УДК 547.26'118

3,28-ДИАЦЕТОКСИЛУП-20(29)-ЕН-30-ОВАЯ КИСЛОТА И ЕЕ ω-БРОМАЛКИЛОВЫЕ ЭФИРЫ

© 2020 г. Д. В. Пономарев^{*a*}, Л. Р. Григорьева^{*a*}, А. В. Немтарев^{*a*}, ^{*b*}, *, О. В. Цепаева^{*a*}, ^{*b*}, В. Ф. Миронов^{*a*}, ^{*b*}, О. И. Гнездилов^{*c*}, И. С. Антипин^{*a*}, ^{*b*}

^а ФГАОУ ВО «Казанский (Приволжский) федеральный университет»,

Химический институт им. А.М. Бутлерова, 420008, Россия, Республика Татарстан, г. Казань, ул. Кремлевская 18

^b Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение

ФГБУН «Федеральный исследовательский центр «Казанский научный центр РАН»,

420088, Россия, Республика Татарстан, г. Казань, ул. Арбузова 8

^с Казанский физико-технический институт им. Е.К. Завойского – обособленное структурное подразделение ФГБУН «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» 420111, Россия, Республика Татарстан, г. Казань, ул. Лобачевского 2/31

*e-mail: a.nemtarev@mail.ru

Поступила в редакцию 07 ноября 2019 г. После доработки 19 февраля 2020 г. Принята к публикации 20 февраля 2020 г.

Разработан удобный способ получения 3β,28-диацетоксилуп-20(29)-ен-30-овой кислоты, основанный на окислении 3β,28-диацилбетулина диоксидом селена в водном этаноле при нагревании с образованием 3β,28-диацетоксилуп-20(29)-ен-30-аля и его последующем окислении хлоритом натрия в *трет*-бутиловом спирте. Алкилированием кислоты дигалогеналканами при нагревании в среде ацетонитрила в присутствии карбоната калия получены с высоким выходом ее галогеналкиловые эфиры.

Ключевые слова: лупановые тритерпеноиды, бетулин, аллильное окисление, галогеналкиловые эфиры, акцептор Михаэля.

DOI: 10.31857/S0514749220040102

Природные соединения обладают большим потенциалом для последующей химической модификации с целью получения новых биологически активных веществ, благодаря их полифункциональности. Последнее свойство предоставляет широкие возможности для конструирования и последующего получения структурно разнообразных массивов синтетических производных природных соединений, в которых природный остов играет ключевую роль в процессе создания библиотек биологически активных молекул [1-7]. Например, среди соединений, перспективных для использования в противораковой терапии, 49% имеют природное происхождение, или являются различными синтетическими производными природных структур [8]. Достижения последних нескольких десятилетий, связанные с совершенствованием физических методов исследования структуры веществ, методов биологического скрининга и компьютерного моделирования, значительно способствовали развитию химии природных соединений и выявлению новых перспективных молекулярных скаффолдов для направленного дизайна веществ с практически полезными свойствами [9-11], среди которых выделяются производные тритерпеноидов [12, 13]. Так, пентациклические тритерпеноиды лупанового ряда, содержащиеся во многих растениях [14, 15], обладают рядом ценных биологических свойств [16, 17], что, наряду с присутствием в их молекулах различных функциональных групп, удобных для дальнейшей химической модификации, делает их привлекательной синтетической платформой для направленного конструирования лекарственных веществ [18].

Наиболее изученным и доступным представителем этого класса соединений является бетулин, выделяемый из растительного сырья, в частности – из внешней части коры различных видов березы (*Betula sp.*) [14].

В настоящей работе предложен удобный и эффективный способ получения 3,28-диацетоксилуп-20(29)-ен-30-овой кислоты 3 и ее ω-галогеналкиловых эфиров 4 на основе диацетата бетулина 1 (схема 1). Луп-20(29)-ен-30-овые кислоты интересны присутствием в их структуре сопряженных фрагментов с электроноакцепторными группами, что придает им свойства акцепторов Михаэля, способных к ковалентному связыванию с биомишенями. Акцепторы Михаэля способны к ингибированию некоторых ферментов, за счет прочного связывания с ними [19, 20]. Несмотря на мощный потенциал таких сопряженных фармакофорных фрагментов для разработки новых лекарственных соединений, содержащие их структуры долгое время не использовались в виду предполагаемого отсутствия селективности действия. Однако появление в медицинской практике сравнительно недавно одобренных акриламидосодержащих средств свидетельствует о целесообразности исследования систем, являющихся акцепторами Михаэля [21]. Влияние α , β -ненасыщенного карбонильного фрагмента на биологическую активность было исследовано на примере производного бетулиновой кислоты — 3 β -гидрокси-30-оксолуп-20(29)-ен-28овой кислоты, которое проявляет более высокий уровень активности в ингибировании топоизомеразы I [22] по сравнению с немодифицированной бетулиновой кислотой.

