4-Иодфенил)-3-фенил-5,6-дигидро-4*H***-[1,2,4,5]тетразин-1-ил}-бензотиазол (2с).** Выход 215 мг (54%), т.пл. 175–177°С (МеОН). ИК спектр, v, см⁻¹: 3161, 1594, 1525, 1500, 1446, 1278, 1170, 1058, 751, 691. Спектр ЯМР ¹Н, δ, м.д.: 5.48 уш.с (2H, CH₂), 7.08–7.14 м (3H_{аром}), 7.29 т (1H_{аром}, *J* 7.5), 7.50–7.64 м (4H_{аром}), 7.62 д (2H_{аром}, *J* 8.8 Гц), 7.77 д (1H_{аром}, *J* 7.7 Гц), 7.87–7.91 м (2H_{аром}), 9.56 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 61.73, 85.97, 119.04, 119.92, 121.37, 121.47, 125.82, 126.06, 128.63, 130.67, 130.86, 131.27, 137.77, 144.99, 149.46, 152.09, 166.67. Масс-спектр, *m/z*: 498.0240 [*M* + H]⁺. Найдено, %: С 50.70; Н 3.22; N 14.07. С₂₁H₁₆IN₅S. Вычислено, %: С 50.71; Н 3.24; N 14.08.

2-{5-(4-Метоксифенил)-3-фенил-5,6-дигидро-4H-[1,2,4,5] тетразин-1-ил}-бензотиазол (2f). Выход 135 мг (42%), т.пл. 191-193°С (МеОН). ИК спектр, v, см⁻¹: 3331, 1595, 1530, 1508, 1444, 1278, 1177. 1064. 755. 686. Спектр ЯМР ¹Н. б. м.д.: 3.66 с (3H, OCH₃), 5.38 уш.с (2H, CH₂), 6.87 д (2H_{аром}, J 9.1 Гц), 7.07 т (1Н_{аром}, J 7.3 Гц), 7.17 д (2Н_{аром}, J 9.1 Гц), 7.27 т (1Н_{аром}, *J* 7.3 Гц), 7.49 д (1Н_{аром}, *J* 7.8 Гц), 7.52–7.55 м (3H_{аром}), 7.75 (1H_{аром}, *J* 7.3 Гц) 7.86-7.90 м (2H_{аром}), 9.52 уш.с (1Н, NН). Спектр ЯМР ¹³С, δ, м.д.: 55.15, 62.89, 114.39, 118.91, 119.21, 121.29, 125.75, 126.01, 128.56, 130.54, 130.83, 131.43, 142.98, 145, 145.27, 152.17, 155.09, 166.59. Macc-спектр, m/z: 400.1230 $[M - H]^+$. Найдено, %: С 65.78; Н 4.73; N 17.42. С₂₂Н₁₉N₅OS. Вычислено, %: С 65.81; Н 4.77; N 17.44.

2-{6-Метил-3-фенил-5-(4-фторфенил)-5,6дигидро-4Н-[1,2,4,5]тетразин-1-ил}-бензотиазол (3b). Выход 164 мг (51%). т.пл. 197–199°С (MeOH). ИК спектр, v, см⁻¹: 3154, 1594, 1526, 1503, 1446, 1276, 1179, 1011, 754, 693. Спектр ЯМР ¹Н, б, м.д.: 1.50 д (3H, CH₃, *J* 6.2 Гц), 6.32 к (1H, CH, *J* 6.2 Гц), 7.07 т (1H_{аром}, J 7.6 Гц), 7.14 т (2H_{аром}, J 9.0 Гц), 7.23-7.36 м (3Наром), 7.47-7.61 м (4Наром), 7.75 д (1H_{аром}, J 7.6 Гц), 7.88–7.97 м (2H_{аром}), 9.60 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 16.00, 67.19, 115.62, 115.80, 118.91, 119.64, 119.71, 121.24, 121.29, 125.68, 125.87, 128.59, 130.53, 130.67, 131.05, 144.12, 146.60, 152.21, 156.99, 158.89, 166.03. Масс-спектр, m/z: 404.1336 $[M + H]^+$. Найдено, %: С 65.47; Н 4.48; N 17.34. С₂₂H₁₈FN₅S. Вычислено, %: С 65.49; Н 4.50; N 17.36.

