УДК 547.789

СИНТЕЗ, СПЕКТРАЛЬНЫЕ И ФОТОХИМИЧЕСКИЕ СВОЙСТВА НОВЫХ орто-СТИРИЛЗАМЕЩЕННЫХ *N*-ГЕТЕРОЦИКЛОВ

© 2020 г. А. Э. Сайфутярова^{*a, b,* *, Е. Н. Гулакова^{*a*}, О. А. Федорова^{*a, b*}, Е. Ю. Черникова^{*a*}, А. Д. Шаповалов^{*a*}, Ю. В. Федоров^{*a*}}

 ^a ФГБУН «Институт элементоорганических соединений им. А.Н. Несмеянова РАН» (ИНЭОС РАН), 119334, Россия, г. Москва, ул. Вавилова 28
^b ФГБОУ ВО «Российский химико-технологический университет им. Д.И. Менделеева», 125047, Россия, г. Москва, Миусская пл. 9
*e-mail: baykova.alina@gmail.com

> Поступила в редакцию 15 ноября 2019 г. После доработки 14 февраля 2020 г. Принята к публикации 14 февраля 2020 г.

Предложен дизайн и впервые синтезированы неизвестные ранее бисстириловые производные, в структуре которых 2 *орто*-стирилзамещенных *N*-гетероцикла связаны между собой алкильным спейсером. Спектральные и фотохимические исследования подтвердили высокую фотоактивность полученных соединений.

Ключевые слова: *N*-гетероциклы, стириловые производные, конденсация альдольного типа, синтез, *E-Z*-фотоизомеризация.

DOI: 10.31857/S0514749220040096

Интерес к стириловым производным азагетероциклов во многом обусловлен их биологической активностью и применением в медицине в качестве противовирусных, антибактериальных и антибластомных средств [1]. Благодаря способности связываться с ДНК, эти соединения способны ингибировать различные процессы, происходящие в живых клетках [2], а их спектральные характеристики позволяют применять данные соединения, например, в качестве флуоресцентных меток в биологических объектах [3].

На сегодняшний день в качестве флуоресцентных меток для обнаружения биомолекул широко используются красители, в молекуле которых 2 фрагмента стирилгетероциклов соединены спейсером [4–6]. Помимо визуализации ДНК методом флуоресцентной микроскопии [7], соединения данного класса используются в исследованиях микровязкости мицелл, микроэмульсий и липидных мембран [8]. Особый интерес представляют соединения, которые не флуоресцируют в свободном состоянии, но многократно увеличивают интенсивность флуоресценции при связывании с биомолекулами. Также интересной представляется и обратная ситуация – снижение или полное тушение флуоресценции красителя при связывании с ДНК [9].

Ранее мы показали, что *орто*-стирилзамещенные *N*-гетероциклы, не вступающие во взаимодействие с ДНК, при облучении претерпевают внутримолекулярную фотоциклизацию (схема 1) [10]. Было установлено, что образующиеся при этом производные хинолизиния являются интеркаляторами ДНК.

Для дальнейшего развития работ по фотоуправляемой интеркаляции ДНК был предложен дизайн новых, неизвестных ранее фотоактивных соединений, в структуре которых находились бы 2 фраг-

мента *орто*-стирилзамещенного *N*-гетероцикла, связанных между собой алкильной цепочкой, достаточная длина которой должна минимизировать влияние 2 стириловых фрагментов друг на друга.

Универсальным методом получения стириловых производных является конденсация альдольного типа при произвольном сочетании карбонильного и метиленового компонентов. В качестве карбонильного компонента нами был синтезирован бисальдегид **3** из коммерчески доступного ванилина **1** (схема 2) [11].

В качестве метиленового компонента были использованы метилзамещенные бензаннелированные гетероциклические основания 4–6, являющиеся коммерчески доступными.