Лупановые тритерпеноиды, являющиеся акцепторами Михаэля, обнаружены в природе, например, 3β,28-дигидроксилуп-20(29)-ен-30-аль выделен из *Cyclolepis genistoides D. Don (Asteraceae)*, однако его содержание в данном сырье является крайне низким [23]. В связи с этим экономически более целесообразными представляются методы направленной химической модификации, позволяющие получать C-30-оксопроизводные пентациклических тритерпеноидов.

a, SeO₂, EtOH, H₂O, *t*; *b*, NaClO₂, KH₂PO₄, 2-метилбутен-2, *t*-BuOH, H₂O; *c*, Br(CH₂)₃Br/Br(CH₂)₅Br, K₂CO₃, MeCN, *t*.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 4 2020

Среди производных пентациклических тритерпеноидов особого внимания заслуживают галогеналкиловые эфиры, которые хоть и не обладают сами по себе выраженной биологической активностью [24, 25], но являются ценными прекурсорами в синтезе мультитаргетных агентов [26–33], что подчеркивает актуальность разработки подходов к данному классу функциональных производных.

В данной работе описан способ получения диацетоксилуп-20(29)-ен-30-овой кислоты (соединение **3**) посредством последовательного окисления диацилбетулина **1** диоксидом селена в водном этаноле при нагревании с образованием лупеналя **2** с выходом 60%, окисление которого по Пиннику хлоритом натрия дает кислоту **3** с выходом 98% (59% в пересчете на исходный диацетат **1**) (схема 1). ω -Галогеналкиловые эфиры **4** получены алкилированием кислоты **3** α , ω -дибромалканами (на примере 1,3-дибромпропана и 1,5-дибромпентана) при кипячении в ацетонитриле в присутствии K₂CO₃.

Состав и строение полученных веществ подтверждены комплексом физико-химических методов исследования: одно- и двумерные эксперименты спектроскопии ЯМР (¹H, ¹³С-{¹H}, DEPT-135, HSQC, HMBC), ИК спектроскопия, элементный анализ. При рассмотрении спектров ЯМР ${}^{13}C-{}^{1}H$ соединений 2-4, зарегистрированных при 25°С, обращает на себя внимание сильная уширенность и низкая интенсивность сигналов углеродов С¹², С¹⁸, С²⁰, С²¹ и С²⁹, а сигнал углерода С¹⁹ настолько уширен, что не обнаруживается в спектре. В двумерных гетерокорреляционных (¹³С-¹Н) спектрах HSQC кросс-пики между Н¹⁹ и С¹⁹ также не проявляются. Данное явление объясняется наличием у С³⁰-оксопроизводных лупановых тритерпеноидов ротамеров за счет затрудненного вращения по связи С¹⁹–С²⁰ [34, 35]. Как и в работе [26], положение сигнала С¹⁹ в спектрах ЯМР ¹³С удалось установить по данным гетероядерных корреляций HSOC в условиях регистрации спектров при 40°С. В указанных условиях в двумерном спектре HSQC альдегида 2 наблюдается кросс-пик между H¹⁹ и C¹⁹, что позволило надежно установить область проявления резонанса углерода С¹⁹ (б_с 36.9–37.1 м.д.), в которой он налагается с резонансом углерода C¹⁰.

