УДК 547.745

СИНТЕЗ СПИРО[ПИРРОЛ-ПИРРОЛИЗИДИНОВ] 1,3-ДИПОЛЯРНЫМ ЦИКЛОПРИСОЕДИНЕНИЕМ АЗОМЕТИНИЛИДОВ К 3-ИЛИДЕНПИРРОЛ-2-ОНАМ

© 2020 г. А. А. Мороз, М. В. Дмитриев, А. Н. Масливец*

ФГБОУ ВО «Пермский государственный национальный исследовательский университет», 614990, Россия, г. Пермь, ул. Букирева 15 *e-mail: koh2@psu.ru

> Поступила в редакцию 27 февраля 2020 г. После доработки 14 апреля 2020 г. Принята к публикации 15 апреля 2020 г.

Конденсацией Кневенагеля 1*H*-пиррол-2,3-дионов с малононитрилом синтезированы 3-илиденпиррол-2-оны. 1,3-Диполярное циклоприсоединение азометинилидов, генерируемых *in situ* из арилкарбальдегидов и пролина или саркозина, к экзоциклической двойной связи 3-илиденпиррол-2-онов приводит к образованию региоизомерных спиро[пиррол-3,2'-пирролизинов], спиро[пиррол-3,1'-пирролизинов] и диазоспиро[4.4]нонана.

Ключевые слова: поликарбонильные соединения, 1*H*-пиррол-2,3-дионы, диполярное циклоприсоединение, азометинилиды, спиропирролизины, спиропирролидины.

DOI: 10.31857/S0514749220070071

Структурные фрагменты пирролидинов и пирролизидинов широко распространены в природе и встречаются в составе многочисленных биологически активных соединений [1, 2] и алкалоидов, например, спиротрипростатина A [3], использующегося в качестве основы противораковых препаратов, элакомина [4] и хорсфилина [5], обладающих анальгетической активностью, азаспирена [6], казуарина [7], природного алкалоида, являющегося эффективным ингибитором глюкозидазы I и применяемого в терапии сахарного диабета 2-го типа (рис. 1).

Некоторые синтетические спиро-пирролидины являются перспективными антилейкемическими и противосудорожными агентами [8, 9].

Известен метод синтеза пирролидинов реакцией диполярного циклоприсоединения азометинилидов, генерируемых из α-аминокислот и ароматических альдегидов [10–12]. В качестве диполярофилов в данной реакции могут использоваться продукты конденсации Кневенагеля альдегидов или кетонов с производными малоновой кислоты [10, 13, 14]. Описана трехкомпонентная реакция азометинилидов с 2-оксо-3*H*-индол-3-илиденмалононитрилом, в результате которой образуются спиропирролидин-оксиндолы и спиропирролизидин-оксиндолы [15]. В настоящей работе в качестве диполярофилов использованы продукты конденсации Кневенагеля 1*H*-пиррол-2,3-дионов с малононитрилом – 3-илиденпиррол-2-оны, реакции 1,3-диполярного циклоприсоединения которых не изучены.

Конденсацией 5-фенил-4-этоксикарбонил-1*H*пиррол-2,3-дионов **1a**, **b** с малононитрилом в соотношении 1:1 при кипячении в безводном ацетонитриле в течение 2 ч в присутствии триэтиламина получены замещенные 3-илиденпиррол-2оны – этил 1-алкил-4-(дицианометилен)-5-оксо-2-фенил-4,5-дигидро-1*H*-пиррол-3-карбоксилаты **2a**, **b**.

При взаимодействии 3-илиденпиррол-2-онов 2a, b с азометинилидами, генерируемыми *in situ* из L-пролина и ароматических альдегидов 3a-с, в соотношении 1:1 при кипячении реагентов в безводном ацетонитриле в течение 1–2 ч (контроль методами TCX и ВЭЖХ-МС) образуются региоизомерные спиро[пиррол-3,2'-пирролизины] **4а–d** и спиро[пиррол-3,1'-пирролизины] **5а–d** (схема 1).

 $R = Bn; R^1 = Br; R^2 = H(d).$

С помощью колоночной хроматографии на силикагеле разделены все региоизомерные пары. При использовании саркозина вместо L-пролина в аналогичных условиях удалось выделить в индивидуальном виде только основной региоизомер – диазоспиро[4.4]нонен **6**.

Соединения **4–6** – бесцветные кристаллические вещества, легкорастворимые в ДМСО, хлороформе и ацетоне, нерастворимые в алканах и воде.