2-{6-Метил-3-фенил-5-(4-хлорфенил)-5,6дигидро-4H-[1,2,4,5]тетразин-1-ил}-бензотиазол (3с). Выход 141 мг (42%). т.пл. 203–205°С (МеОН). ИК спектр, v, см⁻¹: 3178, 1595, 1529, 1507, 1447, 1277, 1186, 1011, 750, 696. Спектр ЯМР ¹Н, δ, м.д.: 1.51 д (3H, CH₃, *J* 6.2 Гц), 6.40 к (1H, CH, *J* 6.2 Гц), 7.09 т (1H_{аром}, *J* 7.6 Гц), 7.22–7.41 м (5H_{аром}), 7.45– 7.64 м (4H_{аром}), 7.76 д (1H_{аром}, *J* 7.6 Гц), 7.88–7.99 м (2H_{аром}), 9.62 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 15.88, 66.64, 118.95, 119.46, 121.26, 121.34, 125.70, 125.89, 126.46, 128.61, 129.03, 130.58, 130.68, 130.99, 143.97, 149.03, 152.18, 165.98. Массспектр, *m/z*: 420.1008 [*M* + H]⁺. Найдено, %: С 62.92; H 4.32; N 16.68. C₂₂H₁₈ClN₅S. Вычислено, %: С 62.92; H 4.32; N 16.68.

2-{5-(4-Бромфенил)-6-метил-3-фенил-5,6дигидро-4Н-[1,2,4,5]тетразин-1-ил}-бензотиазол (3d). Выход 144 мг (39%). т.пл. 205-207°С (MeOH). ИК спектр, v, см⁻¹: 3173, 1596, 1527, 1506, 1447, 1275, 1189, 1011, 750, 695. Спектр ЯМР ¹Н, б, м.д.: 1.50 д (3Н, СН₃, *J* 6.2 Гц), 6.40 к (1Н, СН, *J* 6.2 Гц), 7.08 т (1H_{аром}, J 7.5 Гц), 7.24 и 7.47 АА'ВВ' (4H_{аром}, J 8.9 Гц), 7.28 т (1Н_{аром}, J 7.5 Гц), 7.50–7.62 м (4H_{аром}), 7.76 д (1H_{аром}, *J* 7.6 Гц), 7.84–7.98 м (2H_{apon}), 9.62 ym.c (1H, NH). Спектр ЯМР ¹³C, δ, м.д.: 15.90, 66.59, 114.46, 118.99, 119.20, 121.33, 121.40, 125.77, 125.94, 128.67, 130.65, 130.71, 131.00, 131.97, 143.97, 149.50, 152.22, 166.00. Maccспектр, *m/z*: 464.0364 [*M* + H]⁺. Найдено, %: С 56.88; Н 3.90; N 15.06. С₂₂Н₁₈ВгN₅S. Вычислено, %: C 56.90; H 3.91; N 15.08.

2-{5-(4-Иодфенил)-6-метил-3-фенил-5,6дигидро-4*H*-[1,2,4,5]тетразин-1-ил}-бензотиазол (3е). Выход 143 мг (35%). т.пл. 196–198°С (MeOH). ИК спектр, v, см⁻¹: 3165, 1595, 1525, 1505, 1447, 1274, 1191, 1011, 751, 694. Спектр ЯМР ¹Н, δ , м.д.: 1.50 д (3H, CH₃, *J* 6.2 Гц), 6.40 к (1H, CH, *J* 6.2 Гц), 7.29 т (1H_{аром}, *J* 7.9 Гц), 7.07 и 7.77 АВ (2H_{аром}, *J* 7.3 Гц), 7.11 и 7.62 АА'ВВ' (4H_{аром}, *J* 8.5 Гц), 7.48–7.58 м (4H_{аром}), 7.91 д (1H_{аром}, *J* 8.5 Гц), 7.88–7.96 м (2H_{аром}), 9.61 уш.с (1H, NH). Спектр ЯМР ¹³С, δ , м.д.: 15.84, 66.39, 118.95, 120.15, 121.25, 121.33, 125.69, 125.87, 128.59, 130.55, 130.67, 130.98, 137.73, 143.92, 150.00, 152.18, 165.94. Масс-спектр, *m/z*: 512.0395 [*M* + H]⁺. Найдено, %: C 51.65; H 3.54; N 13.66. C₂₂H₁₈IN₅S. Вычислено, %: C 51.67; H 3.55; N 13.69.