Таким образом, в работе представлен удобный способ получения тритерпеноидов лупанового

ряда, окисленных по положению С³⁰. Полученные эфиры диацетоксилуп-20(29)-ен-30-овой кислоты обладают значительным синтетическим потенциалом для проведения дальнейшей функционализации тритерпеновой платформы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н, ¹³С записаны при 25°С на приборе Bruker Avance-400 [400.0 (^{1}H) . 100.6 (¹³С) МГц], в СDСl₃ относительно сигналов остаточных протонов или ядер дейтерия растворителя (¹Н и ¹³С). ИК спектры зарегистрированы на приборе Bruker Tensor 27 для образцов в таблетках КВг. Оптическое вращение измерено при 20°С на автоматическом поляриметре Atago POL-1/2 с внешним модулем Пельтье (концентрация указана в г/100 мл). Температуры плавления определены на плавильном столике Boetius. Элементный анализ соединений выполнен на элементном CHNS-O высокотемпературном анализаторе EuroEA 3028-HT-OM Eurovector S.p.A. Растворители очищали И высушивали по станлартным метоликам. Диацетат бетулина 1 получали согласно литературной методике [36].

36.28-Диацетоксилуп-20(29)-ен-30-аль (2). Смесь 1.0 г (1.9 ммоль) соединения 1 и 0.53 г SeO₂ (4.75 ммоль), 40 мл этилового спирта и 4 мл воды перемешивали при 100°С в течение 6 ч. Полученный раствор отделяли декантацией от выпавшего элементного селена. Спирт отгоняли в вакууме (15 мм рт.ст.), к остатку добавляли этилацетат, промывали водой. Органический слой сушили безводным Na₂SO₄, после чего, упаривали досуха. Желтый остаток очищали методом колоночной хроматографии при использовании системы петролейный эфир-этилацетат (5:1). Выход 0.62 г (60%), т.пл. 139–141°С, [а]_D²⁰ +10.2 (с 0.2, CHCl₃). ИК спектр, v, см⁻¹: 2946, 2873, 1737 (C=O), 1693 (CH=O), 1636 (=CH₂), 1458, 1391, 1366, 1245 (CH₃CO), 1031, 979, 943, 901 (=CH₂), 753. Спектр ЯМР ¹Н (CDCl₃, 40°С), б, м.д.: 0.72–2.25 м (23Н), 0.76 д (1Н, Н⁵, ³*J*_{нн} 9.4 Гц), 0.82 уш.с (9Н, Н²³⁻²⁵), 0.93 (3Н, H²⁷), 1.01 c (3H, H²⁶), 2.04 c [3H, CH₃C(O)OC³], 2.07 с [3H, CH₃C(O)OC²⁸], 2.80 д.д.д (1H, H¹⁹, ³*J*_{НН} 11.7, ³*J*_{НН} 4.3–4.5 Гц), 3.86 д (1Н, Н²⁸₄, ²*J*_{НН} 11.0 Гц), 4.27 д (1Н, H_B^{28} , ² J_{HH} 11.0 Гц), 4.45 д.д (1H, H³, ${}^{3}J_{\text{HH}}$ 10.6, ${}^{3}J_{\text{HH}}$ 5.5 Гц), 5.93 с (1H, H₄²⁹),

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 4 2020

6.28 с (1H, H_B^{29}), 9.50 с (1H, H^{30}). Спектр ЯМР ¹³C–{¹H} (CDCl₃), δ , м.д.: 194.73 (C³⁰), 171.48 [CH₃<u>C</u>(O)OC²⁸], 171.02 [CH₃<u>C</u>(O)OC³], 156.46 уш.с (C²⁰), 133.45 уш.с (C²⁹), 80.84 (C³), 62.38 (C²⁸), 55.32 (C⁵), 51.35 уш.с (C¹⁸), 50.04 (C⁹), 46.55 (C¹⁷), 42.54 (C¹⁴), 40.79 (C⁸), 38.33 (C¹), 37.76 (C⁴), 37.18 (C¹³), 36.99 (C¹⁰), 36.90–37.10 уш.с (C¹⁹, наложился с сигналом C¹⁰), 34.46 (C²²), 34.07 (C⁷), 31.98 уш.с (C²¹), 29.69 (C¹⁶), 27.93 (C²³), 27.42 (C¹²), 26.94 (C¹⁵), 23.64 (C²), 21.32 [<u>C</u>H₃C(O)OC³], 21.04 [<u>C</u>H₃C(O) OC²⁸], 20.77 (C¹¹), 18.13 (C⁶), 16.49 (C²⁴), 16.10 (C²⁵), 15.97 (C²⁶), 14.57 (C²⁷). Найдено, %: C 75.44; Н 9.78. С₃₄H₅₂O₅. Вычислено, %: C 75.52; H 9.69.

