УДК 547.73 + 543.51

МАСС-СПЕКТРЫ НОВЫХ ГЕТЕРОЦИКЛОВ: XXI.¹ ИССЛЕДОВАНИЕ АЛКИЛ[(5-АМИНО-1*Н*-ПИРРОЛ-2-ИЛ)СУЛЬФАНИЛ]АЦЕТАТОВ МЕТОДАМИ ЭЛЕКТРОННОЙ И ХИМИЧЕСКОЙ ИОНИЗАЦИИ

© 2020 г. Л. В. Клыба*, Н. А. Недоля, Е. Р. Санжеева, О. А. Тарасова

ФГБУН «Иркутский институт химии им. А.Е. Фаворского СО РАН», 664033, Россия, г. Иркутск, ул. Фаворского 1 *e-mail: klyba@irioch.irk.ru

> Поступила в редакцию 21 января 2020 г. После доработки 17 марта 2020 г. Принята к публикации 19 марта 2020 г.

Впервые изучена фрагментация ранее недоступных алкил[(5-амино-1*H*-пиррол-2-ил)сульфанил]ацетатов в условиях электронной (70 эВ) и химической (газ-реагент – метан) ионизации. При ионизации электронами все исследуемые соединения образуют молекулярный ион ($I_{\rm отн}$ 7–100%), основное направление первичной фрагментации которого связано с разрывом связи С–S в сульфанильной группе и элиминированием сложноэфирного фрагмента (R⁴OCOCH₂) в виде радикала. Для химической ионизации алкил[(5-амино-1*H*-пиррол-2-ил)сульфанил]ацетатов характерны процессы протонирования, перезарядки и электрофильного присоединения. Пик максимальной интенсивности принадлежит иону [M + H]⁺. Химическая ионизация сопровождается элиминированием радикала R⁴OCOCH₂ из ионов $M^{+\bullet}$ и [M + Et]⁺ и молекулы R⁴OCOCHS из ионов $M^{+\bullet}$ и [M + H]⁺.

Ключевые слова: алкил[(5-амино-1*H*-пиррол-2-ил)сульфанил]ацетаты, электронная и химическая ионизация, масс-спектры, молекулярные ионы, фрагментация.

DOI: 10.31857/S0514749220050079

Сульфанилуксусные кислоты и их производные [2–10], особенно гетарил- (в том числе и пиррол-) замещённые сульфанилуксусные кислоты, представляют большой практический интерес как биологически активные соединения и синтетически привлекательные структурные блоки [11–20]. Однако до наших исследований [21, 22] в литературе были описаны лишь единичные 2-[(1*H*-пиррол-2-ил)сульфанил]ацетаты [23–29]. Последовательное развитие предложенного нами концептуально нового общего подхода к высокоселективной однореакторной сборке фармакоориентированных пирролов с редкими и трудновводимыми функциональными заместителями из доступных линейных предшественников привело к синтезу ранее неизвестных эфиров 2-[(5-(амино)-1*Н*-пиррол-2-ил)сульфанил]уксусной кислоты из монолитиированных третичных пропаргиламинов, изотиоцианатов и алкилбромацетатов [22].

Распад молекулярных ионов 5-(проп-2-ин-1-илсульфанил)-1*H*-пиррол-2-аминов при электронной и химической ионизации описан нами ранее [1]. В настоящей работе в продолжение наших систематических исследований масс-спектров новых классов полизамещённых пиррольных структур с необычным сочетанием синтетически, биологически и фармакологически важных функциональных и гетероатомных заместителей [1, 30–34], получаемых из изотиоцианатов и алленовых или ацетиленовых карбанионов, впервые изучены свойства алкил[(5-амино-1*H*-пиррол-2-ил)сульфанил]аце-

¹ Сообщение XX см. [1].

