УДК 547.66 + 547.915

НОВЫЕ 13,14-ДЕГИДРОАНАЛОГИ ПРОСТАГЛАНДИНОВ 11-ДЕЗОКСИ-РЯДА

© 2020 г. Н. А. Иванова*, Г. А. Шавалеева, М. С. Мифтахов

ФГБУН «Уфимский Институт химии Уфимского федерального исследовательского центра РАН», 450054, Россия, Республика Башкортостан, г. Уфа, пр. Октября 69 *e-mail: bioreg@anrb.ru

> Поступила в редакцию 16 февраля 2020 г. После доработки 22 февраля 2020 г. Принята к публикации 28 февраля 2020 г.

Реализована конвергентная «купратная» схема синтеза этиловых эфиров 11,15-дидезокси-13,14-дегидро-16-гидрокси-16-метилпростагландина E₁ и его 17-феноксипроизводного путем сопряженного 1,4-присоединения соответствующих ацетилинидов меди к 2-(6-этоксикарбонилгексил)циклопент-2ен-1-ону. Образующиеся с хорошими выходами простагландины представляют собой 8,12-изомерные смеси с преимущественным (65–70%) содержанием транс-изомера.

Ключевые слова: купратный синтез, простагландины, 13,14-дегидроаналоги, димер 4-метил-4-окси-5-феноксипент-1-ина.

DOI: 10.31857/S0514749220080030

Как известно, в живых организмах простагландины (PG) претерпевают быстрый метаболитический распад с потерей активности (окисление α - и ω -цепей, C¹⁵-окисление и насыщение Δ^{13} -двойной связи) [1]. В поиске более активных и селективно действующих аналогов PG одним из важных направлений является дизайн и синтез их модификатов, содержащих в нижней цепи ацетиленовый фрагмент [1]. Модифицирование PG направлено на получение аналогов, успешно противостоящих разрушающему действию энзимов *in vivo* [2].

Так, замена 13,14-*транс*-двойной связи нативного PG ацетиленовой связью при сохранении биологической активности аналога препятствует воздействию на него энзима 15-простагландиндегидрогеназы и блокирует распад в этом направлении [1].

Наиболее значимыми представителями среди ацетиленовых аналогов PG являются производное PGF-типа – Alfaprostol 1, используемое в ветеринарии в качестве лютеолитического агента [3], и аналог простациклина I – Cicaprost 2, применяемый для лечения легочных артериальных гипертензий [4, 5].

В продолжение работ по поиску фармакологически перспективных аналогов 11-дезоксимизопростола **3** [6, 7] и с целью изучения зависимости структура–активность, описано получение новых 13,14-ацетиленовых производных **4**.

В синтезе 4 использовали конвергентный купратный подход (схема 1), в котором ключевой стадией является сопряженное 1,4-присоединение к циклопентенону 5 [8] ацетиленовых реагентов 6a, b.

Сопряженное присоединение алкильных, алкенильных и арильных органокупратов широко используется в органическом синтезе [9, 10], причем активность литийкупратных реагентов в реакциях сопряженного 1,4-присоединения существенно зависит от строения присутствующего в нем радикала и уменьшается в ряду алкил > алкенил > алкинил. Малоактивный алкинильный радикал (в виде пентинилмеди) первоначально использовался в качестве «нетранспортабельного»

Alfaprostol 1 Cicaprost 2 **Puc. 1.** Crpyκτypiι ω-ацетиленовых аналогов $PGF_{2\alpha}$ 1 и простациклина 2.

лиганда в смешанных алкенил-алкинил купратах с целью экономии более ценного алкенильного лиганда [9]. Значительно расширить круг вводимых органических радикалов позволило использование активирующих добавок, таких как TMSI, TMSCl, BF_3 [11–13]. В качестве источника меди в литийкупратах наиболее часто используют CuI. Более эффективным является ее комплекс CuI-0.75·Me₂S [14, 15], использование которого за счет повышения «гомогенности» реакционной массы позволяет повысить скорость реакции и выходы целевых продуктов.

В эксперименте последовательной обработкой ТМС-эфира **8a** ацетиленового спирта **7a** [16] BuLi, комплексом CuI-0.75 Me_2S и затем TMSI мы получили ацетилинид меди **6**. Сопряженным 1,4-присоединением последнего к циклопентенону **5**, последующего гидролитического удаления TMS-защитной группы и колоночной хроматографии на SiO₂ выделили новое 13,14-дидегидропроизводное 11-дезоксимизопростола **4a** с высоким (83%) выходом. Последний представляет собой 8,12-*транс*- и 8,12-*цис*-изомерную смесь в соотношении 65:35.