36,28-Диацетоксилуп-20(29)-ен-30-овая кислота (3). 0.5 г (0.92 ммоль) соединения 2 растворяли в 25 мл *трет*-бутилового спирта. К раствору приливали 25 мл 2-метилбутена-2, 25 мл раствора 2.5 г (18.49 ммоль) КН₂РО₄ в воде и добавляли 0.34 г (3.7 ммоль) NaClO₂. После 8 ч перемешивания трет-бутиловый спирт и 2-метилбутен-2 удаляли в вакууме. К остатку добавляли 150 мл раствора NH₄Cl, экстрагировали этилацетатом (3×50 мл). Органический слой промывали водой, сушили Na₂SO₄, упаривали досуха в вакууме (15 мм рт. ст). Выход 0.50 г (98%), т.пл. 233–235°С, [а]_D²⁰ –3.2 (с 0.2, СНСl₃). ИК спектр, v, см⁻¹: 3448 (OH), 2947, 2874, 1737 (C=O), 1716 (COOH), 1625 (=CH₂), 1459, 1391, 1367, 1245 (CH₃CO), 1031, 979, 945, 902 (=CH₂), 750. Спектр ЯМР ¹H (CDCl₃), δ, м.д.: 0.73–2.26 м (23Н), 0.77 д (1Н, Н⁵, ³J_{НН} 9.7 Гц), 0.84 уш.с (9H, H²³⁻²⁵), 0.95 с (3H, H²⁷), 1.03 с (3H, H^{26}), 2.04 c [3H, CH₃C(O)OC³], 2.08 c [3H, CH₃C(O) ОС²⁸], 2.78 д.д.д (1Н, Н¹⁹, ³J_{HH} 11.3, ³J_{HH} 5.5 Гц), 3.86 д (1H, H_A^{28} , ${}^2J_{HH}$ 11.0 Гц), 4.27 д (1H, H_B^{28} , ${}^2J_{HH}$ 11.0 Гц), 4.46 д.д (1Н, Н³, ³J_{НН} 10.2, ³J_{НН} 5.6 Гц), 5.69 c (1H, H_4^{29}), 6.24 c (1H, H_B^{29}). Спектр ЯМР ¹³С-{¹H} (CDCl₃), б, м.д.: 171.99 (С³⁰), 171.76 $[CH_3C(O)OC^{28}], 171.23 [CH_3C(O)OC^3], 146.14$ уш.с (С²⁰), 125.07 уш.с (С²⁹), 80.96 (С³), 62.68 (C²⁸), 55.31 (C⁵), 51.12 ym.c (C¹⁸), 50.06 (C⁹), 46.43 $(C^{17}), 42.61 (C^{14}), 40.82 (C^8), 38.34 (C^1), 37.78 (C^4),$ 37.19 (C^{13}), 37.02 (C^{10}), 34.23 (C^{22}), 34.11 (C^7), 32.32 yiii.c (C^{21}), 31.09 (C^{16}), 29.75 (C^{12}), 27.95 $(C^{23}), 26.99 (C^{15}), 23.67 (C^2), 21.37 [CH_3C(O)OC^3],$ 21.10 [CH₃C(O)OC²⁸], 20.87 (C¹¹), 18.15 (C⁶), 16.53 (C²⁴), 16.15 (C²⁵), 16.01 (C²⁶), 14.67 (C²⁷). Найдено, %: С 73.59; Н 9.32. С₃₄Н₅₂О₆. Вычислено, %: С 73.35; H 9.41.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 4 2020

Общая методика синтеза ю-галогеналкиловых эфиров 36,28-диацетоксилуп-20(29)-ен-30овой кислоты. К смеси 0.15 г (0.27 ммоль) соединения 3 и 0.75 г (0.54 ммоль) K₂CO₃ в 20 мл ацетонитрила добавляли 0.54 ммоль 1,ω-дибромалкана и перемешивали при 85°С в течение 20 ч. Контроль за прохождением реакции осуществляли по ТСХ в системе петролейный эфир-этилацетат (4:1). Ацетонитрил удаляли в вакууме (15 мм рт.ст.), к остатку добавляли 50 мл воды и экстрагировали хлороформом (3×20 мл). Органический слой промывали 10%-ным раствором NaCl, сушили над Na₂SO₄, упаривали досуха в вакууме (15 мм рт.ст.). Полученную смолооборазную массу светло-коричневого цвета выдерживали в вакууме (15 мм рт.ст) при 120°С в течение 2 ч. Остаток очищали методом колоночной хроматографии, элюент - петролейный эфир-этилацетат (4:1).