2-{3-Фенил-5-(4-фторфенил)-6-этил-5,6лигидро-4H-[1.2.4.5]тетразин-1-ил}-бензотиазол (4b). Выход 127 мг (38%). т.пл. 211–213°С (МеОН). ИК спектр, v, см⁻¹: 3160, 1603, 1535, 1501, 1447, 1278, 1182, 988, 749, 693. Спектр ЯМР ¹Н, б, м.д.: 1.11 т (3Н, СН₃, *J* 7.3 Гц), 1.73–1.88 м (2Н, СН₂), 6.05–6.11 м (1Н, СН), 7.06 т (1Н_{аром}, *J* 7.4 Гц), 7.13 т (2H_{аром}, J 8.6 Гц), 7.19–7.31 м (3H_{аром}), 7.45–7.62 м (4H_{аром}), 7.73 д (1Н_{аром}, *J* 7.8 Гц), 7.85–7.94 м (2H_{apon}), 9.55 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 9.61, 22.81, 72.24, 115.71, 115.88, 118.87, 119.70, 119.70, 121.23, 121.26, 125.72, 125.95, 128.66, 130.64, 130.69, 131.06, 144.55, 146.72, 152.28, 156.99, 158.89, 166.21. Масс-спектр, *т/z*: 418.1496 [*M* + H]⁺. Найдено, %: С 66.15; Н 4.81; N 16.78. С₂₃Н₂₀FN₅S. Вычислено, %: С 66.17; Н 4.83; N 16.77.

Основные кристаллографические параметры соединения **4b**: кристалл моноклинный, P2₁/n, *a* 10.4546(9) Å, *b* 11.2072(9) Å, *c* 17.7583(16) Å, β 91.670(8)°, *V* 2079.8(3) Å³, для вещества бруттоформулы C₂₃H₂₀FN₅S, *Z* 4, μ 0.184 мм⁻¹. На углах 3.48 < θ < 30.82° собрано 13448 отражений, из них независимых 5534 ($R_{\rm int}$ 0.0439). Окончательные параметры уточнения: R_1 0.1391, w R_2 0.1634 (по всем отражениям), R_1 0.0566, w R_2 0.1170 [по отражениям с $I > 2\sigma(I)$], GooF 1.004. Пики остаточной электронной плотности 0.175/–0.344 ēÅ⁻³.

Полный набор рентгеноструктурных данных депонирован в Кембриджском банке структурных данных (ССDC 1965415).

2-{3-Фенил-5-(4-хлорфенил)-6-этил-5,6-дигидро-4H-[1,2,4,5]тетразин-1-ил}-бензотиазол (**4**с). Выход 111 мг (32%). т.пл. 243–245°С (МеОН). ИК спектр, v, см⁻¹: 3155, 1595, 1534, 1503, 1447, 1277, 1190, 987, 750, 693. Спектр ЯМР ¹Н, δ, м.д.: 1.11 т (3H, CH₃, *J* 7.4 Гц), 1.69–1.98 м (2H, CH₂), 6.13–6.22 м (1H, CH), 6.96 т (1H_{аром}, *J* 7.8 Гц), 7.13 т (2H_{аром}, *J* 8.6 Гц), 7.24–7.32 м (3H_{аром}), 7.32–7.41 м (2H_{аром}), 7.50 д (1H_{аром}, *J* 8.3 Гц), 7.45–7.60 м (3H_{аром}), 7.74 д (1H_{аром}, *J* 7.8 Гц), 7.85–7.99 м (2H_{аром}), 9.57 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 9.54, 22.69, 71.64, 118.91, 119.51, 121.28, 125.74, 125.97, 126.39, 128.67, 129.09, 130.69, 130.99, 144.38, 149.21, 152.24, 166.15. Масс-спектр, *m/z*: 434.1201 [*M* + H]⁺. Найдено, %: С 63.64; H 4.64; N 16.13. С₂₃H₂₀ClN₅S. Вычислено, %: С 63.66; H 4.65; N 16.14.