Аналогично из эфира **8b** и циклопентенона **5** с несколько меньшим выходом (63%) было получено соответствующее феноксипроизводное 11дезоксимизопростола – ацетиленовый аналог **4b** с соотношением 8,12-*транс*- и 8,12-*цис*-изомеров, равным 70:30.

Наряду с целевым продуктом был выделен побочный – продукт окислительной димеризации исходного ацетиленового эфира **8b** – диацетилен **10** (схема 2).

Ниже приведены сравнительные с литературными результаты 8,12-*транс-цис* селективности

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 8 2020

в реакциях купратного синтеза 11-дезоксипростагландинов **11** с различающейся структурой ω-цепи (рис. 2).

Отнесение сигналов углеродных атомов ПГ 8-изостроения **4a**, **b** сделано на основании как литературных [18], так и данных, полученных нами ранее [19]. Показано, что углеродные атомы кольца C^8 и C^{12} пространственно затрудненных 8,12-*цис*-изомеров ПГ резонируют в более сильном поле по сравнению с аналогичными сигналами *транс*-изомеров. Кроме того, в этих изомерах значительный диамагнитный сдвиг претерпевают и сигналы не только атомов углерода C^6 , C^7 , C^{13} и C^{14} , как наблюдалось ранее для продуктов купратного синтеза с алкенильными ω -цепями [19], но и почти всех атомов углерода обоих боковых цепей, что обусловлено сближенностью и усилением вза-имного экранирования боковых цепей в случае PG с алкинильной ω -цепью [20] (табл. 1).

На примере простагландинов 11-дезокси ряда мы впервые продемонстрировали возможность *опе-роt* получения их 13,14-дегидропроизводных в варианте сопряженного 1,4-присоединения ацетиленовых купратов – эквивалентов ω-цепи, к ци-

Рис. 2. Изомерный состав аддуктов 11.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 №8 2020

Спектры ЯМР ¹³С алкинильных аналогов 11-дезокси-ПГЕ₁ *E*-4a, b и их 8-изомеров *Z*-4a, b.

Номер атома углерода ^а	Этиловый эфир 11,15-дидезокси-13,14- дегидро-16-гидрокси-16-метил-ПГЕ ₁		Этиловый эфир 11,15-дидезокси-13,14-дегидро-16- гидрокси-16-метил-17-фенокси-[18,19,20]-тринор-ПГЕ ₁	
	<i>E</i> -4a	<i>Z</i> -4a	<i>E</i> -4b	<i>Z</i> -4b
C ¹	173.79	173.79	173.78	173.78
C^2	34.27	34.27	35.53	35.53
C ³	24.83	24.83	24.81	24.81
C^4	27.36	27.85	27.77	27.35
C ⁵	28.48	28.55	28.39	28.55
C ⁶	26.29	26.68	26.28	26.64
C^7	32.65	32.58	34.27	34.27
C ⁸	55.43	53.57	55.34	53.54
C ⁹	218.24	218.24	218.31	218.28
C ¹⁰	37.30	35.56	37.33	37.33
C ¹¹	29.17	29.32	29.13	29.30
C ¹²	33.50	31.99	31.97	33.47
C ¹³	84.52	81.63	84.48	81.66
C ¹⁴	78.29	80.52	77.67	79.94
C ¹⁵	34.27	32.65	29.79	29.74
C ¹⁶	71.79	71.74	73.41	73.33
C ¹⁷	41.00	40.95	71.79	71.74
C ¹⁸	26.10	26.10	b	
C ¹⁹	23.15	23.15		
C ²⁰	14.19	14.00		
C ²¹	26.34	26.40	23.72 CH ₃	23.68
C ²²	60.12	60.12	60.19	60.13
C ²³	14.05	14.05	14.21	14.20

^а Нумерация атомов углерода согласно номенклатуре простагландинов [21].

^b Значения сигналов атомов углерода ароматического кольца: 158.62 (С^{илсо}), 129.47 (С^{мета}), 121.18 (С^{пара}), 114.55 (С^{орто}).