(З-Бромпропил)-Зβ,28-диацетоксилуп-20(29)-ен-30-оат (4а). Выход 0.14 г (77%), т.пл. 57–58°С, [а]_D²⁰ –4.1 (с 0.2, СНСІ₃). ИК спектр, v, см⁻¹: 2946, 2872, 1736 (С=О), 1715 (СООН), 1624 (=CH₂), 1458, 1391, 1366, 1245 (CH₃CO), 1147, 1031, 979, 944, 900 (=СН₂), 788, 760. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.73–2.19 м (23Н), 0.76 д (1Н, H⁵, ³J_{HH} 9.3 Гц), 0.83 уш.с (9Н, H²³⁻²⁵), 0.93 (3Н, H²⁷), 1.01 (3H, H²⁶), 2.03 c [3H, CH₃C(O)OC³], 2.07 c [3H, CH₃C(O)OC²⁸], 2.23 T.T (2H, C³²H₂, ³J_{HH} 6.3 Гц), 2.75 д.д.д (1Н, Н¹⁹, ³J_{HH} 11.2, ³J_{HH} 5.6 Гц), 3.47 т (2H, CH₂Br, ${}^{3}J_{\rm HH}$ 6.5 Гц), 3.84 д (1H, H_A²⁸, ²*J*_{НН} 11.0 Гц), 4.26 д (1Н, Н²⁸_B, ²*J*_{НН} 11.0 Гц), 4.30 уш.т (2H, OCH₂, ³J_{HH} 6.0 Гц), 4.45 д.д (1H, H³, ${}^{3}J_{\rm HH}$ 10.4, ${}^{3}J_{\rm HH}$ 5.8 Гц), 5.57 с (1H, H₄²⁹), 6.07 с (1H, H_B^{29}). Спектр ЯМР ¹³С-{¹H} (CDCl₃), δ , м.д.: 171.74 [CH₃ \underline{C} (O)OC²⁸], 171.18 [CH₃ \underline{C} (O)OC³], 167.21 (С³⁰), 146.50 уш.с (С²⁰), 123.60 уш.с (С²⁹), 80.97 (C³), 62.69 (C²⁸), 62.46 (OC³¹H₂), 55.40 (C⁵), 51.16 ym.c (C¹⁸), 50.13 (C⁹), 46.50 (C¹⁷), 42.69 (C¹⁴), 40.90 (C⁸), 38.42 (C¹), 37.86 (C⁴), 37.22 (C¹³), 37.10 (C^{10}) , 34.35 (C^{22}) , 34.17 (C^{7}) , 32.27 yiii.c (C^{21}) , 31.79 (C³²H₂), 29.84 (C¹⁶), 29.56 (C³³H₂Br), 28.02 (C²³), 27.39 (C¹²), 27.04 (C¹⁵), 23.75 (C²), 21.45 [<u>C</u>H₃C(O) OC^{3}], 21.18 [<u>CH</u>₃C(O)OC²⁸], 20.91 (C¹¹), 18.23 $(C^{6}), 16.59 (C^{24}), 16.21 (C^{25}), 16.09 (C^{26}), 14.73$ (С²⁷). Найдено, %: С 65.33; Н 8.35. С₃₇Н₅₇ВгО₆. Вычислено, %: С 65.57; Н 8.48.

(5-Бромпентил)-3β,28-диацетоксилуп-20(29)ен-30-оат (4b). Выход 0.14 г (73%), т.пл. 58–59°С,