Количественные показатели способности к депротонированию метильных производных ароматических гетероциклических соединений, как правило, невысоки (р K_a 28–35) и находятся между значениями р K_a кетонов (р $K_a \sim 19$ –20 для α-депротонирования) и толуола (р $K_a \sim 40$). Поэтому для количественного превращения метилгетероциклов в соответствующие анионы в результате латерального депротонирования необходимы сильные основания. Карбанионы, образующиеся при депротонировании метильных групп, расположенных в α-положениях относительно фрагмента C=N гетероцикла, в различной степени стабилизированы в результате взаимодействия с ароматическим циклом.

Реакцию проводили при комнатной температуре, при перемешивании реагентов в апротонном безводном растворителе ДМФА. В качестве основания, способствующего отрыву протона от метильной группы гетероциклического производного и образованию карбаниона, использовали КОН. Контроль за проведением реакции проводили методом TCX. По окончании реакции при разбавлении реакционной массы водой целевые продукты 7–9 выпадали в осадок, который отфильтровывали, промывали на фильтре, сушили и перекристаллизовывали из метанола (схема 3).

Все полученные в данной работе бисстириловые производные 7–9 были выделены в виде *E*,*E*изомеров, что однозначно следует из констант спин-спинового взаимодействия вицинальных протонов (около 16 Гц) в спектрах ЯМР (рис. 1).

Наличие в спектрах бисстириловых производных 7–9 набора сигналов только одного фрагмента стирилгетероцикла свидетельствует о высокой симметричности структур полученных целевых продуктов (рис. 1).

Необходимо отметить, что продуктов монозамещения ни в одной из 3 реакций выделено не было.

В рассматриваемых реакциях выходы продуктов хорошо коррелируют с кислотностью метильных групп, расположенных в α-положениях относительно фрагмента C=N гетероцикла. Увеличение донорных свойств гетероатома пятичленного

4, X = S; 5, X = O; 6, X = CMe₂. 7, X = S (63%); 8, X = O (31%); 9, X = CMe₂ (15%).

гетероцикла в ряду сера < кислород < углерод приводит к понижению кислотности метильной группы, участвующей в реакции конденсации и, как следствие, к снижению выхода целевого продукта. Кроме того, можно предположить протекание побочного процесса – окислительно-восстановительной реакции диспропорционирования (Канниццаро), когда одна молекула альдегида при этом окисляется до кислоты, а другая восстанавливается до спирта, что может оказать заметное влияние на выход продукта.

Влияние природы гетероатома в гетероциклическом фрагменте заметно сказывается и на положении сигналов ароматических протонов и протонов двойной связи в ЯМР-спектрах (рис. 1). Известно, что одним из основных факторов, определяющих химический сдвиг магнитного ядра, является электронное влияние заместителей, состоящее в изменении электронной плотности возле магнитного ядра. Сдвиг сигналов протонов гетероароматического ядра и протонов двойной С=С связи в слабые поля увеличивается в ряду диметилиндол 9 < бензооксазол 8 < бензотиазол 7, что связано с увеличением электроноакцепторности иминной группы в этом ряду гетероциклов. Однако сдвиг сигнала олефинового протона Н-b в молекуле 7, напротив, происходит в сильные поля. Такое сильнопольное смещение химического сдвига, как правило, наблюдается при возрастании электронной плотности возле ядра, либо влиянии π -орбиталей протяженной хромофорной системы, в которых возникают локальные электрические токи специфической формы, создающие сильно неоднородное магнитное поле. Можно предположить, что геометрия стириловых фрагментов в молекулах 7-9 неодинакова, и особенно она должна отличаться у стирилбензотиазола 7, имеющего в гетероцикле большой атом – серы. Вероятно, олефиновый протон Н-b попадает в данном случае в область экранирования кольцевыми токами бензольного ядра 3,4-диметоксифенильного фрагмента, что и приводит к наблюдаемому сдвигу сигнала этого протона в сильные поля.