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 8 2020

клопентеноновым блокам с боковой α-цепью PG. Синтезированные ацетиленовые аналоги PG **4a**, **b** представляют интерес не только как потенциально биологически активные соединения, но и в качестве ценных субстратов для получения новых дикобальтогексакарбонильных комплексов PG, обладающих противоопухолевой активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрофотометре «Shimadzu IR Prestige-21» в пленке или вазелиновом масле. Спектры ЯМР записаны на спектрометре Bruker AM-300 [рабочие частоты 300.13 (¹H) и 75.47 (¹³C) МГц] или Bruker AVANCE-500 [paбочие частоты 500.13 (¹Н) и 125.77 (¹³С) МГц]. Масс-спектры ионизации электрораспылением [ИЭР, ESI (electrospray ionization)] были получены на ВЭЖХ масс-спектрометре LCMS-2010EV (Shimadzu) (шприцевой ввод, раствор образца хлороформе-ацетонитриле в при расходе 0.1 мл/мин, элюент – ацетонитрил-вода, 95:5) в режиме регистрации положительных и отрицательных ионов при потенциале игольчатого ионизирующего электрода 4.5 кВ. Температура капилляра интерфейса 250°С, напряжение на капилляре интерфейса 5 В. Скорость потока небулизирующего (распыляющего) газа (азот) 1.5 л/мин для ХИАД. Напряжение на высокочастотных линзах (Q-array) 5 В. Ход реакций контролировали методом TCX на пластинках «Sorbfil» (Россия) с обнаружением веществ с помощью 10%-ного раствора анисового альдегида в этаноле с добавкой серной кислоты. Анализ методом ВЭЖХ проводился на хроматографической системе Waters Empower (Waters, США) со спектрофотометрическим детектором. Колонка с фазой Nucleosil Chiral-1 250×4.6 мм, 5 мкм (MACHEREY-NAGEL, Германия). В качестве подвижной фазы использовался элюент состава ацетонитрил-вода (50:50). Скорость потока составляла 1 мл/мин. Детектирование проводилось при длине волны 254 нм. Анализ методом ГЖХ проводился на хроматографе Shimadzu CG-2014 с детектором PIT на колонке SOLGEL-1MS, *l* 30 м, при температуре 80-260°C.

Данные элементного анализа синтезированных соединений получены на CHNS-анализаторе EURO EA-3000. Продукты реакции выделяли методом колоночной хроматографии на силикагеле (30–60 г адсорбента на 1.0 г вещества).

Общая методика TMSI-промотируемого соп-1,4-присоединения алкинилмедряженного ных реагентов к 2-алкилзамещенному циклопентен-2-ен-1-ону. К 7.5 ммоль ацетиленового производного в 20 мл безводного ТГФ при –10°С при перемешивании добавляли 1.1 экв раствора BuLi в гексане. Раствор перемешивали 20 мин при -10°C, затем одной порцией добавляли 8.25 ммоль CuI-0.75 Ме₂S и образующийся ацетилинид меди перемешивали 45 мин при -10°С. Затем температуру смеси понижали до -78°C, добавляли 7.5 ммоль Me₃SiI, перемешивали 5 мин при –78°С и добавляли 5.0 ммоль циклопентенона 6 в 5 мл ТГФ. Температуру реакционной смеси повышали до -30°С, выдерживали 1 ч при этой температуре и к реакционной смеси добавляли 10 мл насыщенного раствора NH₄Cl. После перемешивания в течение 30 мин при комнатной температуре в реакционную массу добавляли 2.5 мл 3 М раствора HCl (до pH 7), выдерживали 30 мин при 20°С и продукт реакции экстрагировали Et₂O (3×20 мл). Объединенные органические экстракты промывали 5% раствором Na₂S₂O₃, H₂O, насыщенным раствором NaCl, сушили Na₂SO₄ и концентрировали. Продукт очищали хроматографированием на колонке с силикагелем (петролейный эфир-этилацетат, 9:1-7:3).

Этиловый эфир 13,14-дегидро-11,15-дидезокси-16-метил-16-оксипростагландина Е1 (4а). Из 0.3 г (1.4 ммоль) эфира и 0.22 г (0.92 ммоль) енона 5 (конверсия – 100%) получили 0.29 г (83%) 4а в виде желтого масла, R_f 0.36 (петролейный эфирэтилацетат, 7:3). ИК спектр, v, см⁻¹: 3454, 1733, 1055. Спектр ЯМР ¹Н (CDCl₃, 500 МГц), δ, м.д.: 0.98 т (3Н, СН₃, *J* 6.8 Гц), 1.19 т (3Н, СН₃, *J* 7.5 Гц), 1.22 т (3Н, СН₃, *J* 6.5 Гц), 1.28–1.35 м (6Н, 3СН₂), 1.46-1.50 м (4Н), 1.60-1.69 м (2Н), 1.69-1.75 м (2Н), 1.89–1.93 м (2Н), 2.03–2.18 м (2Н), 2.19–2.28 м (2H), 2.28 т (2H, C²H₂, J 7.0 Гц), 2.61 уш.с (1H, ОН), 3.20–3.27 м (1Н), 3.20 т (1Н, *J* 6.9 Гц), 3.46 к (2Н, J7.0 Гц), 3.66 т (1Н, J6.3 Гц), 4.1 к (2Н, ОСН₂, J 7.5 Гц). Масс-спектр (ХИАД, 200 эВ), *m/z* (I_{отн}, %): 361 (100) [*M* + H – H₂O]⁺. Найдено, %: С 73.17; Н 10.24. С₂₃Н₃₈О₄. Вычислено, %: С 72.98; Н 10.12.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 №8 2020

