УДК 547.461.3 + 547.571 + 547.594.3 + 547.824 + 547.825 + 548.737

# НОВЫЕ ВАРИАНТЫ МНОГОКОМПОНЕНТНЫХ КОНДЕНСАЦИЙ, ПРИВОДЯЩИЕ К ФУНКЦИОНАЛЬНЫМ ПРОИЗВОДНЫМ 2-ПИРИДОНОВ

© 2021 г. И. В. Дяченко<sup>*a*</sup>, В. Д. Дяченко<sup>*a*</sup>, П. В. Дороватовский<sup>*b*</sup>, В. Н. Хрусталев<sup>*c*, *d*</sup>, В. Г. Ненайденко<sup>*e*</sup>, \*

<sup>а</sup> Луганский государственный педагогический университет, Украина, 91011 Луганск, ул. Оборонная, 2 <sup>b</sup> Национальный исследовательский центр «Курчатовский институт»,

Россия, 123182 Москва, ул. Академика Курчатова, 1

<sup>с</sup> ФГАОУ ВО «Российский университет дружбы народов», Россия, 117198 Москва, ул. Миклухо-Маклая, 6
 <sup>d</sup> ФГБУН Институт органической химии им. Н.Д. Зелинского, Россия, 119991 Москва, Ленинский просп., 47
 <sup>e</sup> ΦГБОУ ВО « Московский государственный университет им. М.В. Ломоносова»,

Россия, 119991 Москва, Ленинские горы, 1 \*e-mail: nenajdenko@gmail.com

> Поступила в редакцию 11.07.2021 г. После доработки 23.07.2021 г. Принята к публикации 26.07.2021 г.

Изучены многокомпонентные конденсации активированных олефинов, функционализированных СН-кислот и алкилирующих реагентов, открывающие возможность получения производных замещенных 2-пиридонов. Структура ряда соединений изучена методом РСА.

**Ключевые слова:** многокомпонентная реакция, цианотиоацетамид, 2-пиридон, никотинамид, алкилирование, рентгеноструктурный анализ

DOI: 10.31857/S0514749221110021

# ВВЕДЕНИЕ

Среди производных функционализированных 2-пиридонов обнаружены красители [1–3], вещества с противомикробным [4], противовоспалительным [5–7] действием, а также препараты для лечения болезни Паркинсона [8], диабета [9] и атеросклероза [10]. В продолжение исследований по химии 2-пиридонов [11–14] нами разработаны новые варианты получения представителей указанного выше типа органических соединений, основанные на современном подходе – многокомпонентных реакциях [15, 16]. Данная статья посвящена изучению новых вариантов синтеза 2-пиридонов.

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Мы нашли, что конденсация бензальдегида 1, цианоуксусного эфира 2, монотиомалондиамида 3

и 1,2-дибромэтана 4, протекает при 20°С в этаноле с использованием в качестве катализаторов этилата натрия и гидроксида калия. Реакция приводит с выходом 82% к образованию 5-оксо-7-фенил-5-циано-3,5-дигидро-2*H*-тиазоло[3,2-*a*]пиридин-8-карбоксамида 5. Возможная схема конденсации включает образование в качестве интермедиатов алкена Кнёвенагеля **A** и аддукта Михаэля **B**. Последний претерпевает в условиях реакции внутримолекулярный аммонолиз с образованием соли **C**, алкилирующейся 1,2-дибромэтаном **4** с образованием сульфида **D**. Дальнейшее внутримолекулярное алкилирование заканчивается образованием конечной структуры **5** (схема 1).

Введение в реакцию с ацетоуксусным эфиром 6 цианотиоацетамида 7 привело к образованию



соединения 8. В данном случае реакция включает, по-видимому, образование алкена Кнёвенагеля E, из которого в результате внутримолекулярного аммонолиза получается соль 8 (схема 2, метод *a*). Этот же продукт был получен взаимодействием этилкротоната 9 с цианотиоацетамидом 2 и диэтиламином (схема 2, метод *b*). Трехкомпонентная конденсация этилкротоната 9, 3-амино-3-тиоксо*N*-фенилпропанамида **10** и 1,2-дибромэтана **4** протекает при  $20^{\circ}$ С в присутствии этилата натрия в этаноле. Данное превращение приводит к образованию соединения **11**. Вероятные интермедиаты данного процесса – аддукт Михаэля **F** и соль **G** (схема 2).

Взаимодействие этоксиметилиденмалонового эфира 12 с цианотиоацетамидом 7 в этаноле при



20°С катализируется этилатом натрия. Реакция инициируется протеканием нуклеофильного винильного замещения ( $S_N$ Vin) [17, 18] с образованием интермедиата **H**. Затем следует внутримолекулярный аммонолиз и формирование соли **I**, которая первоначально алкилируется 4-хлорфенацилбромидом **13** по атому S до тиоэфира **J**, а затем по атому O, что приводит к конечной структуре данной трехкомпонентной конденсации – соединению **14** (схема 3).