- 1a-r
- $\begin{array}{l} R^{1} = R^{2} = R^{3} = \text{Me: } R^{4} = \text{Me (a), Et (b), } i\text{-Pr (c), } t\text{-Bu (d), } n\text{-Bu (e); } R^{1} = R^{2} = \text{Et, } R^{4} = \text{Me: } R^{3} = \text{Me (f), } \\ \text{Et (g), } i\text{-Pr (h), } n\text{-Bu (i), } (\text{CH}_{2})_{2}\text{OCH} = \text{CH}_{2} (\textbf{j}); \\ R^{1} = R^{2} = \text{Et, } R^{4} = t\text{-Bu: } R^{3} = \text{Me (k), Et (l), } i\text{-Pr (m), } \\ n\text{-Bu (n); } R^{3} = R^{4} = \text{Me: } R^{1} = R^{2} = n\text{-Pr (o), } R^{1} R^{2} = (\text{CH}_{2})_{4} (\textbf{p}), \\ (\text{CH}_{2})_{5} (\textbf{q}), \\ (\text{CH}_{2})_{2}\text{O(CH}_{2})_{2} (\textbf{r}). \end{array}$

татов **1а–г** в условиях электронной (70 эВ) и химической (газ-реагент – метан) ионизации (схема 1).

При ионизации электронами все исследуемые соединения **1а-г** образуют молекулярный ион $(M^{+\bullet})$, интенсивность пиков которого находится в пределах 7-100% (преимущественно 7-27%). Максимально устойчивый молекулярный ион (Іотн 100%) даёт пиррол 1а (R¹, R², R³, R⁴ = Me). В отличие от (проп-2-ин-1-илсульфанил)замещённых 1Н-пиррол-2-аминов, основное направление распада которых связано с разрывом связи N_{пирр}-С_{зам} и образованием устойчивых ионов $[M - R^3]^+$ $(I_{\text{отн}})^+$ 85-100%) [1], доминирующее направление первичной фрагментации $M^{+\bullet}$ соединений **1**a-**r** не зависит от строения заместителей у атомов азота и, как и в случае 2-(алкилсульфанил)замещённых пирролов [30], связано с разрывом связи С-S в сульфанильной группе и выбросом в данном случае радикала $R^4 OCOCH_2$ [ион A (I_{0TH} 47–100%), схема 2, табл. 1]. Главные пути распада молекулярных ионов алкил[(5-амино-1*H*-пиррол-2-ил)сульфанил]ацетатов **1а-г** и вероятные механизмы образования из них основных осколочных ионов представлены на схемах 3-8 и в табл. 1.

Дальнейшая фрагментация иона **A** определяется строением и природой заместителей. Так, появление в масс-спектрах соединений **1а**–е пика с m/z114 ($I_{\text{отн}}$ 7–29%) может быть сопряжено с изомеризацией иона **A** (5-амино-2-тиоксо-2*H*-пирролиевый ион) в структуру **A**' (5-амино-2-имино-2*H*-тиофениевый ион) и последующим элиминированием молекулы R³CN с образованием 2-аминотиетиевого иона **B** (схема 3, табл. 1).

Увеличение длины и/или объёма заместителей у атомов азота (\mathbb{R}^1 , \mathbb{R}^2 , $\mathbb{R}^3 > Me$) стимулирует появление дополнительных каналов распада иона **A**, обусловленных разрывом связи N–C (преимущественно в заместителе у пиррольного атома азота, N– \mathbb{R}^3) с синхронным переносом водорода, сопровождающимся элиминированием молекулы алкена C_nH_{2n} (ион C, схема 4, табл. 1).

Максимальную интенсивность ($I_{\text{отн}}$ 100%) пик иона **C** имеет в масс-спектрах *N*,*N*-диэтил-*N*-изопропил-1*H*-пиррол-2-аминов **1h** ($\mathbb{R}^4 = \mathbb{M}e$) и **1m** ($\mathbb{R}^4 = t$ -Bu), что свидетельствует о необычайно лёгком разрыве связи N–CH(CH₃)₂, сопровождающемся выбросом молекулы пропена из *N*-изопропильного заместителя.