2-{5-(4-Бромфенил)-3-фенил-6-этил-5,6-дигидро-4*H*-[1,2,4,5]тетразин-1-ил}-бензотиазол (4d). Выход 141 мг (37%). т.пл. 234-236°С (MeOH). ИК спектр, v, см⁻¹: 3150, 1596, 1531, 1502, 1446, 1276, 1192, 987, 750, 692. Спектр ЯМР ¹Н, б, м.д.: 1.10 т (3Н, СН₃, *J* 7.3 Гц), 1.72–1.96 м (2Н, СН₂), 6.13-6.23 м (1H, CH), 7.08 т (1H_{аром}, J 7.9 Гц), 7.23 и 7.47 АА'ВВ' (4Н_{аром}, J 9.3 Гц), 7.27 т (1Н_{аром}, J 7.9 Гц), 7.47-7.59 м (4H_{аром}), 7.74 д (1H_{аром}, J 7.9 Гц), 7.88-7.95 м (2H_{аром}), 9.57 уш.с (1Н, NН). Спектр ЯМР ¹³С, δ, м.д.: 9.54, 22.67, 71.52, 114.34, 118.92, 119.92, 121.28, 125.74, 125.97, 128.67, 130.68, 130.69, 130.98, 144.35, 149.64, 152.24, 166.14. Maccспектр, *m/z*: 478.0696 [*M* + H]⁺. Найдено, %: С 57.73; H 4.18; N 14.62. С₂₃H₂₀BrN₅S. Вычислено, %: C 57.74; H 4.21; N 14.64.

2-{5-(4-Иодфенил)-3-фенил-6-этил-5,6-дигидро-4*H*-[1,2,4,5]тетразин-1-ил}-бензотиазол (4e). Выход 130 мг (31%). т.пл. 233–235°С (МеОН). ИК спектр, v, см⁻¹: 3126, 1595, 1529, 1500, 1447, 1276, 1194, 988, 750, 693. Спектр ЯМР ¹Н, б, м.д.: 1.09 т (3Н, СН₃, *J* 7.3 Гц), 1.69–1.94 м (2Н, СН₂), 6.12-6.21 м (1H, CH), 7.07 т (1H_{аром}, J 7.8 Гц), 7.09 и 7.61 АА'ВВ' (4Н_{аром}, J 9.0 Гц), 7.27 т (1Н_{аром}, J 7.9 Гц), 7.47–7.59 м (4H_{аром}), 7.74 д (1H_{аром}, *J* 7.4 Гц), 7.87– 7.93 м (2H_{аром}), 9.56 уш.с (1Н, NН). Спектр ЯМР ¹³С, δ, м.д.: 9.54, 22.65, 71.39, 118.91, 120.20, 121.28, 125.74, 125.96, 128.66, 130.66, 130.68, 130.98, 137.78, 144.33, 150.19, 152.24, 166.12. Maccспектр, *m/z*: 526.0548 [*M* + H]⁺. Найдено, %: С 52.57; Н 3.81; N 13.32. С₂₃Н₂₀IN₅S. Вычислено, %: C 52.58; H 3.84; N 13.33.

2-{6-Винил-3,5-дифенил-5,6-дигидро-4*H*-**[1,2,4,5]тетразин-1-ил}-бензотиазол (5а).** Выход 165 мг (52%). т.пл. 177–178°С (МеОН). ИК спектр, v, см⁻¹: 3203, 1594, 1526, 1506, 1447, 1277, 1180, 1011, 750, 693. Спектр ЯМР ¹Н, δ, м.д.: 5.33–5.37 м (2H, CH₂), 6.01–6.07 м (1H, CH), 6.84–6.89 м (1H, CH), 6.95–7.00 м (1H_{аром}), 7.07 т (1H_{аром}, *J* 7.3 Гц),

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 1 2020

7.24–2.26 м (5H_{аром}), 7.47–7.58 м (4H_{аром}), 7.75 д (1H_{аром}, *J* 7.6 Гц), 7.85–7.92 м (2H_{аром}), 9.59 уш.с (1H, NH). Спектр ЯМР ¹³С, δ , м.д.: 71.19, 79.17, 117.74, 118.54, 118.96, 121.34, 122.74, 125.77, 125.99, 128.63, 129.29, 130.62, 130.76, 131.09, 131.52, 144.81, 149.65, 152.21, 166.36. Масс-спектр, *m/z*: 398.1434 [*M* + H]⁺. Найдено, %: С 69.48; H 4.83; N 17.60. С₂₃H₁₉N₅S. Вычислено, %: С 69.50; H 4.82; N 17.62.