В спектрах ЯМР ¹Н соединений **4** и **5**, кроме сигналов протонов заместителей в положении 1 пиррольного цикла, ароматических колец и связанных с ними групп, присутствуют триплет и мультиплет протонов этоксикарбонильной группы (0.90-0.98 м.д. и 3.84-4.15 м.д. соответственно), мультиплеты протонов трех метиленовых групп пирролидинового цикла (1.68–3.16 м.д.), синглет метинового протона, связанного с арильным заместителем (5.32-5.62 м.д.), а также триплет или дублет дублетов метинового протона С^{7а'}Н (5.11-5.47 м.д.). В спектре ЯМР 1 Н соединения 6, кроме сигналов протонов ароматических колец, присутствуют триплет и мультиплет протонов этоксикарбонильной группы (0.89 м.д. и 3.92-4.10 м.д. соответственно), два дублета неэквивалентных протонов метиленовой группы бензильного заместителя (3.92 и 4.46 м.д.), синглет метильной группы (2.41 м.д.), синглет метинового протона (4.63 м.д.), а также два дублета неэквивалентных протонов метиленовой группы в пирролидиновом цикле (3.78 и 4.13 м.д.).

В спектрах ЯМР ¹³С соединений **4–6** присутствуют характерные сигналы сложноэфирной (162.2–163.3 м.д.) и лактамной (172.5–174.9 м.д.) карбонильных групп.

Для однозначного установления относительной конфигурации хиральных центров в продуктах реакций выполнен РСА соединений 4а, 5а и 6. Согласно данным РСА соединение 4а (рис. 2) кристаллизуется в центросимметричной пространственной группе Р-1. Значения длин связей и углов в молекуле находятся в пределах стандартных величин. Пиррол-2-оновый фрагмент плоский в пределах 0.05 Å. Пиррольные циклы С³С⁵N²С⁷С⁶ и С⁷С⁸С⁹С¹⁰N² пирролизидинового фрагмента находятся в конформации конверт. Атомы С³ и С⁹ вывелены из плоскости остальных четырех атомов циклов на 0.616 и 0.597 Å соответственно. Торсионный угол, образованный атомами С⁶С⁷N²С¹⁰, составляет 122.7(2)°. Этильный фрагмент этоксикарбонильной группы С²⁰-С²¹ и атом C^9 пиррольного цикла $C^7 C^8 C^9 C^{10} N^2$ испытывают разупорядочение по двум позициям с равной заселенностью (для удобства восприятия на рис. 2 минорные компоненты не показаны). Соединения 5а (рис. 3) и 6 (рис. 4) кристаллизуются в центросим-

Рис. 2. Молекулярная структура соединения **4a** в представлении неводородных атомов эллипсоидами тепловых колебаний с 30% вероятностью.

Рис. 3. Молекулярная структура соединения **5**а в представлении неводородных атомов эллипсоидами тепловых колебаний с 30% вероятностью.

метричной пространственной группе моноклинной сингонии. Геометрия молекул соединений **5**а и **6** близка к таковой для соединения **4**а.

Образование соединений **4–6** происходит вследствие 1,3-диполярного [3+2]-циклоприсоединения азометинилидов, генерируемых *in situ* посредством конденсации L-пролина или саркозина с арилкарбальдегидом, сопровождающейся последующим декарбоксилированием, к экзоциклической двойной связи З-илиденпиррол-2-онов **2**. На схеме 2 изображен предполагаемый механизм реакции на примере образования соединений **4** и **5**.

В ходе реакции циклоприсоединения в продуктах 4 и 5 возникают 3 стереогенных центра, что делает возможным существование 4 диастереомеров. В условиях реакции образуется только анти-изомер азометинилида 7, что согласуется с литературными данными [16, 17]. По-видимому, вследствие стерических факторов и вторичных орбитальных взаимодействий при образовании региоизомеров 4 реализуется преимущественно экзо-переходное состояние, при образовании региоизомеров 5 – эндо. В связи с вышесказанным из 4 возможных пар энантиомеров в реакции образуется преимущественно одна пара энантиомеров для каждого из региоизомерных продуктов 4 и 5. Стоит отметить, что образование в незначительных количествах альтернативных диастереомеров соединений 4 и 5 в реакционной смеси регистрировалось методами ВЭЖХ-МС и ЯМР.

Описанная реакция – пример получения труднодоступных замещенных спиро-пирролизидинов и спиро-пирролидинов (диазоспиро[4.4]ноненов), структурные фрагменты которых встречаются в целом ряде природных и синтетических соединений, обладающих различной биологической активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры полученных соединений записаны на спектрофотометре Perkin Elmer Spectrum Тwo в виде пасты в вазелиновом масле. Спектры ЯМР ¹H и ¹³С записаны на спектрометре Bruker AVANCE III HD 400 [рабочая частота 400 (¹H) и 100 (¹³C) МГц] в CDCl₃, внутренний стандарт – ГМДС. Элементный анализ выполнен на анализаторе Vario Micro cube. Индивидуальность синтези-

Рис. 4. Молекулярная структура соединения **6** в представлении неводородных атомов эллипсоидами тепловых колебаний с 30% вероятностью.