Спектральные и фотохимические свойства орто-стирилзамещенных *N*-гетероциклов. На рис. 2 показан электронный спектр поглощения бисстирилового производного 7, имеющего в своем составе 2 фрагмента бензотиазола. В спектре

Рис. 1. Ароматические фрагменты спектров ЯМР ¹Н соединений 7–9; ДМСО-*d*₆ (Bruker, 600 МГц).

присутствует длинноволновая полоса поглощения (ДПП) с максимумом 358 нм (є 62510). Наилучшим образом для целей анализа спектральных свойств зарекомендовал себя подход, когда выводы делаются на основании аналогий с изученными ранее соединениями. Мы провели сравнение спектральных свойств соединения 7 и его моностирилового аналога 10. В спектре поглощения 2-(3,4-диметоксистирил)бензотиазола (10) характерная ДПП, обусловленная переносом электронной плотности в молекуле соединения 10 с диметоксифенильного на бензотиазольный фрагмент, имеет максимум в области 357 нм (є 38780) и практически совпадает с ДПП соединения 7, что свидетельствует об эквивалентности хромофоров в соединениях 7 и 10 (рис. 2). По-видимому, из-за наличия в моле-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 4 2020

куле соединения 7 спейсера достаточно большой длины стирилбензотиазолиевые фрагменты пространственно разделены, практически не взаимодействуют между собой и по спектральным характеристикам не отличаются от аналогичного фрагмента в моностириловом производном **10**.

Проведенные полуэмпирические расчеты пограничных орбиталей – высшей занятой (ВЗМО) и низшей свободной (НСМО), выполненные методом РМЗ, показали, что вид и локализация пограничных орбиталей в соединениях 7 и 10 идентичны (рис. 3), что согласуется со спектральными характеристиками соединений 7 и 10.

Известно, что основной фотохимической реакцией гетероциклических аналогов стильбена

Рис. 2. Электронные спектры поглощения соединений 7 и **10** в ацетонитриле (*с* 0.00001 моль/л).

является *E-Z*-фотоизомеризация [12]. Поскольку фотохимические изменения производятся только поглощенным светом, то выбор источника света диктуется спектром поглощения исследуемого соединения. Нами были изучены свойства синтезированных бисстириловых производных **7**, **8** и их моностириловых аналогов **10**, **11** при облучении светом с длиной волны 365 нм, т.е. в области максимального поглощения исходных *E*-изомеров. В качестве примера на рис. 4 приведены изменения спектров поглощения бисстирилового производного **8** при облучении светом 365 нм в ацетонитриле.

С использованием метода Фишера [13] были рассчитаны составы фотостационарных смесей,

Рис. 4. Изменения спектров поглощения соединения 8 при облучении фильтрованным светом ртутной лампы с длиной волны 365 нм в ацетонитриле (c = 0.00002 моль/л).

Рис. 3. Графическое изображение молекулярных орбиталей: ВЗМО соединения **10** (*a*), НСМО соединения **10** (*б*), ВЗМО соединения **9** (*в*), НСМО соединения **9** (*г*).

образующихся при фотооблучении, а также построены теоретические спектры поглощения *Z*-изомера **8** (рис. 5, см. таблицу).

Как видно из данных, приведенных в таблице, процесс фотоизомеризации *орто*-стирилзамещенных *N*-гетероциклов при облучении фильтрованным светом ртутной лампы с длиной волны 365 нм является очень эффективным, поскольку доля образующихся *Z*-изомеров велика. Облучение светом с длиной волны 313 нм приходится в область, где поглощение соединений 7, 8, 10, 11 малоинтенсивное (см., например, рис. 2). Это приводит к менее эффективному протеканию фотоизомеризации и образованию меньшего количества *Z*-изомера.

Рис. 5. Электронные спектры поглощения исходного изомера *E*-8 (c = 0.00002 моль/л в ацетонитриле), фотостационарных смесей (*E*-8 + *Z*-8) при облучении светом с длиной волны 365 и 313 нм, а также теоретически рассчитанный спектр *Z*-изомера 8.