2-{6-Винил-3-фенил-5-фторфенил)-5,6-дигидро-4Н-[1,2,4,5]тетразин-1-ил}-бензотиазол (5b). Выход 142 мг (43%). т.пл. 198–200°С (МеОН). ИК спектр, v, см⁻¹: 3203, 1599, 1526, 1502, 1447, 1278, 1183, 1012, 749, 695. Спектр ЯМР ¹Н, б, м.д.: 5.26-5.48 м (2Н, СН₂), 5.96-6.10 м (1Н, СН), 6.75-6.84 м (1H, CH), 6.95–7.00 м (1H_{аром}), 7.08 т (1H_{аром}, J 7.5 Гц), 7.15 т (2H_{аром}, *J* 8.8 Гц), 7.24–2.36 м (3H_{аром}), 7.45-7.58 м (4H_{аром}), 7.76 д (1H_{аром}, J 7.5 Гц), 7.84-7.90 м (2H_{апом}), 9.61 уш.с (1Н, NН). Спектр ЯМР 13С, б, м.д.: 71.70, 115.74, 115.93, 118.59, 118.98, 119.74, 119.79,121.34, 121.39, 125.78, 125.99, 128.62, 130.66, 130.77, 131.03, 131.43, 144.85, 146.09, 152.18, 157.08, 158.99, 166.45. Масс-спектр. *m/z*: 416.1340 [*M* + H]⁺. Найдено, %: С 66.48; H 4.35; N 16.84. С₂₃Н₁₈FN₅S. Вычислено, %: С 66.49; H 4.37; N 16.86.

2-{6-Винил-3-фенил-5-хлорфенил}-5.6-дигидро-4Н-[1,2,4,5] тетразин-1-ил}-бензотиазол (5с). Выход 152 мг (44%). т.пл. 200–203°С (МеОН). ИК спектр, v, см⁻¹: 3195, 1593, 1525, 1504, 1446, 1275, 1189, 1012, 749, 694. Спектр ЯМР ¹Н, б, м.д.: 5.29-5.40 м (2Н, СН₂), 5.97-6.09 м (1Н, СН), 6.85-6.93 м (1H, CH), 7.08 т (1H_{аром}, J 7.5 Гц), 7.28 т (1H_{аром}, *J* 7.5 Гц), 7.36 и 7.33 АА'ВВ' (4H_{аром}, *J* 9.4 Гц), 7.50 д (1H_{аром}, J 7.8 Гц) 7.51–7.57 м (2H_{аром}), 7.83– 7.91 м (2H_{аром}), 9.62 уш.с (1Н, NН). Спектр ЯМР ¹³С, б, м.д.: 71.09, 115.15, 115.72, 118.63, 119.08, 119.84, 121.36, 121.40, 125.83, 126.02 128.74, 130.75, 130.82, 131.13, 131.99, 144.78, 148.10, 152.19, 166.43. Macc-cпектр, m/z: 432.1024 $[M + H]^+$. Найдено, %: С 63.93; Н 4.17; N 16.20. С₂₃Н₁₈СlN₅S. Вычислено, %: С 63.95; Н 4.20; N 16.21.

2-{5-Бромфенил-6-винил-3-фенил)-5,6-дигидро-4H-[1,2,4,5]тетразин-1-ил}-бензотиазол (5d). Выход 156 мг (41%). т.пл. 200–202°С (МеОН). ИК спектр, v, см⁻¹: 3195, 1593, 1525, 1504, 1446, 1275, 1189, 1012, 749, 694. Спектр ЯМР ¹Н, δ, м.д.: 5.28–5.44 м (2H, CH₂), 5.97–6.08 м (1H, CH), 6.84– 6.93 м (1H, CH), 7.09 т (1H_{аром}, *J* 7.3 Гц), 7.25–7.33 м (3H_{аром}), 7.46–7.52 м (6Н_{аром}), 7.77 д (1H_{аром}, *J* 7.8 Гц), 7.84–7.91 м (2H_{аром}), 9.62 уш.с (1H, NH). Спектр ЯМР ¹³С, δ, м.д.: 71.06, 114.61, 118.72, 119.02, 119.95, 121.39, 121.46, 125.81, 126.02, 128.64, 130.71, 130.78, 130.96, 131.21, 132.04, 144.68, 149.02, 152.16, 166.38. Масс-спектр, *m/z*: 476.0539 [*M* + H]⁺. Найдено, %: С 57.98; Н 3.78; N 14.69. С₂₃Н₁₈BrN₅S. Вычислено, %: С 57.99; Н 3.81; N 14.70.