рованных соединений подтверждена методом TCX на пластинках Merck Silica gel 60 F_{254} , элюенты – толуол–этилацетат, 5:1, этилацетат, проявляли парами йода и УФ излучением 254 нм. Оптимизация условий реакций проведена методом ВЭЖХ-МС на приборе Waters ACQUITY UPLC I-Class (колонка Acquity UPLC BEH C18 1.7 мкм, подвижная фаза – ацетонитрил–вода, скорость потока 0.6 мл/мин, УФ детектор PDA е λ Detector, масс-спектрометрический детектор Xevo TQD). Для колоночной хроматографии применяли Silicagel 60 (Acros Organics, 0.06–0.2 мм). Исходные пирролдионы 1 синтезировали взаимодействием соответствующих енаминов с оксалилхлоридом по ранее описанной методике [18].

Рентгеноструктурное исследование соединений 4a, 5a и 6 выполнено на дифрактометре Xcalibur Ruby (Agilent Technologies) по стандартной методике (Mo K_{α} -излучение, T 295(2) K, ω -сканирование с шагом 1°) с использованием пакета программ СrysAlisPro [19]. Поглощение учтено эмпирически с использованием алгоритма SCALE3 ABSPACK [19]. Структуры расшифрованы прямым методом по программе SHELXS-97 [20] и уточнены с помощью программы SHELXL [21] с графическим интерфейсом OLEX2 [22] по F^2 в анизотропном приближении для неводородных атомов (ато-

мы водорода включены в уточнение в модели *наездника*). Результаты РСА зарегистрированы в Кембриджском центре кристаллографических данных под номерами ССDC 1883708 (**4a**), ССDC 1883709 (**5a**), ССDC 1883710 (**6**) и могут быть запрошены по адресу www.ccdc.cam.ac.uk/structures.

Этил 1-бензил-4-(дицианометилен)-5-оксо-2фенил-4,5-дигидро-1*H*-пиррол-3-карбоксилат (2а). К раствору 3 ммоль 1*H*-пиррол-2,3-диона (1а) и 3 ммоль малононитрила в безводном ацетонитриле добавляли 0.3 ммоль триэтиламина, смесь кипятили в течение 2 ч. Растворитель упаривали в вакууме, остаток перекристаллизовывали из этанола. Выход 70%, т.пл. 100–102°С (этанол). ИК спектр, v, см⁻¹: 2218 (СN), 1733, 1705 (С=О). Спектр ЯМР ¹H (400 МГц, CDCl₃), δ, м.д. (*J*, Гц): 1.08 т (3H, CH₃CH₂, *J* 7.2) 4.14 к (2H, CH₃C<u>H₂</u>, *J* 7.1), 4.71 с (2H, CH₂Ph), 6.83–6.87 м (2H_{аром}), 7.19– 7.27 м (5H_{аром}), 7.45–7.50 м (2H_{аром}), 7.55–7.61 м (1H_{аром}). Спектр ЯМР ¹³С, δ, м.д.: 13.8 (CH₃CH₂), 45.6 (CH₂Ph), 61.4 (CH₃CH₂), 83.0, 106.6, 112.3, 112.4, 127.4, 127.8 (2C), 128.5 (3C), 128.8 (2C), 129.0 (2C), 132.0, 134.9, 144.9, 160.7, 164.9, 166.0. Масс-спектр, *m/z*: 384 [*M* + H]⁺. Найдено, %: С 72.01; H 4.55; N 11.03. C₂₃H₁₇N₃O₃. Вычислено, %: С 72.05; H 4.47; N 10.96. *M* + H 384.

Соединение 2b синтезировано аналогично.

Этил 4-(дицианометилен)-1-метил-5-оксо-2фенил-4,5-дигидро-1*Н*-пиррол-3-карбоксилат (2b). Выход 60%, т.пл. 89–90°С (этанол). Спектр ЯМР ¹H (400 МГц, CDCl₃), δ, м.д. (*J*, Гц): 1.12 т (3H, CH₃CH₂, *J* 7.1), 3.06 с (3H, CH₃), 4.17 к (2H, CH₃C<u>H</u>₂, *J* 7.1), 7.40–7.44 м (2H_{аром}), 7.53–7.65 м (3H_{аром}). Спектр ЯМР ¹³С, δ, м.д.: 13.9 (CH₃CH₂), 28.9, 61.4 (CH₃CH₂), 82.7, 106.0, 112.3, 112.4, 127.3, 128.6 (2C), 129.0 (2C), 132.3, 145.1, 160.8, 164.7, 166.1. Масс-спектр, *m/z*: 308 [*M* + H]⁺. Найдено, %: С 66.62; H 4.37; N 13.81. C₁₇H₁₃N₃O₃. Вычислено, %: С 66.44; H 4.26; N 13.67. *M* + H 308.