Соединение	Е-изомер		<i>Z</i> -изомер	Доля <i>Z</i> -изомера при λ _{обл.}	
	λ^{abs}_{max} , нм	λ^{fl}_{max} , нм	λ^{abs}_{max} , HM	λ_{313}	λ_{365}
7	359	478	350	0.54	0.72
8	350	456	361	0.55	0.62
10	357	476	292	0.48	0.90
11	348	468	352	0.54	0.61

Спектральные и фотохимические характеристики соединений 7, 8, 10, 11 в ацетонитриле.

Доказательством образования *Z*-изомера являются данные ЯМР-спектроскопии, которые на примере 2-(3,4-диметоксистирил)бензоксазола (11) демонстрируют образование фотостанционарной смеси *E*- и *Z*-изомеров при облучении светом с длиной волны 365 нм (рис. 6).

Таким образом, предложен удобный метод получения неописанных ранее бис(стирилзамещенных) производных бензотиазола, бензоксазола и диметилиндола – фотоактивных гетероциклических соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на импульсном спектрометре Bruker Avance 400 МГц и Avance 600 МГц при постоянной температуре образца 298 К в растворителях $CDCl_3$, ДМСО- d_6 и ацетон- d_6 . Химические сдвиги в спектрах ЯМР ¹Н и ¹³С приведены в м.д. Для отнесения сигналов в спектрах ЯМР использовались двумерные методики gs-HMQC, gs-HMBC и gs-COSY с импульсными полевыми градиентами. Температуры плавления определялись в стеклянном капилляре на приборе Mel-temp II и не корректировались. Контроль за ходом реакций осуществляли методом TCX на пластинках DC- Fertigfolien ALUGRAM 60 UV₂₅₄ производства фирмы «Macherey-Nagel» и Aluminium oxide 60 F₂₅₄ neutral производства фирмы «Sigma-Aldrich».

Элементный анализ проводился в Лаборатории микроанализа Института элементоорганических соединений им. А.Н. Несмеянова РАН на анализаторе Carlo Erba 1108.

Рис. 6. Ароматические фрагменты спектров ЯМР ¹Н соединения **11** до и после облучения светом; $\lambda_{oбл.}$ 365 нм; ДМСО- d_6 (Bruker, 600 МГц).

Для синтеза бисстириловых красителей 7–9 использовали коммерчески доступные гетероциклические основания 2-метилбензотиазол (4), 2-метилбензоксазол (5), 2,3,3-триметил-3*H*-индол (6).

Спектры поглощения были получены на спектрофотометре Varian-Cary 300. Фотохимические превращения были вызваны облучением ацетонитрильных растворов соединений 7, 8, 10, 11 ртутной лампой высокого давления (ДРК-120, 120 Вт). Конкретные линии спектра ртутной лампы с λ 313, 365 и 405 нм были выделены с помощью стеклянных фильтров из стандартного набора цветных оптических стекол. Фотопроцессы изучали в кварцевой кювете (10 мм) при перемешивании. Спектры поглощения соответствующих *Z*-изомеров соединений 7, 8, 10, 11 были предварительно получены по методу Фишера.

Соединения 10 и 11 получены по описанной методике [14, 15].

Общая методика получения соединений 7–9. Раствор бисальдегида 3 (0.45 ммоль), метильного производного гетероциклического основания 4–6 (0.90 ммоль) и гидроксида калия (1.80 ммоль) в 3 мл ДМФА перемешивали при комнатной температуре в течение 6 дней. Затем реакционную массу разбавляли водой и отфильтровывали выпадающий осадок, который промывали на фильтре водой, диэтиловым эфиром и сушили, после чего перекристаллизовывали из метанола.