2-{6-Винил-5-иодфенил-3-фенил)-5,6-дигидро-4Н-[1,2,4,5] тетразин-1-ил}-бензотиазол (5е). Выход 163 мг (39%). т.пл. 194–196°С (МеОН). ИК спектр, v, см⁻¹: 3164, 1595, 1530, 1502, 1447, 1275, 1194, 1010, 751, 692. Спектр ЯМР ¹Н, б, м.д.: 5.26-5.49 м (2Н, СН₂), 5.94-6.12 м (1Н, СН), 6.83-6.93 м (1H, CH), 7.09 т (1Н_{аром}, *J* 7.2 Гц), 7.15 и 7.63 АА'ВВ' (4H_{аром}, J 8.7 Гц), 7.29 т (1H_{аром}, J 7.2 Гц), 7.48-7.59 м (4H_{аром}), 7.77 д (1H_{аром}, *J* 8.1 Гц), 7.82-7.92 м (2H_{аром}), 9.61 уш.с (1Н, NН). Спектр ЯМР ¹³С, δ, м.д.: 70.93, 118.72, 119.02, 120.23, 121.38, 121.45, 125.81, 126.01, 128.64, 130.69, 130.78, 130.97, 131.19, 137.85, 144.66, 149.57, 152.16, 166.36. Масс-спектр, m/z: 524.0392 $[M + H]^+$. Найдено, %: С 52.77; Н 3.45; N 13.39. С₂₃Н₁₈IN₅S. Вычислено, %: С 52.78; Н 3.47; N 13.38.

2-[4-Аллил-6-винил-5-(4-иодфенил)-3-фенил-5,6-дигидро-1,2,4,5-тетразин-1(4H)-ил]-бензо[d]тиазол (6). Выделен в качестве побочного пролукта при синтезе тетразина 5е. Выход 16 мг (3.4%). т.пл. 88–90°С (MeOH). ИК спектр, v, см⁻¹: 3161, 1592, 1528, 1506, 1446, 1275, 1194, 1009, 748, 693. Спектр ЯМР ¹Н, δ, м.д.: 3.89–4.01 м (2Н, СН₂), 5.12 и 5.43 дид (2H, CH₂, *J* 10.2 Гц), 5.15 и 5.29 ди д (2Н, СН₂, *J* 17.1 Гц), 5.85-6.00 м (1Н, СН), 6.20-6.33 м (1H, CH), 6.97–7.00 м (1H_{аром}), 7.09 и 7.28 т и т (2Наром, Ј 7.6 Гц), 7.27 д (1Наром, Ј 8.8 Гц), 7.46-7.54 м (2Наром), 7.54-7.60 м (2Наром), 7.54-7.99 м (2H_{аром}), 7.63 д (2H_{аром}, *J* 8.8 Гц), 7.72–7.78 м $(2H_{anow})$. Macc-cnektp, m/z: 564.0715 $[M + H]^+$. Найдено, %: С 55.41; Н 3.92; N 12.41. С26H22IN5S. Вычислено, %: С 55.42; Н 3.94; N 12.43.

1-{4-(Бензо[d]тиазол-2-ил)-2,6-дифенил-3,4дигидро-1,2,4,5-тетразин-1(2H)-ил}-пропан-2-он (7). К горячему раствору 100 мг тетразина 2а (0.26 ммоль) в 5 мл ацетона, прилили при перемешивании горячий раствор 67 мг хлорида меди(II) (0.28 ммоль) в 4 мл ацетона. Перемешивали при комнатной температуре в течение суток. Растворитель отогнали в вакууме. Остаток пропустили через 50 мл силикагеля смесью хлороформ-ацетон (10:1). Растворитель отогнали под уменьшенным давлением, остаток очищали с помощью колоночной хроматографии (элюент – хлороформ). Выход 55 мг (32%). т.пл. 204–206°С (MeOH). Спектр ЯМР ¹Н, δ, м.д.: 2.05 с (3H, CH₃), 4.17–4.46 м (2H, CH₂), 4.79–5.08 м (1H, CH), 6.23–6.52 м (2H, CH₂), 6.94 т, 7.11 т (2H_{аром}, *J* 7.3 Гц), 7.23–7.35 м (3H_{аром}), 7.37–7.44 м (2H_{аром}), 7.50–7.62 м (4H_{аром}), 7.72–7.82 м (3H_{аром}). Масс-спектр, *m/z*: 428.1543 [*M* + H]⁺. Найдено, %: С 67.41; H 4.94; N 16.39. C₂₄H₂₁N₅OS. Вычислено, %: С 67.43; H 4.95; N 16.38.