(3R*,3'S*,7а'S*)-1-бензил-2-оксо-3',5-Этил дифенил-1',1'-дициано-1,2,5',6',7',7а'-гексагидро-1'*H*,3'*H*-спиро[пиррол-3,2'-пирролизин]-4-карбоксилат (4a) и этил (3S*,3'R*,7a'R*)-1-бензил-2-оксо-3',5-дифенил-2',2'-дициано-1,2,2',3',5',6',7',7а'-октагидроспиро[пиррол-3,1'-пирролизин]-4-карбоксилат (5а). В 10 мл безводного ацетонитрила растворяли 1.0 ммоль L-пролина, 1.0 ммоль арилкарбальдегида 3а и 1.0 ммоль 3-илиденпиррол-2-она 2а, раствор кипятили в течение 2 ч (контроль методами ТСХ и ВЭЖХ-МС). Растворитель упаривали в вакууме, остаток разделяли с помощью колоночной хроматографии на силикагеле, элюент - толуол-этилацетат (25:1). Образовавшийся осадок перекристаллизовывали из этанола. Выход соединения **4a** – 31%, т.пл. 163–165°С (этанол), R_f 0.56 (толуол-этилацетат, 20:1). Спектр ЯМР ¹Н (400 МГц, CDCl₃), б, м.д. (*J*, Гц): 0.94 т (3H, CH₃CH₂, J 7.1), 2.09–2.40 м (4H, C^{6'}H₂ + C^{7'}H₂), 2.80–2.88 м (1H, C⁵'H₂), 3.13 д.д.д (1H, C⁵'H₂, *J* 6.3, 5.6, 3.2), 3.97-4.12 м (2Н, СН₃СН₂), 4.00 д (1Н, СН₂Ph, J 15.5), 4.42 д (1Н, СН₂Ph, J 15.6), 5.18 т (1H, C^{7a}'H, J 6.5), 5.62 с (1H, C³'H), 6.14–6.16 м (2H_{аром}), 6.79–6.97 м (4H_{аром}), 7.03–7.08 м (1H_{аром}), 7.21-7.38 м (6H_{аром}), 7.56-7.60 м (2H_{аром}). Спектр ЯМР ¹³С, δ, м.д.: 13.6 (CH₃CH₂), 27.3, 29.0, 44.6 (CH₂Ph), 45.6, 54.2, 60.7 (CH₃CH₂), 69.6, 70.8, 71.1, 104.0, 112.1, 113.5, 126.9 (2C), 127.2, 127.7 (2C), 128.1 (2C), 128.4 (2C), 128.4 (2C), 128.5 (2C), 128.5, 129.3, 129.8, 135.4, 136.6, 158.3, 163.2 (COO), 173.0 (C²=O). Масс-спектр, *m/z*: 543 [*M*+H]⁺. Найдено, %: С 75.06; Н 5.49; N 10.21. С₃₄Н₃₀N₄O₃. Вычислено, %: С 75.26; Н 5.57; N 10.33. *М* + Н 543. Выход со-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 7 2020

единения **5a** – 21%, т.пл. 148–150°С (этанол), $R_{\rm f}$ 0.46 (толуол–этилацетат, 20:1). Спектр ЯМР ¹H (400 МГц, CDCl₃), δ , м.д. (*J*, Гц): 0.90 т (3H, CH₃CH₂, *J* 7.1), 1.70–2.23 м (4H, C⁶'H₂ + C⁷'H₂), 2.84 т.д (1H, C⁵'H₂, *J* 9.1, 6.3), 3.03 д.д.д (1H, C⁵'H₂, *J* 10.0, 6.6, 3.7), 3.88–4.04 м (2H, CH₃CH₂), 4.55 д (1H, CH₂Ph, *J* 15.3), 4.66 д (1H, CH₂Ph, *J* 15.3), 5.40–5.44 м (2H, C³'H + C^{7a}'H), 6.89–6.91 м (2H_{аром}), 7.13 д (2H_{аром}, *J* 7.2), 7.17–7.23 м (3H_{аром}), 7.34–7.47 м (6H_{аром}), 7.73 д.д (2H_{аром}, *J* 7.9, 1.6). Масс-спектр, *m/z*: 543 [*M* + H]⁺. Найдено, %: С 75.08; H 5.42; N 10.19. С₃₄H₃₀N₄O₃. Вычислено, %: С 75.26; H 5.57; N 10.33. *M* + H 543.

Для рентгеноструктурного анализа соединения **4a** использован обломок бесцветного кристалла размером 0.57×0.45×0.41 мм. Кристаллы соединения ($C_{34}H_{30}N_4O_3$, *M* 542.62) триклинные, пространственная группа *P*–1, при 295(2) К: *а* 9.9446(3), *b* 11.498(2), *c* 14.4261(18) Å, α 91.935(13), β 107.794(14), γ 109.981(17)°; *V* 1458.3(5)Å³, *Z* 2. Окончательные параметры уточнения: *R*₁ 0.0563, *wR*₂ 0.1401 [для 11586 отражений с *I* > 2 σ (*I*)], *R*₁ 0.0886, *wR*₂ 0.1652 (для всех 11586 независимых отражений), *S* 1.029.