 $[\alpha]_D^{20}$ –5.1 (с 0.2, CHCl₃). ИК спектр, v, см⁻¹: 2947, 2871, 1736 (C=O), 1716 (COOH), 1623 (=CH₂), 1458, 1390, 1366, 1244 (CH₃CO), 1147, 1105, 1031, 978, 943, 900 (=CH₂), 788, 761. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.73–2.25 м (29H), 0.77 д (1H, H⁵, ³*J*_{HH} 9.9 Гц), 0.83 уш.с (9Н, Н^{23–25}), 0.94 (3Н, Н²⁷), 1.02 (3H, H²⁶), 2.04 c [3H, CH₃C(O)OC³], 2.07 c [3H, CH₃C(O)OC²⁸], 2.75 д.д.д (1H, H¹⁹, ³*J*_{HH} 11.0, ³*J*_{HH} 5.4 Гц), 3.42 т (2H, С³⁵Н₂Вг, ³*J*_{HH} 6.8 Гц), 3.85 д (1H, H_A^{28} , ² J_{HH} 11.0 Гц), 4.17 т (2H, OC³¹H₂, ³ J_{HH} 6.5 Гц), 4.26 д (1Н, Н²⁸_B, ²J_{НН} 11.0 Гц), 4.46 д.д (1H, H³, ${}^{3}J_{\text{HH}}$ 10.1, ${}^{3}J_{\text{HH}}$ 5.7 Γ µ), 5.55 c (1H, H₄²⁹), 6.08 с (1H, H_B^{29}). Спектр ЯМР ¹³С-{¹H} (CDCl₃), δ, м.д.: 171.69 [CH₃<u>C</u>(O)OC²⁸], 171.12 [CH₃<u>C</u>(O) OC³], 167.42 (С³⁰), 146.69 уш.с (С²⁰), 123.36 уш.с (C^{29}) , 80.93 (C^{3}) , 64.38 $(OC^{31}H_{2})$, 62.69 (C^{28}) , 55.39 (C⁵), 51.13 ym.c (C¹⁸), 50.13 (C⁹), 46.48 (C¹⁷), 42.67 $(C^{14}), 40.89 (C^8), 38.42 (C^1), 37.84 (C^4), 37.22 (C^{13}),$ 37.08 (C¹⁰), 34.33 (C²²), 34.16 (C⁷), 33.60 (C³⁵H₂Br), 32.33 (C³⁴H₂), 32.16 ym.c (C²¹), 29.83 (C¹⁶), 28.00 (C^{23}) , 27.92 $(C^{32}H_2)$, 27.35 (C^{12}) , 27.04 (C^{15}) , 24.78 $(C^{33}H_2)$, 23.73 (C^2) , 21.43 $[CH_3C(O)OC^3]$, 21.16 $[CH_3C(O)OC^{28}], 20.91 (C^{11}), 18.213 (C^6), 16.57$ (С²⁴), 16.20 (С²⁵), 16.07 (С²⁶), 14.71 (С²⁷). Найдено, %: С 66.21; Н 8.60. С₃₉Н₆₁ВгО₆. Вычислено, %: С 66.37; H 8.71.

БЛАГОДАРНОСТИ

Авторы выражают благодарность САЦ ЦКП ФИЦ КазНЦ РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Синтетическая часть работы выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-33-90275), спектральные исследования всех соединений проведены за счет средств субсидий, выделенных Казанскому федеральному университету и ФИЦ КазНЦ РАН для выполнения государственного задания в сфере научной деятельности.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Lorsbach B.A., Sparks T.C., Cicchillo R.M., Garizi N.V., Hahn D.R., Meyer K.G. *Pest Manag Sci.* 2019, 75, 2301–2309. doi 10.1002/ps.5350