1,10-Бис(4-{(E)-2-(ензо[d]тиазол-2-ил)винил}-2-метоксифенокси)декан (7). Выход 0.22 г (63%). Бежевые кристаллы, т.пл. 153-156°С. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м.д.: 1.33 уш.с (8Н, Ηδ, Ηδ', Ηε, Ηε'), 1.44 τ (4Η, Ηγ, Ηγ'), 1.74 τ (4Η, Ηβ, Н^β), 3.86 с (6H, OCH₃), 4.02 т (4H, H^α, H^α), 7.00 д (2Н, Н⁵, Н⁵, *J* 7.8 Гц), 7.26 д (2Н, Н⁶, Н⁶, *J* 8.1 Гц), 7.41 с (2Н, Н², Н²), 7.41 т (2Н, Н¹³, Н¹³), 7.47 д (2H, H^a, H^{a'}, J 15.2 Гц), 7.50 т (2H, H¹², H^{12'}), 7.58 д (2Н, Н^b, Н^b', J 15.8 Гц), 7.94 д (2Н, Н¹¹, Н¹¹', J 8.1 Гц), 8.05 д (2H, H¹⁴, H¹⁴', J 8.1 Гц). Спектр ЯМР 13С (ДМСО-*d*₆), δ, м.д.: 25.9 (С^β, С^β), 29.2 (С^ε, С^ε', C^{δ} , $C^{\delta'}$), 29.3 (C^{γ} , $C^{\gamma'}$), 56.2 (OCH₃), 69.0 (C^{α} , $C^{\alpha'}$), 111.5 (C², C^{2'}), 113.9 (C⁵, C^{5'}), 120.2 (C^a, C^{a'}), 122.3 (C⁶, C⁶), 122.8 (C¹⁴, C¹⁴, C¹¹, C¹¹), 125.6 (C¹², C¹²), 126.8 (C¹³, C¹³), 128.7 (C¹, C¹), 134.4 (C^b, C^{b'}), 150.0 (C³, C^{3'}), 150.4 (C⁴, C^{4'}), 154.1 (C¹⁵, C^{15'}), 167.2 (С⁸, С⁸). Найдено, %: С 71.41; Н 6.31; N 3.85. С₄₂Н₄₄N₂O₄S₂. Вычислено, %: С 71.56; Н 6.29; N 3.97. *М* 704.94.

1,10-Бис(4-{(E)-2-(бензо[d]оксазол-2-ил)винил}-2-метоксифенокси)декан (8). Выход 0.07 г (31%). Бежевые кристаллы, т.пл. 125-128°С. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м.д.: 1.30 уш.с (4Н, Нε, Ηε'), 1.33 уш.с (4Н, Нδ, Нδ'), 1.41 уш.с (4Н, Ηγ, Ηγ'), 1.72 т (4H, H^β, H^β), 3.85 с (6H, OCH₃), 4.00 т (4H, H^α, H^α), 7.01 д (2H, H⁵, H⁵', J 8.1 Гц), 7.24 д (2Н, На, На', Ј 16.0 Гц), 7.29 д (2Н, Н6, Н6', Ј 8.1 Гц), 7.36-7.39 м (4Н, Н¹², Н¹²', Н¹³, Н¹³'), 7.46 с (2Н, Н², Н2'), 7.70 д (2Н, Н14, Н14', Ј 7.8 Гц), 7.72 д (2Н, Н11, Н^{11'}, J 8.1 Гц), 7.75 д (2Н, Н^b, Н^b', J 16.1 Гц). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м.д.: 25.9 (С^β, С^β), 29.1 $(C^{\varepsilon}, C^{\varepsilon'}), 29.2 (C^{\delta}, C^{\delta'}), 29.4 (C^{\gamma}, C^{\gamma'}), 56.2 (OCH_3),$ 68.6 (C^α, C^{α'}), 110.6 (C², C^{2'}), 110.9 (C¹¹, C^{11'}), 111.7 (Ca, Ca'), 113.0 (C⁵, C⁵), 119.8 (C¹⁴, C¹⁴), 122.9 (C⁶, C⁶), 125.1 (C¹², C¹²), 125.6 (C¹³, C¹³), 128.1 (C¹, C¹), 140.2 (C^b, C^b), 142.3 (C¹⁰, C¹⁰), 149.6 (C³, C³), 150.2 (C¹⁵, C¹⁵), 150.5 (C⁴, C⁴), 163.4 (C⁸, C⁸). Найдено, %: С 70.91; Н 6.50; N 4.06. С₄₂Н₄₄N₂O₆. Вычислено, %: С 70.98; Н 6.59; N 4.16. М 660.81.