Для рентгеноструктурного анализа соединения **5а** использован обломок бесцветного кристалла размером $0.5 \times 0.35 \times 0.22$ мм. Кристаллы соединения (C₃₄H₃₀N₄O₃, *M* 542.62) моноклинные, пространственная группа *P*2₁/с, при 295(14) К: *а* 11.799(2), *b* 19.212(3), *c* 14.190(3) Å, β 113.15(2), *V* 2957.8(11)Å³, *Z* 4. Окончательные параметры уточнения: *R*₁ 0.0601, *wR*₂ 0.1422 [для 12653 отражений с *I* > 2 σ (*I*], *R*₁ 0.0900, *wR*₂ 0. 0.1686 (для всех 6761 независимых отражений), *S* 1.026.

Соединения **4b–d**, **5b–d**, **6** и **7** синтезированы аналогично.

Этил (3*R**,3'*S**,7a'*S**)-1-бензил-3'-(3,4-диметоксифенил)-2-оксо-5-фенил-1',1'-дициано-1,2,5',6',7',7a'-гексагидро-1'*H*,3'*H*-спиро[пиррол-3,2'-пирролизин]-4-карбоксилат (4b) и этил (3*S**,3'*R**,7a'*R**)-1-бензил-3'-(3,4-диметоксифенил)-2-оксо-5-фенил-2',2'-дициано-1,2,2',3',5',6',7',7a'-октагидроспиро[пиррол-3,1'пирролизин]-4-карбоксилат (5b). Выход соединения 4b – 27%, т.пл. 160–162°С (этанол). ИК спектр, v, см⁻¹: 2244 (CN), 1729, 1700 (С=О).

Спектр ЯМР ¹Н (400 МГц, CDCl₂), б, м.д. (*J*, Гц): 0.93 т (3Н, СН₂СН₂, J 7.1), 2.11–2.42 м (4Н, $C^{6'}H_2 + C^{7'}H_2$, 2.80–2.86 м (1H, $C^{5'}H_2$), 3.16 д.т (1H, C⁵'H₂, J 10.9, 5.4), 3.80 c (3H, OCH₃), 3.91 c (3H, OCH₃), 3.94–4.11 м (3H, CH₂Ph + CH₃CH₂), 4.48 д (1H, CH₂Ph, J 15.5), 5.17 д.д (1H, C^{7a'}H, J 7.1, 5.7), 5.55 с (1H, C³'H), 6.20–6.23 м (2H_{апом}), 6.79-6.88 м (3H_{аром}), 6.95-7.10 м (4H_{аром}), 7.22-7.26 м (3H_{аром}), 7.36 т.т (1H_{аром}, *J* 7.5, 1.3). Спектр ЯМР ¹³С, δ, м.д.: 13.7 (СН₃СН₂), 27.1, 29.2, 44.7 (CH₂Ph), 45.4, 54.2, 56.1 (OCH₃), 56.1 (OCH₃), 60.7 (CH₃CH₂), 69.6, 70.6, 70.9, 104.0, 111.0, 111.1, 112.0, 113.4, 120.1, 126.8 (2C), 127.5, 128.1 (2C), 128.3 (2C), 128.5 (3C), 129.3, 129.9, 135.3, 149.2, 149.4, 158.4, 163.2 (COO), 173.1 (C²=O). Maccспектр, *m/z*: 603 [*M* + H]⁺. Найдено, %: С 71.58; Н 5.63; N 9.13. С₃₆Н₃₄N₄O₅. Вычислено, %: С 71.74; H 5.69; N 9.30. M + H 603. Выход соединения 5b-19%, т.пл. 145-146°С (этанол). 2247 (СN), 1720, 1694 (C=O). Спектр ЯМР ¹Н (400 МГц, CDCl₂), δ, м.д. (Ј, Гц): 0.90 т (3Н, СН₃СН₂, *J* 7.1), 1.70–2.24 м (4H, $C^{6'}H_2 + C^{7'}H_2$), 2.85 д.д.д (1H, $C^{5'}H_2$, J 9.7, 8.6, 6.2), 3.06 д.д.д (1Н, С⁵'Н₂, *J* 10.3, 6.7, 4.3), 3.84–4.05 м (2H, CH₃CH₂), 3.91 с (3H, OCH₃), 3.95 с (3H, OCH₃), 4.56 д (1H, CH₂Ph, J15.3), 4.65 д (1H, CH₂Ph, J 15.4), 5.39 с (1H, C³'H) 5.47 т (1H, C^{7a}'H, J 7.6), 6.87-6.95 м (3H_{аром}), 7.11-7.27 м (6H_{аром}), 7.32-7.40 м (3H_{аром}), 7.43-7.47 м (1H_{аром}). Спектр ЯМР ¹³С, б, м.д.: 13.6 (СН₃СН₂), 27.7, 28.7, 45.2 (CH₂Ph), 52.7, 53.0, 56.1 (OCH₃), 56.3 (OCH₃), 60.8 (CH₃CH₂), 65.0, 65.9, 72.7, 106.0, 111.3, 111.4, 112.9, 121.0, 126.8, 127.7 (2C), 128.0 (2C), 128.4 (2C), 128.7 (2C), 129.0 (2C), 129.3, 130.2, 135.7, 149.5, 150.3, 156.9, 162.6 (COO), 174.9 (C²=O). Maccспектр: *m/z* 603 [*M* + H]⁺. Найдено, %: С 71.87; Н 5.78; N 9.44. С₃₆Н₃₄N₄O₅. Вычислено, %: С 71.74; H 5.69; N 9.30. *M* + H 603.