Основные кристаллографические параметры соединения 7: кристалл триклинный, P-1, *a* 8.8591(9) Å, *b* 9.6878(10) Å, *c* 13.9252(19) Å, *α* 107.923(13)°, β 107.267(10)°, γ 94.244(8)°, *V* 1067.8(2) Å³, для вещества брутто-формулы C₂₄H₂₁N₅OS, *Z* 2, μ 0.178 мм⁻¹. На углах 3.20 < θ < 33.70° собрано 16033 отражений, из них независимых 7294 (R_{int} 0.0343). Окончательные параметры уточнения: R_1 0.1316, wR_2 0.0867 (по всем отражениям), R_1 0.0443, wR_2 0.0814 [по отражениям с $I > 2\sigma(I)$], *GooF* 1.002. Пики остаточной электронной плотности 0.324/ –0.261 ё Å⁻³.

Полный набор рентгеноструктурных данных депонирован в Кембриджском банке структурных данных (CCDC 1965416).

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Центра коллективного пользования «Спектроскопия и анализ органических соединений» на базе Института органического синтеза им. И.Я. Постовского УрО РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках тем госзадания №№ АААА-А19-119012290117-6, АААА-А19-119012490006-1, АААА-А19-119011790130-3 и при финансовой поддержке Программы УрО РАН (проект № 18-3-3-16).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Int. J. Biochem. Cell. Biol. 2007, 39, 44–84. doi 10.1016/j.biocel.2006.07.001

- 2. Ai Pham-Huy L., He H., Pham-Huyc C. Int. J. Biomed. Sci. 2008, 4, 89–96.
- Hussain H.H., Babic G., Durst T., Wright J., Flueraru M., Chichirau A., Chepelev L.L. J. Org. Chem. 2003, 68, 7023–7032. doi 10.1021/jo0301090
- Sarbu C., Casoni D., Cent. Eur. J. Chem. 2013, 11, 679– 688. doi 10.2478/s11532-013-0210-y
- Николаева Н.С., Солдатова Ю.В., Смолина А.В., Аксиненко А.Ю., Соколов В.Б., Кинзирский А.С., Котельникова Р.А., Штолко В.Н., Котельников А.И. *Изв. АН. Сер. хим.* 2017, 66, 870–874. [Nikolaeva N.S., Soldatova Yu.V., Smolina A.V., Aksinenko A.Yu., Sokolov V.B., Kinzirsky A.S., Kotel nikova R.A., Shtolko V.N., Kotel nikov A.I. *Russ. Chem. Bull.* 2017, 66, 870–874.] doi 10.1007/s11172-017-1821-9
- Милаева Е.З., Шпаковский Д.Б., Маклакова И.А., Зуфанов К.А., Неганова М.Е., Шевцова Е.Ф., Чураков А.В., Бабкова В.А., Бабков Д.А., Косолапов В.А., Спасов А.А. Изв. АН. Сер. хим. 2018, 67, 2025–2034. [Milaeva E.R., Shpakovsky D.B., Maklakova I.A., Rufanov K.A., Neganova M.E., Shevtsova E.F., Churakov A.V., Babkova V.A., Babkov D.A., Kosolapov V.A., Spasov A.A. Russ. Chem. Bull. 2018, 67, 2025–2034.] doi 10.1007/s11172-018-2324-z
- El-Mekabaty A., El-Shora H.M. Chem. Heterocyclic Compd. 2018, 54, 618–624.
- Makhaeva G.F., Lushchekina S.V., Boltneva N.P., Serebryakova O.G., Rudakova E.V., Ustyugov A.A., Bachurin S.O., Shchepochkin A.V., Chupakhin O.N., Charushin V.N., Richardson R.J. *Bioorg. Med. Chem.* 2017, 25, 5981–5994. doi 10.1016/j.bmc.2017.09.028
- 9. Козлова З.Г., Щипанов В.П., Цепалов В.Ф. *ЖОрХ*. **1980**, *16*, 1098.
- Ольховикова Н.Б., Русинова Л.И., Шмелев Л.В., Липунова Г.Н., Клюев Н.А., Ельцов А.В. *ЖОХ*. 1988, 58, 1626–1634.