Ацетоацетамид 15 под действием триэтиламина в этаноле при 20°С димеризуется с образованием алкена К, неустойчивого в условиях реакции. Этот интермедиат циклизуется с образованием 2,6-диметил-6-оксо-1,6-дигидропиридина 16. Его реакция с бромом в ледяной уксусной кислоте при облучении лампой мощностью 500 Вт протекает региоселективно по положению 5 пиридинового цикла с образованием 5-бром-2,4-диметил-6-оксо-1,6-дигидропиридин-3-карбоксамида 17. Алкилирование замещенного никотинамида 17 в ДМСО при 20°С в присутствии водного раствора КОН соединениями **18а-d** и Ме<sub>2</sub>SO<sub>4</sub> протекает региоселективно по атому О с образованием соответствующих эфиров 19а-и и 20. В то же время, использование в качестве алкилирующего агента фенацилбромида 21 приводит в аналогичных указанным выше условиям к образованию по данным ЯМР <sup>1</sup>Н смеси изомерных продуктов **22** и **23** в соотношении 6:4 [19] (схема 4, экспериментальная часть).

Спирозамещенные производные 2-пиридонов привлекательны своей биологической активностью [20, 21]. Нами исследовано взаимодействие циклогексилиденцианоуксусного эфира 24 с цианоацетамидом 25, протекающее в этаноле при 20°С в присутствии каталитического количества триэтиламина. Результатом этой реакции явилось образование циклогексилиденацетамида 26 вместо ожидаемого спирозамещенного 1,2,3,4-тетрагидропиридин-2-она. Соединение 26 образовалось в результате протекания реакции Михаэля по типу обмена метиленовыми компонентами [22-24]. Отметим, что циклогексилиденцианоацетамид 26 был получен ранее путем гидролиза одной из нитрильных групп при обработке циклогексилиденмалононитрила диацетатом меди в уксусной кислоте [25]. Вовлечение соединения 26 в реакцию Михаэля с бензоилацетонитрилом 27 в этаноле при 20°С при катализе пиперидином привело к образованию продукта 28. По-видимому, аддукт Михаэля L циклизуется в иминопиран M, который в условиях реакции претерпевает рециклизацию Димрота [26, 27] в конечную структуру 28



ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021



(схема 5). Трехкомпонентная реакция 24, этил-3амино-3-тиоксопропаноата 29 и аллилбромида 30, протекающая в этаноле при 20°С в присутствии этилата натрия приводит к образованию спироциклического производного 31. В качестве интермедиатов в данной схеме реакции логично предположить участие аддукта Михаэля N, тетрагидропиридин-2-она O и соли P (схема 5).

Взаимодействие 24 с пропанбис(тиоамидом) 32 и метилиодидом 33 протекает в приведенных выше условиях реакции Михаэля – этанол, 20°С, этилат натрия. Вероятно, соответствующий аддукт Q претерпевает внутримолекулярный аммонолиз, образуя соль R, которая в дальнейшем региоселективно метилируется метилиодидом по атому S, что приводит к образованию 34 (схема 6). Отметим, что соединение 34 получено нами ранее одностадийно путем алкилирования *N*-метилморфолиниевой соли типа R метилиодидом [28].

Реакция циклогексилиденцианоуксусного эфира 24 с 2-(4-фенилтиазол-2-ил)ацетамидом 35 протекает при 20°С в этаноле и катализируется этилатом натрия. Продуктом этого взаимодействия является 2,6-диоксо-5-(4-фенилтиазол-2-ил)-3азаспиро[5.5]ундекан-1-карбонитрил 36 – потен-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021

циальный полупродукт при создании веществ с противосудорожным и обезболивающим эффектами [29]. Исходя из строения соединения **36** логично предположить, что его образованию предшествовала стадия образования соответствующего аддукта Михаэля **S**, хемоселективно циклизующегося с образованием пиперидин-2,6-дионового (глутаримидного) кольца.

Строение всех синтезированных соединений подтверждено данными спектральных исследований. Так, ИК спектры их содержат характеристические полосы поглощения валентных колебаний функциональных групп – карбонильной, сопряженной и несопряженной нитрильной, сложноэфирной и амидной. В спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>С наблюдаются сигналы всех атомов водорода и углерода в соответствующих областях δ (экспериментальная часть).