Присутствие пика иона $[\mathbf{A} - C_n \mathbf{H}_{2n}]^+$ в спектрах *N*-метил-1*H*-пиррол-2-аминов **1f** (NR¹R² = NEt₂), **1o** (NR¹R² = NPr₂), **1p** [NR¹R² = N(CH₂)₄]

 $R^{1} = R^{2} = R^{3} = Me: R^{4} = Me (a), Et (b), i-Pr (c), t-Bu (d), n-Bu (e); R^{1} = R^{2} = Et, R^{4} = Me: R^{3} = Me (f), Et (g), i-Pr (h), n-Bu (i), (CH_{2})_{2}OCH=CH_{2} (j); R^{1} = R^{2} = Et, R^{4} = t-Bu: R^{3} = Me (k), Et (l), i-Pr (m), n-Bu (n); R^{3} = R^{4} = Me: R^{1} = R^{2} = n-Pr (o), R^{1}-R^{2} = (CH_{2})_{4} (p), (CH_{2})_{5} (q), (CH_{2})_{2}O(CH_{2})_{2} (r).$

Соединение	Брутто-формула	Ион, <i>m/z</i> (<i>I</i> _{отн} , %)							
		$M^{+\bullet}$	A ^a , A' , A'' , A'''	Bb	Cc	<i>m/z</i> 96	<i>m/z</i> 93	<i>m/z</i> 71	
1a	$C_{10}H_{16}N_2O_2S$	228 (100)	155 (100)	114 (29)	(-)	(14)	(22)	(14)	
1b	$C_{11}H_{18}N_2O_2S$	242 (14)	155 (100)	114 (15)	(-)	(6)	(10)	(6)	
1c	$C_{12}H_{20}N_2O_2S$	256 (10)	155 (100)	114 (10)	(-)	(5)	(7)	(5)	
1d	$C_{13}H_{22}N_2O_2S$	270 (7)	155 (100)	114 (7)	(-)	(-)	(6)	(-)	
1e	$C_{16}H_{20}N_2O_2S$	304 (10)	155 (100)	114 (9)	(-)	(-)	(6)	(-)	
1f	$C_{12}H_{20}N_2O_2S$	256 (14)	183 (100)	142 (4)	155 (8)	(11)	(11)	(6)	
1g	$C_{13}H_{22}N_2O_2S$	270 (13)	197 (100)	(-)	169 (19)	(7)	(-)	(-)	
1h	$\mathrm{C}_{14}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{2}\mathrm{S}$	284 (22)	211 (47)	(-)	169 (100)	(11)	(-)	(-)	
1i	$C_{15}H_{26}N_2O_2S$	298 (14)	225 (100)	(-)	169 (33)	(-)	(-)	(-)	
1j	$C_{15}H_{24}N_2O_3S$	312 (27)	239 (76)	(-)	(-)	(10)	(-)	(-)	
1k	$C_{15}H_{26}N_2O_2S$	298 (8)	183 (100)	(-)	(-)	(-)	(-)	(-)	
11	$C_{16}H_{28}N_2O_2S$	312 (9)	197 (100)	(-)	169 (11)	(-)	(-)	(-)	
$1m^d$	$C_{17}H_{30}N_2O_2S$	326 (23)	211 (76)	(-)	169 (100)	(11)	(-)	(-)	
1n	$C_{18}H_{32}N_2O_2S$	340 (11)	225 (100)	(-)	169 (18)	(-)	(-)	(-)	
10 ^e	$\mathrm{C}_{14}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{2}\mathrm{S}$	284 (24)	211 (100)	(-)	169 (23)	(9)	(10)	(-)	
1p	$C_{12}H_{18}N_2O_2S$	254 (21)	181 (100)	(-)	139 (20)	(14)	(9)	(12)	
1q	$C_{13}H_{20}N_2O_2S$	268 (14)	195 (100)	(-)	139 (7)	(6)	(5)	(-)	
$1r^{f}$	C ₁₂ H ₁₈ N ₂ O ₃ S	270 (13)	197 (100)	(-)	(-)	(6)	(-)	(5)	

Таблица 1. Основные характеристические ионы в масс-спектрах алкил[(5-амино-1*H*-пиррол-2-ил)сульфанил]ацетатов **1а-г** (ионизация электронами, 70 эВ).