- Fedorchenko T.G., Lipunova G.N., Shchepochkin A.V., Tsmokalyuk A.N., Slepukhin P.A., Chupakhin O.N. *Mendeleev Commun.* 2018, 28, 297–299. doi 10.1016/ j.mencom.2018.05.023
- McConnachie G., Neugebauer F.A. *Tetrahedron*. 1975, 31, 555–560. doi 10.1016/0040-4020(75) 85029-0
- 13. Barilone J., Neese F. *Appl. Magn. Reson.* **2015**, *46*, 117–139. doi 10.1007/s00723-014-0627-2
- Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. doi 10.1002/wcms.81
- Stol S., Schweiger A. J. Magn. Reson. 2006, 178, 42– 55. doi 10.1016/j.jmr.2005.08.013
- Neugebauer F.A., Otting W., Smith H.O. Trischmann H. *Eur. J. Inorg. Chem.* 1972, 105, 549–553. doi 10.1002/ cber.19721050220
- 17. Щипанов В.П., Клюев Н.А. *XTC*. **1981**, *17*, 1560–1562. [Schipanov V.P., Klyuev N.A. *Chem. Heterocycl. Comp.* **1981**, *17*, 1145–1147.] doi 10.1007/ BF00506470
- 18. Schnakenburg G., Meyer A. Acta Cryst. 2018, E74, 292–297. doi 10.1107/S2056989018001913
- Sharma O.P., Bhat T.K. Food Chem. 2009, 113, 1202– 1205. doi 10.1016/j.foodchem.2008.08.008
- 20. Sheldrick G.M. Acta Cryst. 2008, A64, 112–122. doi 10.1107/S0108767307043930
- Клюев Н.А., Жильников В.Г., Александров Г.Г., Грандберг И.И., Липунова Г.Н. ЖОрХ. 1983, 19, 2615–2618.
- Федорченко Т.Г., Липунова Г.Н., Щепочкин А.В., Цмокалюк А.Н., Валова М.С., Слепухин П.А. *XГС*.
 2019, 55, 560–565. [Fedorchenko T.G., Lipunova G.N., Shchepochkin A.V., Tsmokalyuk A.N., Valova M.S., Slepukhin P.A. *Chem. Heterocycl. Compd.* 2019, 55, 560–565.] doi 10.1007/s10593-019-02496-4

Synthesis, Spectral, Electrochemical and Antioxidant Properties of 2-{5-(Aryl)-6-R-3-phenyl-5,6-dihydro-4*H*-[1,2,4,5]tetrazine-1-yl}benzothiazoles

T. G. Fedorchenko^{*a*, *}, G. N. Lipunova^{*a*, *b*}, A. V. Shchepochkin^{*a*, *b*}, M. S. Valova^{*a*}, A. N. Tsmokalyuk^{*b*}, P. A. Slepukhin^{*a*, *b*}, and O. N. Chupakhin^{*a*, *b*}

^a Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620219, Russia, Yekaterinburg, ul. S. Kovalevskoy 22 / ul. Akademicheskaya 20 *e-mail: deryabina@ios.uran.ru

^b Institute of Chemical Engineering, Ural Federal University, 620002, Russia, Yekaterinburg, ul. Mira 28

Received June 10, 2019; revised November 14, 2019; accepted November 22, 2019

New 2-{5-(aryl)-6-R-3-phenyl-5,6-dihydro-4*H*-[1,2.4.5]tetrazin-1-yl}benzothiazoles have been synthesized from the corresponding formazans by alkylation followed by cyclization of *N*-alkylderivatives. The products were characterized by 1 H, 13 C, NMR, IR, mass spectra and X-ray diffraction data. The electrochemical properties and antioxidant activity of obtained benzothiazoles were studied.

Keywords: 2-{5-(aryl)-6-R-3-phenyl-5,6-dihydro-4*H*-[1,2,4,5]tetrazin-1-yl}benzothiazoles, dihydrotetrazines, cyclic voltammetry, electrochemical properties, antioxidant activity