1,10-Бис{4-[(E)-2-(3,3-Диметил-3H-индол-2ил)винил]-2-метоксифенокси}декан (9). Выход 0.08 г (15%). Коричневый порошок, т.пл. 55-58°С. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м.д.: 1.32 уш.с (8Н, Н^δ, H^{δ'}, H^ε, H^{ε'}), 1.42 уш.с (4Н, H^γ, H^{γ'}), 1.74 т (4H, H^β, H^β), 3.34 c (12H, CH₃), 3.86 c (6H, OCH₃), 4.00 т (4H, H^α, H^α), 7.00 д (2H, H⁵, H⁵, J 8.0 Гц), 7.16 д (2Н, На, На', Ј 15.8 Гц), 7.21 д (2Н, Н6, Н6', Ј 8.1 Гц), 7.26-7.30 м (4Н, Н¹², Н¹², Н¹³, Н¹³), 7.43 с (2H, H², H²), 7.46 д (2H, H¹¹, H¹¹', J 8.2 Гц), 7.49 д (2H, H¹⁴, H¹⁴, J 8.1 Гц), 7.69 д (2H, H^b, H^b, J 15.9 Гц). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м.д.: 23.6 $(C^{\delta}, C^{\delta'}), 26.0 (C^{\gamma}, C^{\gamma'}), 29.2 (C^{\beta}, C^{\beta'}), 29.4 (C^{\varepsilon}, C^{\varepsilon'}),$ 49.1 (CH₂), 56.2 (OCH₂), 68.6 (C^α, C^{α'}), 110.8 (C², C²), 113.1 (C⁵, C⁵), 118.0 (C^a, C^a), 120.2 (C¹⁴, C¹⁴), 121.9 (C¹¹, C¹¹), 122.4 (C¹², C¹²), 125.6 (C⁶, C⁶), 128.0 (C¹³, C¹³), 128.2 (C¹⁰, C¹⁰), 129.2 (C¹, C¹), 138.2 (C^b, C^b), 145.9 (C⁸, C⁸), 146.3 (C⁹, C⁹), 146.9 (C⁴, C⁴), 149.6 (C³, C³), 154.2 (C¹⁵, C¹⁵). Найдено, %: С 79.71; Н 7.69; N 3.90. С₄₂Н₄₄N₂O₆. Вычислено, %: C 79.52; H 7.79; N 3.86. M 712.98.

БЛАГОДАРНОСТИ

Регистрация спектров ЯМР, элементный анализ проведены при поддержке Министерства науки и высшего образования Российской Федерации с ис-