^а Ион $[M - R^4 OCOCH_2]^+$.

^b Ион $[A - R^3 CN]^+$.

^с Ион $[\mathbf{A} - \mathbf{C}_n \mathbf{H}_{2n}]^+$.

В спектре также присутствуют пики ионов:

^d $[M - C_3H_7], m/z 283 (I_{OTH} 16\%).$

^e $[\mathbf{C} - \mathbf{C}_3 \mathbf{H}_6]^+$, *m/z* 127 ($I_{\text{отн}}$ 17%).

^f $[\mathbf{A} - C_4 H_7 \text{NO}]^+$, *m/z* 112 ($I_{\text{отн}}$ 6%) и $[\mathbf{A} - C_3 H_6 \text{O}]^+$, *m/z* 139 ($I_{\text{отн}}$ 5%).

и 1q [NR¹R² = N(CH₂)₅] возможно лишь в результате отщепления молекулы алкена (или циклоалкана) от аминогруппы, приводящего к ионам C' (для пирролов 1f и 1o) и C'' (для пирролов 1p и 1q) (схема 4). Кроме того, в спектре пиррола 1o присутствует пик иона [C' – C₃H₆]⁺ с m/z 127 ($I_{\text{отн}}$ 17%), образующегося при отщеплении второй молекулы пропена от иона C'. Пик иона C'' (R³ = Me) с m/z 139 ($I_{\text{отн}}$ 5%) наблюдается и в спектре морфолинилзамещённого пиррола 1r. В этом случае ион A выбрасывет молекулу оксетана.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 5 2020

Для иона A, генерируемого из пирролов 1f, o, p, q, r, кроме элиминирования молекулы алкена или оксетана из аминного заместителя (NR¹R²), также характерен отрыв этого заместителя в виде радикала с образованием малоинтенсивных нечётноэлектронных ионов с m/z 111 ($I_{\text{отн}}$ 6, 6, 8, 4 и 3%), возможно, имеющих структуру пиридин-2(1*H*)-тиона, и отрыв NR¹R², сопровождающийся миграцией атома водорода к гетероциклу [1-метил-2-тиоксо-2*H*-пирролиевый ион с m/z 112 ($I_{\text{отн}}$ 6, 3, 9, 2 и 6%)] (схема 5).

Специфической особенностью фрагментации иона **A**, генерируемого из пиррола **1j**, является образование иона $[\mathbf{A} - CH_2S]^+$ с m/z 193 ($I_{\text{отн}}$ 100%). Его появление, вероятно, связано со способностью N-(винилоксиэтильной) группы в 5-(сульфанил)за-мещённых пиррол-2-аминах к циклизации по атому серы с образованием бициклических катионов (возможные структуры **A''** и **A'''**) (схема 6).

Внутримолекулярные циклизации подобного типа постулировались при описании масс-спектров 5-(метилсульфанил)-1-[2-(винилокси)этил]-1*H*-пиррол-2-аминов [31].

Кроме пиков иона **A** и образующихся из него осколочных ионов (включая ион **C**), для пирролов **1h** ($\mathbb{R}^4 = \mathbb{M}e$) и **1m** ($\mathbb{R}^4 = t$ -Bu) характерен отрыв изопропильного радикала от молекулярного иона с последующим выбросом молекулы \mathbb{R}^4 OCHO из

иона $[M - CH(CH_3)_2]^+$ (2*H*-пиррол-2-иминиевый ион) (схема 7).

Дополнительный канал фрагментации молекулярного иона наблюдается и в масс-спектрах соединений **1f**, **o**, **p**, **q** и заключается в отщеплении молекулы 2-метоксиоксирена и образовании нечётноэлектронного иона $[M - MeOCOCH]^{+\bullet}$ (5-амино-*N*-метил-1*H*-пиррол-2-тиол) (схема 8).