- Huffman B., Shenvi R.A. J. Am. Chem. Soc. 2019, 141, 3332–3346. doi 10.1021/jacs.8b11297
- Li J.S., Barber C.C., Zhang W. J. Ind. Microbiol. Biotechnol. 2019, 46, 375–383. doi 10.1007/s10295-018-2086-5
- Liu M., Karuso P., Feng Y., Kellenberger E., Liu F., Wang C., Quinn R.J. Med. Chem. Commun. 2019, 10, 1667–1677. doi 10.1039/c9md00128j
- Wright G.D. Microbial Biotechnol. 2019, 12, 55–57. doi 10.1111/1751-7915.13351
- Long M.J.C., Liu X., Aye Y. Curr. Opin. Chem. Biol. 2019, 51, 48–56. doi 10.1016/j.cbpa.2019.02.014
- Davison E.K., Brimble M.A. Curr. Opin. Chem. Biol. 2019, 52, 1–8. doi 10.1016/j.cbpa.2018.12.007
- Newman D.J., Cragg G.M. J. Nat. Prod. 2016, 79, 629– 661. doi 10.1021/acs.jnatprod.5b01055
- Lam K.S. Trends Microbiol. 2007, 15, 279–289. doi 10.1016/j.tim.2007.04.001
- Fu Y., Jiaoyang L., Win J., Yang M. J. Pharm. Biomed. Anal. 2019, 168, 189–200. doi 10.1016/ j.jpba.2019.02.027
- 11. Elkin M., Newhouse T.R. *Chem. Soc. Rev.* **2018**, *47*, 7830–7844. doi 10.1039/c8cs00351c
- Sousa J.L.C., Freire C.S.R., Silvestre A.J.D., Silva A.M.S. *Molecules*. 2019, 24, 355. doi 10.3390/ molecules24020355
- da Silva G.N.S., Primon-Barros M., Macedo A.J., Gnoatto S.C.B. *Biomolecules*. 2019, 9, 58. doi 10.3390/ biom9020058
- Hayek E.W., Jordis U., Moche W., Sauter F. *Phyto-chemistry*. **1989**, 28, 2229–2242. doi 10.1016/ S0031-9422(00)97961-5
- Толстиков Г.А., Флехтер О.Б., Шульц Э.Э., Балтина Л.А., Толстиков А.Г. Химия в интересах устойчивого развития. 2005, 13, 1–30. [Tolstikov G.A., Flekhter O.B., Baltina L.A., Tolstikov A.G. Chem. Sustainable Dev. 2005, 13, 1–29.]
- Król S.K., Kielbus M., Rivero-Müller A., Stepulak A. BioMed Res. Int. 2015, 2015, 1–12. doi 10.1155/ 2015/584189
- Alakurtti S., Mäkelä T., Koskimies S., Yli-Kauhaluoma J. *Eur. J. Pharm. Sci.* 2006, 29, 1–13. doi 10.1016/j.ejps.2006.04.006
- Salvador J.A.R., Moreira V.R., Goncalves B.M.F., Leal S.A., Jing Y. *Nat. Prod. Rep.* 2012, 29, 1463–1479. doi 10.1039/c2np20060k
- Santos M.M.M., Moreira R. *Mini-Rev. Med. Chem.* 2007, 7, 1040–1050. doi 10.2174/138955707782110105

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 4 2020

- Dinkova-Kostova A.T., Fahey J.W., Talalay P. Methods Enzymol. 2004, 382, 423–448. doi 10.1016/ S0076-6879(04)82023-8
- Jackson P.A., Widen J.C., Harki D.A., Brummond K.M. J. Med. Chem. 2017, 60, 839–885. doi 10.1021/acs.jmedchem.6b00788
- Bar F.M.A., Khanfar M.A., Elnagar A.Y., Hui L., Zaghoul A.M., Badria F.A., Sylvester P.W., Ahmad K.F., Raisch K.P., El Sayed K.A. J. Nat. Prod. 2009, 72, 1643–1650. doi 10.1021/np900312u
- De Heluani C.S., De Boggiato M.V., Catalán C.A.N., Díaz J.G., Gédris T.E., Herz W. *Phytochemistry*. 1997, 45, 801–805. doi 10.1016/S0031-9422(97)00021-6
- 24. Yang S., Liang N., Li H., Xue W., Hu D., Jin L., Zhao Q., Yang S. Chem. Cent. J. 2012, 6, 141. doi 10.1186/1752-153X-6-141
- Цепаева О. В., Немтарев А. В., Григорьева Л.Р., Волошина А.Д., Миронов В.Ф. *ЖОрХ*. 2015, *51*, 1343–1348. [Tsepaeva O.V., Nemtarev A.V., Grigor'eva L.R., Voloshina A.D., Mironov V.F. *Russ. J. Org. Chem.* 2015, *51*, 1318–1323.] doi 10.1134/S1070428015090195
- Spivak A.Y., Nedopekina D.A, Khalitova R.R., Gubaidullin R.R., Odinokov V.N., Bel'skii Y.P., Bel'skaya N.V., Khazanov V.A. *Med. Chem. Res.* 2017, 26, 518–531. doi 10.1007/s00044-016-1771-z
- Tsepaeva O.V., Nemtarev A.V., Abdullin T.I., Grigor'eva L.R., Kuznetsova E.V., Akhmadishina R.A., Ziganshina L.E., Cong H.K., Mironov V.F. J. Nat. Prod. 2017, 80, 2232–2239. doi 10.1021/acs.jnatprod.7b00105
- Цепаева О.В., Немтарев А.В., Миронов В.Ф. ЖОрХ. 2017, 53, 614–615. [Tsepaeva O.V., Nemtarev A.V., Mironov V.F. Russ. J. Org. Chem. 2017, 53, 621–623.] doi 10.1134/S1070428017040212