СИНТЕЗ, СПЕКТРАЛЬНЫЕ И ФОТОХИМИЧЕСКИЕ СВОЙСТВА

пользованием научного оборудования Центра исследования строения молекул ИНЭОС РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при поддержке Российского научного фонда (грант № 19-43-04127).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Shindy H.A. Rev. Roum. Chim. 2014, 59, 117-123.
- Jaung J., Matsuoka M., Fukunishi K. Dyes Pigm. 1996, 31, 141–153. doi 10.1016/0143-7208(95)00096-8
- Deligeorgiev T., Kaloyanova S., Vasilev A. *Dyes Pigm*. 2011, 90, 170–176. doi 10.1016/j.dyepig.2010.10.012
- Mohamed S.F., Flefel E.M., Amr A., Abd El-Shafy D.N. *Eur. J. Med. Chem.* 2010, 45, 1494– 1501. doi 10.1016/j.ejmech.2009.12.057
- Tokar V.P., Losytskyy M.Yu., Ohulchanskyy T.Y., Kryvorotenko D.V., Kovalska V.B., Balanda A.O., Dmytruk I.M., Prokopets V.M., Yarmoluk S.M., Yashchuk V.M. J. Fluoresc. 2010, 20, 865–872. doi 10.1007/s10895-010-0630-4
- Tokar V.P., Losytskyy M.Yu., Kovalska V.B., Kryvorotenko D.V., Balanda A.O., Prokopets V.M., Galak M.P., Dmytruk I.M., Yashchuk V.M., Yarmoluk S.M. J. Fluorescence. 2006, 16, 783–791. doi 10.1007/s10895-006-0127-3

- Turro N.J., Grätzel M., Braun A.M. Angew. Chem. Int. Ed. Engl. 1980, 19, 675–696. doi 10.1002/ anie.198006751
- 8. Haugland R.P. *Handbook of Fluorescent Probes and Research Products*. 9th Edn. Eugene: Molecular Probes Inc. **2002**.
- Kovalska V.B., Kryvorotenko D.V., Balanda A.O., Losytskyy M.Y., Tokar V.P., Yarmoluk S.M. *Dyes Pigm*. 2005, 67, 47–54. doi 10.1016/j.dyepig.2004.10.007
- Berdnikova D.V., Aliyeu T.M., Paululat T., Fedorov Y.V., Fedorov O.A., Ihmels H. *Chem. Commun.* 2015, *51*, 4906–4909. doi 10.1039/c5cc01025j
- Berdnikova D.V., Sosnin N.I., Fedorova O.A., Ihmels H. Org. Biomolec. Chem. 2018, 16, 545–554. doi 10.1039/c7ob02736b
- Muszkat K.A. Organic Chemistry Syntheses and Reactivity. Topics in Current Chemistry. Berlin– Heidelberg: Springer, 1980, 88, 89–143. doi 10.1007/ BFb0048505
- Fischer E. J. Phys. Chem. 1967, 71, 3704–3706. doi 10.1021/j100870a063
- Fedorova O.A., Fedorov Y.V., Andryukhina E.N., Gromov S.P., Alfimov M.V., Lapouyade R. Org. Lett. 2003, 5, 4533–4535. doi 10.1021/ol034848e
- Fedorova O.A., Gulakova E.N., Fedorov Y.V., Lobazova I.E., Alfimov M.V., Jonusauskas G. J. Photochem. Photobiol. A. 2008, 196, 239–245. doi 10.1016/j.jphotochem.2007.07.036

Synthesis, Spectral and Photochemical Properties New *ortho*-Stiryl-Substituted *N*-Heterocycles

A. E. Saifutiarova^{*a*, *b*, *, E. N. Gulakova^{*a*}, O. A. Fedorova^{*a*}, *b*, E. Yu. Chernikova^{*a*}, A. D. Shapovalov^{*a*}, *b*, and Yu. V. Fedorov^{*a*}}

 ^a A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Russia, Moscow, ul. Vavilova 28
^b Dmitry Mendeleev University of Chemical Technology of Russia, 125047, Russia, Moscow, Miusskaya pl. 9 *e-mail: baykova.alina@gmail.com

Received November 15, 2019; revised February 14, 2020; accepted February 14, 2020

A design was proposed and synthesized for the first time previously unknown bis-styryl derivatives, in the structure of which two *ortho*-styryl-substituted *N*-heterocycles are linked together by an alkyl spacer. Spectral and photochemical studies confirmed the high photoactivity of the obtained compounds.

Keywords: N-heterocycles, styryl derivatives, aldol type condensation, synthesis, E-Z photoisomerization