В масс-спектрах химической ионизации метаном доминируют интенсивные пики протонированной молекулы $[M + H]^+$ ($I_{\text{отн}}$ 66–100%) (табл. 2). Кроме этого, протекают процессы перезарядки [ионы $M^{+\bullet}$ ($I_{\text{отн}}$ 36–88%)] и электрофильного присоединения {ионы $[M + \text{Et}]^+$ ($I_{\text{отн}}$ 5–17%)}.

При химической, как и при электронной, ионизации фрагментация исследуемых соедине-

Схема 5.

 $R^{1} = R^{2} = Et(f), R^{1}-R^{2} = n-Pr(o), R^{1}-R^{2} = (CH_{2})_{4}(p), (CH_{2})_{5}(q), (CH_{2})_{2}O(CH_{2})_{2}(r).$

ний незначительна. Основные осколочные ионы проявляются лишь пиками ионов, обусловленных элиминированием радикала R⁴OCOCH₂ из молекулярного иона [ион **A** ($I_{\text{отн}}$ 9–100%)] и иона [M + Et]⁺ [ион **D** ($I_{\text{отн}}$ 5–12%)]. Дополнительно регистрируется новый процесс деградации, связанный с отрывом сульфанильного заместителя от молекулярного иона [ион **E** ($I_{\text{отн}}$ 5–27%)] и иона [M + H]⁺ [ион **F** ($I_{\text{отн}}$ 5–25%)] (табл. 2).

Таким образом, при электронной и химической ионизации все исследуемые алкил[(5-амино-1H-пиррол-2-ил)сульфанил]ацетаты образуют молекулярный ион значительной интенсивности. Основное направление распада $M^{+\bullet}$ не зависит от природы и строения заместителей и от метода ионизации и обусловлено разрывом связи C–S в сульфанильной группе с образованием иона $[M-R^4OCOCH_2]^+$, пик которого имеет максимальную или близкую к максимальной интенсивность. Влияние строения заместителей при ионизации электронами проявляется на вторичных стадиях распада иона $[M-R^4OCOCH_2]^+$. При химической ионизации пик максимальной интенсивности принадлежит иону $[M+H]^+$. Наряду с ним, в спектрах проявляются пики молекулярных и кластерных ионов $[M + Et]^+$, образующихся по механизмам перезарядки и электрофильного присоединения. Химическая ионизация, в отличие от электронной, характеризуется процессами элиминирования мо-

² Приведена суммарная интенсивность: ($I_{\text{отн}}$ иона + $I_{\text{отн}}$ ¹³С иона **A**).

КЛЫБА и др.

Caarinaa	Ион, <i>m/z</i> (<i>I</i> _{отн} , %)									
Соединение	$M^{+\bullet}$	$[M + H]^+$	$[M + \mathrm{Et}]^+$	A ^a	Db	Ec	\mathbf{F}^{d}			
1b	242 (53)	243 (100)	271 (17)	155 (98)	184 (8)	124 (10)	125 (7)			
1f	256 (58)	257 (93)	285 (6)	183 (100)	212 (9)	152 (13)	153 (5)			
1g	270 (58)	271 (100)	299 (5)	197 (88)	226 (6)	166 (9)	167 (5)			
1h	284 (55)	285 (100)	313 (5)	211 (62)	240 (5)	180 (5)	181 (-)			
1i	298 (58)	299 (100)	327 (6)	225 (79)	254 (6)	194 (5)	195 (-)			
1j	312 (41)	313 (100)	341 (6)	239 (14)	268 (5)	208 (15)	209 (6)			
1k	298 (88)	299 (97)	327 (5)	183 (100)	212 (11)	152 (16)	153 (17)			
11	312 (50)	313 (100)	341 (6)	197 (75)	226 (6)	166 (20)	167 (25)			
1m ^e	326 (36)	327 (100)	355 (12)	211 (9)	240 (-)	180 (13)	181 (16)			
1n	340 (53)	341 (100)	369 (8)	225 (66)	254 (7)	193 (-)	194 (-)			
10	284 (56)	285 (100)	313 (9)	211 (77)	240 (12)	180 (9)	185 (5)			
1p ^f	254 (50)	255 (66)	283 (5)	181 (100)	210 (8)	150 (27)	151 (24)			
1q	268 (52)	269 (100)	297 (9)	195 (78)	224 (7)	164 (10)	165 (5)			
1r	270 (38)	271 (100)	299 (10)	197 (59)	226 (6)	166 (5)	167 (6)			

Таблица 2. Общие характеристические ионы в масс-спектрах соединений 1b, f-r (химическая ионизация, газреагент – метан).