Этил (3*R**,3'S*,7a'S*)-3'-(4-бромфенил)-1-метил-2-оксо-5-фенил-1',1'-дициано-1,2,5',6',-7',7a'-гексагидро-1'*H*,3'*H*-спиро[пиррол-3,2'-пирролизин]-4-карбоксилат (4с) и этил (3*S**,3'*R**,7a'*R**)-3'-(4-бромфенил)-1-метил-2оксо-5-фенил-2',2'-дициано-1,2,2',3',5',6',7',7a'октагидроспиро[пиррол-3,1'-пирролизин]-4карбоксилат (5с). Выход соединения 4с – 32%, т.пл. 127–130°С (этанол). Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ, м.д. (*J*, Гц): 0.98 т (3H, CH₃CH₂, *J* 7.1), 2.02–2.36 м (4H, C⁶H₂ + C⁷H₂), 2.50 с (3H, CH₂), 2.76–2.82 м (1H, C⁵'H₂), 3.05–3.12 м (1H, C⁵H₂), 3.99–4.15 м (2H, CH₂CH₂), 5.11 д.д. (1H, C^{7a'}H, J 7.2, 5.7), 5.51 c (1H, C^{3'}H), 7.08–7.13 м (2H_{апом}), 7.40–7.50 м (7H_{апом}). Спектр ЯМР ¹³С, δ, м.д.: 13.7 (СН₃СН₂), 27.3, 28.0, 29.0, 45.4, 54.2, 60.8 (CH₃CH₂), 69.1, 70.8, 71.1, 103.2, 111.9, 113.2, 122.5, 128.4 (2C), 128.7 (2C), 129.2 (2C), 129.3, 130.4 (2C), 131.4, 135.7, 158.4, 162.2 (COO), 172.9 (C²=O). Масс-спектр, m/z: 545 $[M + H]^+$. Найдено, %: C 61.80; H 4.83; N 10.15. C₂₈H₂₅BrN₄O₃. Вычислено, %: С 61.66; Н 4.62; N 10.27. M + Н 545. Выход соединения 5с – 24%, т.пл. 176–177°С (этанол). Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ, м.д. (Ј, Гц): 0.94 т (3Н, СН₂СН₂, *J* 7.1), 1.68–2.23 м (4H, $C^{6'}H_2 + C^{7'}H_2$), 2.77–2.84 м (1H, $C^{5'}H_2$), 2.91 с (3H, CH₂), 2.99 д.д.д (1H, C⁵'H₂, J 9.5, 6.7, 3.8), 3.90–4.11 м (2H, CH₃CH₂), 5.32 с (1H, C³H), 5.39 т (1H, C⁷H₂, J7.7), 7.33–7.36 м (2H_{аром}), 7.43–7.61 м (7H_{апом}). Спектр ЯМР ¹³С, δ, м.д.: 13.6 (CH₃CH₂), 27.7, 28.3, 29.0, 29.9, 52.7, 52.9, 60.7 (CH₃CH₂), 65.5, 65.6, 71.8, 105.0, 111.1, 112.6, 123.8, 128.7 (4C), 129.4, 129.9 (2C), 130.4, 132.2 (2C), 157.7, 162.4 (СОО), 174.7 (С²=О). Масс-спектр, *m/z*: 545 $[M + H]^+$. Найдено, %: С 61.39; Н 4.45; N 10.11. С₂₈Н₂₅BrN₄O₃. Вычислено, %: С 61.66; Н 4.62; N 10.27. *M* + H 545.

(3R*.3'S*,7a'S*)-1-бензил-3'-(4-бром-Этил фенил)-2-оксо-5-фенил-1',1'-дициано-1,2,5',-6',7',7а'-гексагидро-1'Н,3'Н-спиро[пиррол-3.2'-пирролизин]-4-карбоксилат (4d) и этил (3S*,3'R*,7a'R*)-1-бензил-3'-(4-бромфенил)-2оксо-5-фенил-2',2'-дициано-1,2,2',3',5',6',7',7а'октагидроспиро[пиррол-3,1'-пирролизин]-4карбоксилат (5d). Выход соединения 4d -28%, т.пл. 174–175°С (этанол). Спектр ЯМР ¹Н (400 МГц, CDCl₃), б, м.д. (*J*, Гц): 0.90 т (3H, CH₃CH₂, J 7.1), 1.69–2.24 м (4H, C^{6'}H₂ + C^{7'}H₂), 2.81 т.д (1Н, С⁵'Н₂, *J* 9.1, 6.1), 3.02 д.д.д (1Н, С⁵'Н₂, J 9.4, 6.8, 3.8), 3.89–4.05 м (2H, CH₃CH₂), 4.56 д (1H, CH₂Ph, J15.4), 4.64 д (1H, CH₂Ph, J15.2), 5.40 с (1H, C³'H), 5.43 т (1H, C⁷a'H, *J* 7.7), 6.86–6.92 м (2H_{аром}), 7.11–7.23 м (5H_{аром}), 7.33–7.48 м (3H_{аром}), 7.56–7.65 м (4H_{аром}). Спектр ЯМР ¹³С, б, м.д.: 13.6 (CH₃CH₂), 27.5, 28.9, 45.2 (CH₂Ph), 52.3, 52.9, 60.8 (CH₃CH₂), 65.0, 66.0, 72.1, 105.6, 111.0, 112.6, 123.9, 127.7 (2C), 128.0, 128.4 (2C), 128.7 (2C), 128.9 (2C), 129.2, 129.9 (2C), 130.2, 132.2 (2C), 134.1, 135.6, 157.2, 162.5 (СОО), 174.8 (С²=О). Масс-спектр, *m/z*:

621 $[M + H]^+$. Найдено, %: С 65.54; Н 4.83; N 8.86. С₃₄H₂₉BrN₄O₃. Вычислено, %: С 65.70; Н 4.70; N 9.01. M + H 621. Выход соединения **5d** – 23%, т.пл. 161–163°С (этанол). Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ, м.д. (J, Гц): 0.91 (3H, CH₃CH₂, J 7.1), 1.70–2.23 м (4H, C⁶'H₂ + C⁷'H₂), 2.80–2.87 м (1H, C⁵'H₂), 3.03–3.07 м (1H, C⁵'H₂), 3.90–4.10 м (2H, CH₃CH₂), 4.56 д (1H, C<u>H</u>₂Ph, J 15.3), 4.64 д (1H, C<u>H</u>₂Ph, J 15.3), 5.42 с (1H, C³'H), 5.47 т (1H, C^{7a'}H, J 7.7), 6.87–6.90 м (2H_{аром}), 7.07–7.22 м (3H_{аром}), 7.32–7.36 м (2H_{аром}), 7.42–7.63 м (7H_{аром}). Массспектр, m/z: 621 $[M + H]^+$. Найдено, %: С 65.52; H 4.59; N 8.92. C₃₄H₂₉BrN₄O₃. Вычислено, %: С 65.70; H 4.70; N 9.01. M + H 621.

Этил (5*R**,6*S**)-2-бензил-7-метил-1-оксо-3,6дифенил-9,9-дициано-2,7-диазаспиро[4.4]нон-3-ен-4-карбоксилат (6). Выход 28%, т.пл. 154-155°С (этанол). Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ, м.д. (J, Гц): 0.89 т (3Н, СН₃СН₂, J 7.1), 2.41 с (3H, CH₃), 3.78 д (1H, C⁸H₂, J 9.2), 3.92 д (1H, С<u>Н</u>₂Ph, *J* 15.9) 3.92–4.10 м (2H, CH₃C<u>H</u>₂), 4.13 д (1H, C⁸H₂, J 9.2), 4.46 д (1H, C<u>H</u>₂Ph, J 15.4), 4.63 с (1H, C⁶H), 6.10–6.12 м (2H_{аром}), 6.80–7.10 (5H_{аром}), 7.24–7.42 м (8Н_{аром}). Спектр ЯМР ¹³С, б, м.д.: 13.7 (CH₃CH₂), 39.5, 40.5. 44.8 (CH₂Ph), 60.5 (CH₃CH₂), 65.3, 65.5, 73.6, 106.7, 113.7, 114.5, 127.2 (2C), 127.3, 128.1 (2C), 128.4 (2C), 128.5 (2C), 128.6 (2C), 128.9 (2C), 129.0, 129.5, 129.9, 134.2, 135.6, 159.5, 163.3 (СОО), 172.5 (С²=О). Масс-спектр, *m/z*: 517 [*M* + H]⁺. Найдено, %: С 74.51; Н 5.39; N 10.97. С₃₂Н₂₈N₄O₃. Вычислено, %: С 74.40; Н 5.46; N 10.85. *M* + H 517.

Для рентгеноструктурного анализа соединения **6** использован обломок бесцветного кристалла размером 0.28×0.21×0.07 мм. Кристаллы соединения ($C_{32}H_{28}N_4O_3$, M 516.48) моноклинные, пространственная группа $P2_1/c$, при 295(2) К: a 14.462(4), b 11.035(2), c 18.349(5) Å, β 109.77(3), V2755.7(13) Å³, Z 4. Окончательные параметры уточнения: R_1 0.0626, wR_2 0.1461 [для 3349 отражений с $I > 2\sigma(I)$], R_1 0.1294, wR_2 0.1953 (для всех 6482 независимых отражений), S 1.019.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 19-13-00290).