С целью однозначного установления направления протекания изученных многокомпонентных конденсаций и выяснения их механизма строение соединений 11, 17, 26 и 34 изучено методом РСА. Строение соединения 11 и соответствующая нумерация атомов представлены на рис. 1. Тиазолидиновый цикл имеет типичную конфор-





мацию конверта. Карбоксамидный фрагмент скручен относительно пиридинового цикла на 65.01(9)°. В кристалле, молекулы соединения 11 образуют центросимметричные димеры за счет прочных межмолекулярных водородных связей N–H…O (табл. 1, рис. 2). Димеры далее связаны в слои, параллельные плоскости (100), за счет слабых межмолекулярных водородных связей С–H…O (табл. 1, рис. 3).

EtONa

Строение молекулы 17 и соответствующая нумерация атомов представлены на рис. 4. В кристалле, молекулы 17 связаны в трехмерный каркас за счет прочных межмолекулярных водородных связей N–H…O (табл. 1, рис. 5).

Строение соединения 26 и соответствующая нумерация атомов представлены на рис. 6. Атом

азота N<sup>1</sup> в молекуле соединения **26** принимает слегка пирамидализованную конфигурацию, которая определяется наличием в кристалле прочных межмолекулярных водородных связей N–H…O (табл. 1).

NH<sub>2</sub>

NH<sub>2</sub>

В кристалле, молекулы 26 образуют центросимметричные димеры за счет прочных межмолекулярных водородных связей N–H···O (табл. 1, рис. 7). Димеры далее связаны в ленты вдоль кристаллографической оси a за счет межмолекулярных водородных связей N–H···O (табл. 1, рис. 8).

Строение соединения **34** и соответствующая нумерация атомов представлены на рис. 9. Центральный тетрагидропиридиновый цикл в молекуле соединения **34** принимает конформацию ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021



несимметричной ванны. Атом азота  $N^1$  имеет слегка пирамидализованную конфигурацию, которая определяется наличием в кристалле прочных межмолекулярных водородных связей N–H···O (табл. 1).

Молекула **34** включает асимметрический центр при атоме углерода С<sup>5</sup>. Кристалл соединения **34** является рацемическим и состоит из энантиомерной пары изомеров. В кристалле, молекулы соединения **34** образуют центросимметричные димеры за счет межмолекулярных водородных



**Рис. 1.** Молекулярная структура соединения **11** в представлении атомов эллипсоидами анизотропных смещений с 50% вероятностью

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021

связей N–H···O и C–H···O (табл. 1, рис. 10). Далее димеры связаны в ленты за счет невалентных вза-имодействий S<sup>1</sup>···N<sup>2</sup> [2–x, 1–y, 1–z] [3.1650(12) Å] (рис. 11). Ленты расположены на ван-дер-ваальсовых расстояниях (рис. 12).

# ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Параметры элементарных ячеек и интенсивности отражений для кристаллов соединений **11, 26** и **34** измерены на синхротронной станции «РСА» Национального исследовательского центра «Курчатовский институт», используя двухкоординатный детектор Rayonix SX165 CCD (ф-сканирование с шагом 1.0°). Обработка эксперименталь-



**Рис. 2.** Н-связанные димеры соединения **11**. Штриховыми линиями показаны межмолекулярные водородные связи

| D–H···A                       | d(D–H)    | d(H····A) | d(D····A)  | Угол (DHA) |
|-------------------------------|-----------|-----------|------------|------------|
| Соединение 11                 |           |           |            |            |
| $N^1-H^1\cdots O^{5a}$        | 0.92(3)   | 1.94(3)   | 2.831(3)   | 164(3)     |
| $C^2-H^{2A}\cdots O^{1b}$     | 0.99      | 2.39      | 3.362(3)   | 167        |
| Соединение 17                 |           |           |            |            |
| $N^1-H^1\cdots O^{2c}$        | 0.81(2)   | 2.03(3)   | 2.826(2)   | 166(2)     |
| $N^2-H^{2A}\cdots O^{1d}$     | 0.87(3)   | 2.00(3)   | 2.808(2)   | 154(3)     |
| $N^2-H^{2B}\cdots O^{1e}$     | 0.70(3)   | 22.32(3)  | 2.929(2)   | 147(3)     |
| Соединение 26                 |           |           |            |            |
| $N^1$ - $H^{1A}$ $O^{1f}$     | 0.892(16) | 2.037(17) | 2.9251(13) | 173.1(14)  |
| $N^1$ – $H^{1B}$ ···O $^{1g}$ | 0.890(16) | 2.222(16) | 3.0339(14) | 151.5(13)  |
| Соединение 34                 |           |           |            |            |
| $N^1-H^1\cdots O^{1h}$        | 0.877(17) | 1.991(17) | 2.8647(14) | 174.3(15)  |
| $C^1$ - $H^{1A}$ ···O^{1h}    | 0.98      | 2.44      | 3.3261(16) | 150.2      |