Из 0.30 г эфира **8b** и 0.18 г енона **5** (конверсия – 90%) получили 0.18 г (63%) **4b** в виде желтого масла, R_f 0.25 (петролейный эфир–этилацетат, 7:3) и 0.28 г (12%) димера **10**, в виде белого аморфного вещества, т.пл. 44°С, R_f 0.5 (петролейный эфир–этилацетат, 7:3).

Этиловый эфир 13,14-дегидро-11,15-дидезокси-16-метил-16-окси-17-феноксипростагландина E₁ (4b). ИК спектр, v, см⁻¹: 1046, 1245, 1587, 1600, 1737, 3448. Спектр ЯМР ¹Н (CDCl₂, 500 МГц), δ, м.д.: 1.26 т (3Н, СН₂, J 7.1 Гц), 1.34 с (1Н), 1.35 с (1H), 1.38 с (1H), 1.25–1.50 м (4H, H⁷₂, H^{4a}, H^{6a}), 1.51–1.58 м (2Н, Н⁵₂), 1.62–2.38 м (11Н, Н³₂, Н⁴⁶, Н⁶⁶, Н⁸, Н¹⁰, Н¹¹, Н¹⁵₂), 2.22 т (2Н, Н²₂, *J* 7.5 Гц), 2.48–2.58 м (1Н, Н¹²), 1.58 уш.с (1Н, ОН), 3.80 д, 3.81 д, 3.86 д (1Н, Н^{17а}, *J*^{тем} 8.8 Гц) (8,12-*цис*), 3.88 д, 3.92 д, 3.93 д (1H, H¹⁷⁶, *J^{гем}* 8.8 Гц) (8,12-*транс*), 4.08 к (2H, OCH₂, J 7.1 Гц), 6.90–7.00 м (3H, Ph), 7.30 т (2H, Ph, J 8.3 Гц). Масс-спектр (ХИАД, 200 9B), m/z (I_{0TH} , %): 446 (30) $[M + H_2O]^+$, 441 (100) [*M*-H+H₂O]⁺. Найдено, %: С 73.07; Н 8.24. С₂₆Н₃₆О₅. Вычислено, %: С 72.87; Н 8.47.

2,9-Диметил-1,10-дифеноксидека-4,6-диин-2,9-ди(триметилсилил)-ол (10). ИК спектр, v, см⁻¹: 841, 1248, 1586, 1602, 2176, 3285, 3340. Спектр ЯМР ¹Н (CDCl₃, 125 МГц), δ , м.д.: 0.16 с (18H, 2SiMe₃), 1.41 с (6H, C²Me, C⁹Me), 2.62 с (4H, C³H₂, C⁸H₂), 3.85 д (2H, CH_AH_Б, *J* 8.9 Гц), 3.95 д (2H, CH_AH_Б, *J* 8.9 Гц), 6.94 д (2H, H^{opmo}, *J* 7.9 Гц), 7.00 т (1H, H^{napa}, *J* 7.9 Гц), 7.30 д (2H, H^{mema}, *J* 7.6 Гц). Спектр ЯМР ¹³С (CDCl₃, 125 МГц), δ , м.д.: 0.04 (SiMe₃), 23.71 (CH₃), 30.92 (C³, C⁸), 71.36 (C², C⁹), 73.33 (C¹, C¹⁰), 88.03 (C⁵, C⁶), 102.65 (C⁴, C⁷). Масс-спектр (ХИАД, 200 эВ), *m/z* (*I*_{отн}, %): 391 (50) [*M* – Me₃Si:OH + MeCN]⁺, 279 (48) [1/2 *M*+H₂O]⁺, 114 (100%). Найдено, %: C 69.16; H 8.25. C₃₀H₄₂O₄Si₂. Вычислено, %: C 68.92; H 8.10.