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 7 2020

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- El-Shazly A., Wink M. Diversity. 2014, 6, 188–282. doi 10.3390/d6020188
- Robertson J., Stevens K. Nat. Prod. Rep. 2014, 31, 1721–1788. doi 10.1039/C4NP00055B
- Puerto Galvis C.E., Kouznetsov V.V. Org. Biomol. Chem. 2013, 11, 7372–7386. doi 10.1039/C3OB41302K
- Prado E.G., Gimenez M.G., De la Puerta Vázquez R., Sánchez J.E., Rodriguez M.S. *Phytomedicine*. 2007, *14*, 280–284. doi 10.1016/j.phymed.2006.12.023
- James M.N.G., Williams G.J.B. Can. J. Chem. 1972, 50, 2407–2412. doi 10.1139/v72-386
- Caruano J., Mucciolib G.G., Robiette R. Org. Biomol. Chem. 2016, 14, 10134–10156. doi 10.1039/ C6OB01349J
- Nash R.J., Watson A.A., Asano N. Alkaloids: Chemical and Biological Perspectives. Ed. S.W. Pelletier. Oxford: Pegamon. 1996, 11, 345–376. doi 10.1016/ S0735-8210(96)80009-4
- Abou-Gharbia M.A., Doukas P.H. *Heterocycles*. 1979, 12, 637–640. doi 10.3987/R-1979-05-0637
- Kornet M.J., Thio A.P. J. Med. Chem. 1976, 19, 892– 898. doi 10.1021/jm00229a007
- Lashgari N., Ziarani G.M. Arkivoc. 2012, 277–320. doi 10.3998/ark.5550190.0013.108
- 11. Gayen B., Banerji A., Dhara K. *Synth. Comm.* **2016**, *46*, 293–308. doi 10.1080/00397911.2015.1135954
- Moshkin V.S., Sosnovskikh V.Y., Röschenthaler G.V. *Tetrahedron.* 2013, 69, 5884–5892. doi 10.1016/ j.tet.2013.05.018
- Ghandi M., Rezaei S.J.T., Yari A., Taheri A. *Tetrahedron Lett.* 2008, 49, 5899–5901. doi 10.1016/ j.tetlet.2008.07.127
- Носачев С.Б., Поддубный О.Ю., Великородов А.В., Тырков А.Г. ЖОрХ. 2010, 46, 683–686. [Nosachev S.B., Poddubnyi O.Yu., Velikorodov A.V., Tyrkov A.G. Russ. J. Org. Chem. 2010, 46, 674–677.] doi 10.1134/S1070428010050131
- Ghandi M., Yari A., Rezaei S.J.T., Taheri A. *Tetrahedron Lett.* 2009, 50, 4724–4726. doi 10.1016/ j.tetlet.2009.06.033

- Coldham I., Hufton R. Chem. Rev. 2005, 105, 2765– 2810. doi 10.1021/cr040004c
- Grigg R., Idle J., McMeekin P., Surendrakumar S., Vipond D. J. Chem. Soc., Perkin Trans. 1. 1988, 2703–2713. doi 10.1039/P19880002703
- Силайчев П.С., Дмитриев М.В., Алиев З.Г., Масливец А.Н. ЖОрХ. 2010, 46, 1173–1177. [Silaichev P.S., Dmitriev M.V., Aliev Z.G., Maslivets A.N. Russ. J. Org. Chem. 2010, 46, 1173–1177.] doi 10.1134/ S1070428010080105
- 19. CrysAlisPro, Agilent Technologies, Version 1.171.36.28.
- 20. Sheldrick G.M. Acta Crystallogr, Sect. A. 2008, 64, 112–122. doi 10.1107/S0108767307043930
- Sheldrick G.M. Acta Crystallogr, Sect. C. 2015, 71, 3–8. doi 10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J, Howard J.A.K., Puschmann H. J. Appl. Cryst. 2009, 42, 339–441. doi 10.1107/S0021889808042726

Synthesis of Spiro[pyrrole-pyrrolizidines] by the 1,3-Dipolar Cycloaddition of Azomethine Ylides to 3-Ylidenpyrrole-2-oned

A. A. Moroz, M. V. Dmitriev, and A. N. Maslivets*

Perm State University, 614990, Russia, Perm, ul. Bukireva 15 *e-mail: koh2@psu.ru

Received February 27, 2020; revised April 14, 2020; accepted April 15, 2020

3-Ylidenepyrrole-2-ones are synthesized by Knoevenagel condensation of 1*H*-pyrrole-2,3-diones with malononitrile. The 1,3-dipolar cycloaddition of azomethine ylides generated *in situ* from arylcarbaldehydes and proline or sarcosine to the exocyclic double bond of 3-ylidenepyrrol-2-ones leads to the formation of regioisomeric spiro[pyrrole-3,2'-pyrrolizines], spiro[pyrrole-3,1'-pyrrolizines] and diazospiro[4.4]nonane.

Keywords: polycarbonyl compounds, 1*H*-pyrrole-2,3-diones, dipolar cycloaddition, azomethine ylides, spiropyrrolizines, spiropyrrolodines

1054