^а Ион $[M - R^4 OCOCH_2]^+$.

^b Ион $[(M + Et) - R^4 OCOCH_2]^{+ \bullet}$.

^с Ион $[M - R^4 OCOCHS]^{+\bullet}$.

^d Ион $[(M + H) - R^4 OCOCHS]^+$.

В спектре также присутствуют пики ионов:

 $e \left[(M + \text{Et}) - \text{C}_4\text{H}_8 \right]^+, \text{ } m/z \text{ } 271 \text{ } (I_{\text{OTH}} \text{ } 17\%), \left[(M + \text{Et}) - \text{C}_5\text{H}_{10} \right]^+, \text{ } m/z \text{ } 257 \text{ } (I_{\text{OTH}} \text{ } 19\%), \left[\text{C}_4\text{H}_9 \right]^+, \text{ } m/z \text{ } 57 \text{ } (I_{\text{OTH}} \text{ } 22\%).$

^f $[(M + H) - C_4 H_7 N]^{+\bullet}$, m/z 186 $(I_{OTH} 30\%)$.

лекулы R⁴OCOCHS из ионов $M^{+\bullet}$ и $[M + H]^+$ и радикала R⁴OCOCH₂ из иона $[M + Et]^+$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Алкил[(5-амино-1*H*-пиррол-2-ил)сульфанил]ацетаты **1а-г** синтезированы по методикам [22].