БЛАГОДАРНОСТИ

Анализы выполнены на оборудовании ЦКП «Химия» УфИХ УФИЦ РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена по теме госзадания № АААА-А20-120012090021-4.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 56 № 8 2020

СПИСОК ЛИТЕРАТУРЫ

- Monteiro S., Paraskevoponlos J., Imramovsky A. Chem. Select. 2019, 4, 11247–11255. doi 10.1002/ slct.201902679
- Nelson N.A., Kelly R.C., Jonson R.A. Chem. Eng. News. 1982, 30–44.
- Ash R.W., Heap R.B. J. Agric. Sci. Camb. 1973, 81, 365–368 doi 0.1017/S0021859600059049
- Belch J.J., Mclaren M., Lau C.S., Macky I.R., Bancroft A., Mcewen J., Thompson J.M. Br. J. Clin. Pharmacol. 1993, 35, 643–647. doi 10.1111/ j.1365-2125.1993.tb04195.x
- Sneider M.R., Sneider M., Lichtner R.B., Graf H. Breast Cancer Res. Treat. 1996, 38, 133–141. doi 10.1007/BF01803791
- Иванова Н.А., Шайнурова А.М., Мифтахов М.С. Хим.-фарм. ж. 1988, 6, 39–40. doi 10.1007/ BF02580520
- Толстиков Г.А., Мифтахов М.С., Лопп М.И. Данилова Н.А., Лилле Ю.Э. Докл. АН СССР. 1983, 272, 619–621.
- Бокалдере Р.П., Лиепиня А.Я., Ложа Э.В., Лоля Д.О., Фрейманис Я.Ф. ЖОрХ. 1981, 17, 2371– 2376.
- Posner G.H. An Introduction to Synthesis Using Organocopper Reagents. New York: J. Willey & Sons. 1980.
- Lipshutz B.H., Sengupta S. Org. React. 1992, 41, 135. doi 10.1002/0471264180.or041.02
- Eriksson M., Johansson A., Nilsson M., Olsson T. J. Am. Chem. Soc. 1996, 118, 10904–10905. doi 10.1021/ja962122q
- Johnson C.R., Marren T.J. *Tetrahedron Lett.* 1987, 28, 27–30. doi 10.1016/S0040-4039(00)95640-5
- Yamamoto Y. Angew. Chem., Int. Ed. 1986, 25, 947– 959. doi 10.1002/anie.198609473
- Eriksson M., Iliefski T., Nilsson M., Olsson Th. J. Org. Chem. 1997, 62, 182–187. doi 10.1021/ jo960393d
- Bertz S.H., Dabbagh G. *Tetrahedron*. 1989, 45, 425– 434. doi 10.1016/0040-4020(89)80070-5
- Толстиков Г.А., Мифтахов М.С., Иванова Н.А., Галин Ф.З. ЖОрХ. 1983, 19, 1857–1866.
- 17. Кориц В.П. Дис. ... канд. хим. наук. Рига, 1985.
- Пехк Т., Вялимяэ Т., Самель Н., Лопп М., Лилле Ю., Липпмаа Э. Изв. АН Эст. ССР, Сер. хим. 1982, 31, 85–90.
- Толстиков Г.А., Халилов Л.М., Панасенко А.А., Данилова Н.А., Мифтахов М.С. *ХПС*. **1985**, *5*, 610–618.

ИВАНОВА и др.

- 20. Weigert F.J., Roberts J.D. J. Am. Chem. Soc. 1970, 92, 1347–1350.
- 21. Nelson N.A. J. Med. Chem. 1974, 17, 911–918. doi 10.1021/jm00255a001

New 13,14-Dehydro Analogues of Prostaglandins 11-Desoxy Series

N. A. Ivanova*, G. A. Shavaleeva, and M. S. Miftakhov

Ufa Institute of Chemistry of UFRC RAS, 450054, Republic of Bashkortostan, Ufa, pr. Oktyabrya 69 *e-mail: bioreg@anrb.ru

Received February 16, 2020; revised February 22, 2020; accepted February 28, 2020

Implemented a convergent «cuprate» synthesis scheme of 11,15-dideoxy-13-dehydro-16-hydroxy-16-methyl-prostaglandin E_1 and its 17-phenoxy derivative by 1,4-conjugation of corresponding copper acetylides to 2-(6-ethoxycarbonylhexyl)cyclopent-2-en-1-on. Prostaglandins formed in good yields are 8,12-isomeric mixtures with a predominant (65–70%) *trans*-isomer content.

Keywords: cuprate synthesis, prostaglandins 13,14-dehydroanalogs, dimer of 4-methyl-4-oxy-5-phenoxypent-1-yn