- Цепаева О.В., Немтарев А.В., Григорьева Л.Р., Миронов В.Ф., Абдуллин Т.И., Салихова Т.И., Хозяинова С.А. Пат. 2665922 (2018), РФ. Б.И. 2019, № 25.
- Цепаева О.В., Немтарев А.В., Абдуллин Т.И., Кузнецова Е.В., Миронов В.Ф. ЖОХ. 2018, 88, 1576–1579. [Tsepaeva O.V., Nemtarev A.V., Abdullin T.I., Kuznetsova E.V., Mironov V.F. Russ. J. Gen. Chem. 2018, 88, 1944–1947.] doi 10.1134/ S1070363218090335
- Antipin I.S., Tsepaeva O.V., Nemtarev A.V., Grigor'eva L.R., Ziganshina L.E., Cong H.H., Abdullin T.I., Mironov V.F. *Eur. J. Clin. Inv.* 2018, 48, 97. doi 10.1111/eci.12926
- Antipin I.S., Tsepaeva O.V., Nemtarev A.V., Abdullin T.I., Grigor'eva L.R., Kuznetsova E.V., Akhmadishina R.A., Mironov V. F. *Eur. J. Clin. Inv.* 2018, 48, 97–98. doi 10.1111/eci.12926
- Antipin I.S., Ponomaryov D.V., Grigor'eva L.R., Salikhova T.I., Ali R., Dang T., Tsepaeva O.V., Nemtarev A.V., Abdullin T.I., Mironov V.F. *Eur. J. Clin. Inv.* 2019, 49, 61. doi 10.1111/eci.13108
- Burns D., Reynolds W.F., Buchanan G., Reese P.B., Enrizuez R.G. Magn. Reson. Chem. 2000, 38, 488– 493. doi 10.1002/1097-458X(200007)38:7<488::AID-MRC704>3.0.CO;2-G
- Mutai C., Abatis D., Vagias C., Moreau D., Roussakis C., Roussis V. *Phytochemistry*. **2004**, *65*, 1159–1164. doi 10.1016/j.phytochem.2004.03.002
- Pohjala L., Alakurtti S., Ahola T., Yli-Kauhaluoma J., Tammela P. J. Nat. Prod. 2009, 72, 1917– 1926. doi10.1021/np9003245

3,28-Diacetoxylup-20(29)-en-30-oic Acid and its ω-Bromoalkyl Esters

D. V. Ponomaryov^a, L. R. Grigor'eva^a, A. V. Nemtarev^{a, b, *}, O. V. Tsepaeva^{a, b}, V. F. Mironov^{a, b}, O. I. Gnezdilov^c, and I. S. Antipin^{a, b}

 ^a Alexander Butlerov Institute of chemistry, Kazan (Volga region) Federal university, 420008, Russia, Republic of Tatarstan, Kazan, ul. Kremlevskaya 18
^b Arbuzov Institute of organic and physical chemistry, FRC Kazan Scientific Center of RAS, 420008, Russia, Republic of Tatarstan, Kazan, ul. Arbuzova 8
^c Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 420111, Russia, Republic of Tatarstan, Kazan, ul. Lobachevskogo 2/31
*e-mail: a.nemtarev@mail.ru

Received November 7, 2019; revised February 19, 2020; accepted February 20, 2020

A convenient method for the preparation of 3β ,28-diacetoxylup-20(29)-en-30-oic acid has been developed. It is based on the oxidation of 3β ,28-diacylbetulin by selenium dioxide in an aqueous solution under heating with the formation of 3β ,28-diacetoxylup-20(29)-en-30-al and its subsequent oxidation by sodium chlorite in *tert*-butyl alcohol. Haloalkyl esters have been obtained in high yield by the alkylation of the acid with dihaloalkanes upon heating in acetonitrile in the presence of potassium carbonate.

Keywords: lupan-type triterpenes, betulin, allylic oxidation, haloalkyl esters, Michael acceptor