Масс-спектры положительных ионов электронной ионизации (70 эВ) исследуемых соединений зарегистрированы на приборе Shimadzu GCMS-QP5050A (Япония) с системой прямого ввода образца DI-50 (масс-анализатор квадрупольный, диапазон детектируемых масс 34–650 Да). Температуру ионного источника и ввода образца подбирали так, чтобы обеспечить получение качественного масс-спектра, исключив при этом термическую деструкцию вещества. Масс-спектры химической ионизации положительных ионов зарегистрированы на приборе Agilent 5975С (США), газ-реагент – метан. Ввод образцов осуществляли через хроматограф Agilent 6890N (США). Разделение осуществляли на хроматографической колонке HP-5MS (США) (30 м×0.25 мм×0.25 мкм) при постоянной скорости потока, газ-носитель – гелий, режим программирования: от 60 до 180°С со скоростью 5 град/мин.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Байкальского аналитического центра коллективного пользования СО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Клыба Л.В., Недоля Н.А., Санжеева Е.Р., Тарасова О.А., Шагун В.А. ЖОрХ. 2019, 55, 12, 1857–1869. doi 10.1134/S0514749219120073 [Klyba L.V., Nedolya N.A., Sanzheeva E.R., Tarasova O.A., Shagun V.A. Russ. J. Org. Chem. 2019, 55, 1853–1863.] doi 10.1134/S1070428019120078
- Elnagdi M.H., Khalifa M.A.E., Ibraheim M.K.A., Elmoghayar M.R.H. J. Heterocycl. Chem. 1981, 18, 877–879. doi 10.1002/jhet.5570180505
- Sugyama K., Yokota S., Shimizu K., Tachikawa S., Myazawa T. Пат. 05320158 (1993). Яп. С.А. 1994, 121, 230783.
- 4. Brown P., Hunt E. Пат. 2004089886 (2004). Междунар. *С.А.* 2004, *141*, 350298.
- 5. Cassayre J.Y., El Qacemi M., Luksch T., Renold P. Пат. 2012156400 (2012). Междунар. *С.А.* 2012, *157*, 734364.
- Rehman A., Fatima A., Abbas N., Abbasi M.A., Khan K.M., Ashraf M., Ahmad I., Ejaz S.A. *Pak. J. Pharm. Sci.* 2013, 26, 345–352.
- Siddiqui S.Z., Rehman A., Abbasi M.A., Abbas N., Khan K.M., Ashraf M., Ejaz S.A. *Pak. J. Pharm. Sci.* 2013, *26*, 455–463.
- Cassayre J.Y., El Qacemi M. Пат. 2014079935 (2014). Междунар. С.А. 2014, 161, 8473.
- Fadda A.A., Rabie R., Etman H.A. J. Heterocycl. Chem. 2017, 54, 1015–1023. doi 10.1002/jhet.2669
- Cheng J.-G., Yu H.-J., Chen Y., Liu Y. *Bioorg. Med. Chem.* 2018, 26, 2287–2290. doi 10.1016/j. bmc.2018.03.013
- Simons S.S., Jr., Johnson D.F. J. Org. Chem. 1978, 43, 2886–2891. doi 10.1021/jo00408a030
- Parsons J.H. Пат. 1574430 (1980). Великобр. С.А. 1981, 95, 43124.
- Shaker R.M. Arkivoc. 2006, ix, 59–112. doi 10.3998/ ark.5550190.0007.904
- Hu G.-Q., Hou L.-L., Xie S.-Q., Huang W.-L. Chin. J. Chem. 2008, 26, 1145–1149. doi 10.1002/ cjoc.200890205
- Popiolek L., Kosikowska U., Dobosz M., Malm A. *Phosphorus, Sulfur Silicon Relat. Elem.* 2012, 187, 468–481. doi 10.1080/10426507.2011.625511
- El-Emary T.I., Abd El-Mohsen S.A. *Molecules*. 2012, 17, 14464–14483. doi 10.3390/molecules171214464
- Collins S.G., O'Sullivan O.C.M., Kellehera P.G., Maguire A.R. Org. Biomol. Chem. 2013, 11, 1706– 1725. doi 10.1039/c3ob27061k

- 18. Nevade S.A., Lokapure S.G., Kalyane N.V. J. Korean Chem. Soc. 2013, 57, 755–760.
- Ширяев А.К., Колесникова Н.Г., Кузнецова Н.М., Лашманова Е.А. *XTC*. **2013**, *49*, 1812–1817.
 [Shiryaev A.K., Kolesnikova N.G., Kuznetsova N.M., Lashmanova E.A. *Chem. Heterocycl. Compd.* **2013**, *49*, 1681–1686]. doi 10.1007/s10593-014-1420-8
- Остапюк Ю.В., Матийчук В.С., Обушак М.Д. *ЖОрХ.* 2017, 53, 468–469. [Ostapyuk Yu.V., Matii- chuk V.S., Obushak M.D. *Russ. J. Org. Chem.* 2017, 53, 479–480.] doi 10.1134/S1070428017030320
- Tarasova O.A., Nedolya N.A., Albanov A.I., Trofimov B.A. *Eur. J. Org. Chem.* 2018, 5961–5971. doi 10.1002/ejoc.201800987
- Tarasova O.A., Nedolya N.A., Albanov A.I., Trofimov B.A. Synthesis. 2019, 51, 3697–3708. doi 10.1055/ s-0037-1611883
- Cheeseman G.W.H., Hawi A.A. J. Heterocycl. Chem. 1983, 20, 585–590. doi 10.1002/jhet.5570200317
- Cheeseman G.W.H., Hawi A.A. J. Heterocycl. Chem. 1983, 20, 591–593. doi 10.1002/jhet.5570200318
- Cheeseman G.W.H., Varvounis G. J. Heterocycl. Chem. 1987, 24, 1157–1161. doi 10.1002/jhet.5570240445
- 26. Boehm R., Pech R. Pharmazie 1990, 45, 187-188.
- Левковская Г.Г., Рудякова Е.В., Мирскова А.Н. *ЖОрХ.* 2002, 38, 1697–1703. [Levkovskaya G.G., Rudyakova E.V., Mirskova A.N. *Russ. J. Org. Chem.* 2002, 38, 1641–1646.] doi 10.1023/ A:1022566202511
- Yagupolskii L.M., Matsnev A.V., Kondratenko N.V. J. Fluor. Chem. 2003, 119, 59–63. doi 10.1016/S0022-1139(02)00250-6
- Kimbaris A., Cobb J., Tsakonas G., Varvounis G. *Tetrahedron.* 2004, 60, 8807–8815. doi 10.1016/ j.tet.2004.07.036
- Клыба Л.В., Недоля Н.А., Тарасова О.А., Жанчипова Е.Р., Волостных О.Г. *ЖОрХ*. 2010, 46, 1039– 1049. [Klyba L.V., Nedolya N.A., Tarasova O.A., Zhanchipova E.R., Volostnykh O.G. *Russ. J. Org. Chem.* 2010, 46, 1038–1048.] doi 10.1134/ S1070428010070134
- Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. *ЖОрХ*. 2013, 49, 398–404. [Klyba L.V., Nedolya N.A., Tarasova O.A., Sanzheeva E.R. *Russ. J. Org. Chem.* 2013, 49, 384–390.] doi 10.1134/S1070428013030123
- Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. ЖОрХ. 2014, 50, 43–51. [Klyba L.V., Nedolya N.A., Tarasova O.A., Sanzheeva E.R.

Russ. J. Org. Chem. 2014, 50, 35–44.] doi 10.1134/ S1070428014010072

- Клыба Л.В., Тарасова О.А., Недоля Н.А. *ЖОрХ*.
 2016, *52*, 1782–1787. [Klyba L.V., Tarasova O.A., Nedolya N.A. *Russ. J. Org. Chem.* **2016**, *52*, 1773– 1778.] doi 10.1134/S1070428016120101
- Клыба Л.В., Тарасова О.А., Недоля Н.А., Санжеева Е.Р. ЖОрХ. 2016, 52, 1594–1599. [Klyba L.V., Tarasova O.A., Nedolya N.A., Sanzheeva E.R. Russ. J. Org. Chem. 2016, 52, 1587–1592.] doi 10.1134/ S1070428016110063

Mass Spectra of New Heterocycles: XXI. Study of Alkyl[(5-amino-1*H*-pyrrol-2-yl)sulfanyl]acetates by Electron and Chemical Ionization

L. V. Klyba*, N. A. Nedolya, E. R. Sanzheeva, and O. A. Tarasova

Favorskii Irkutsk Institute of Chemistry, SB, RAS, 664033, Russia, Irkutsk, ul. Favorskogo 1 *e-mail: klyba@irioch.irk.ru

Received January 21, 2020; revised March 17, 2020; accepted March 19, 2020

The fragmentation of previously inaccessible alkyl[(5-amino-1*H*-pyrrol-2-yl)sulfanyl]acetates under electron (70 eV) and chemical (reagent-methane) ionization conditions was studied for the first time. Under electron ionization, all the studied compounds form a molecular ion (I_{rel} 7–100%), the main direction of the primary fragmentation of which is associated with the breaking of the C–S bond in the sulfanyl group and elimination of the ester fragment (R⁴OCOCH₂) in the form of a radical. The chemical ionization of alkyl[(5-amino-1*H*-pyrrol-2-yl)sulfanyl]acetates is characterized by protonation, recharging, and electrophilic addition. The peak of maximum intensity belongs to the ion [M + H]⁺. Chemical ionization is accompanied by the elimination of the R⁴OCOCH₂ radical from $M^{+\bullet}$ and [M + Et]⁺ ions and the R⁴OCOCH₃ molecule from $M^{+\bullet}$ and [M + H]⁺ ions.

Keywords: alkyl[(5-amino-1*H*-pyrrol-2-yl)sulfanyl]acetates, electron and chemical ionization, mass spectra, molecular ions, fragmentation