Таблица 1. Водородные связи в структурах 11, 17, 26 и 34 (Å и град)

<sup>а</sup> Кристаллографические операции для генерации симметрически эквивалентных атомов: -x+1, -y+1, -z+1

b - x+1, y-1/2, -z+3/2 c - x+1/2, y-1/2, -z+3/2 d x-1/2, y+1/2, z e -x+1/2, -y+1/2, -z+1 f -x+1, -y+1, -z g x-1, y, zh -x+2, -y+1, -z

ных данных проведена с помощью программы iMOSFLM, входящей в комплекс программ ССР4 [30]. Для полученных данных проведен учет поглощения рентгеновского излучения по программе Scala [31]. Параметры элементарной ячейки и ин-



**Рис. 3.** Кристаллическая структура соединения **11**, демонстрирующая Н-связанный слой, параллельный (100). Штриховыми линиями показаны межмолекулярные водородные связи

тенсивности отражений для кристалла соединения 17 измерены на дифрактометре Bruker D8 QUEST PHOTON-III CCD (графитовый монохроматор, φи ω-сканирование). Обработка экспериментальных данных проведена с помощью программы



Рис. 4. Молекулярная структура соединения 17 в представлении атомов эллипсоидами анизотропных смещений с 50% вероятностью



**Рис. 5.** Кристаллическая структура соединения **17** вдоль кристаллографической оси *а*. Штриховыми линиями показаны межмолекулярные водородные связи



**Рис. 7.** Н-связанные димеры соединения **26**. Штриховыми линиями показаны межмолекулярные водородные связи



**Рис. 9.** Молекулярная структура соединения **34** в представлении атомов эллипсоидами анизотропных смещений с 50% вероятностью

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021



**Рис. 6.** Молекулярная структура соединения **26** в представлении атомов эллипсоидами анизотропных смещений с 50% вероятностью



**Рис. 8.** Кристаллическая структура соединения **26**, демонстрирующая Н-связанные ленты вдоль кристаллографической оси *а*. Штриховыми линиями показаны межмолекулярные водородные связи



**Рис. 10.** Н-связанные димеры соединения **34**. Штриховыми линиями показаны межмолекулярные водородные связи

SAINT [32]. Для полученных данных проведен учет поглощения рентгеновского излучения по программе SADABS [33]. Основные кристаллоструктурные данные и параметры уточнения представлены в табл. 2. Структуры определены прямыми методами и уточнены полноматричным методом наименьших квадратов по  $F^2$  в анизотропном приближении для неводородных атомов. Атомы



**Рис. 11.** Ленты из димеров соединения **34**, образованные за счет невалентных взаимодействий S…N. Штриховыми линиями показаны межмолекулярные водородные связи и невалентные взаимодействия S…N

водорода амино-групп в соединениях 11, 17, 26 и 34 выявлены объективно в разностных Фурьесинтезах и уточнены изотропно с фиксированными параметрами смещения  $[U_{\rm H30}({\rm H}) = 1.2U_{\rm 3KB}({\rm N})]$ . Положения остальных атомов водорода во всех соединениях рассчитаны геометрически и включены в уточнение с фиксированными позиционными параметрами (модель *наездника*) и изотропными параметрами смещения  $[U_{\rm H30}({\rm H}) = 1.5U_{\rm 3KB}({\rm C})]$  для СН<sub>3</sub>-групп и 1.2 $U_{3KB}$ (С) для остальных групп]. Все расчеты проведены с использованием комплекса программ SHELXTL [34]. Таблицы координат атомов, длин связей, валентных и торсионных углов и анизотропных параметров смещения для соединений **11**, **17**, **26** и **34** депонированы в Кембриджском Банке Структурных Данных, номера депонирования – ССDС 2095499 (**11**), ССDС 2095500 (**17**), ССDС 2095501 (**26**) и ССDС 2095502 (**34**).



**Рис. 12.** Кристаллическая структура соединения **34** вдоль кристаллографической оси *а*. Штриховыми линиями показаны межмолекулярные водородные связи и невалентные взаимодействия S…N

| Соелинение                                   | 11             | 17             | 26             | 34             |
|----------------------------------------------|----------------|----------------|----------------|----------------|
| Элементный состав                            | C15H14N2O2S    | C16H18Br2N4O4  | CoH12N2O       | C12H15N2OS     |
| Молекулярная масса                           | 286.34         | 490.16         | 164.21         | 261.34         |
| λÅ                                           | 0.78790        | 0.71073        | 0.79475        | 0.79373        |
| Т. К                                         | 100(2)         | 200(2)         | 100(2)         | 100(2)         |
| Размеры монокристалла, мм                    | 0.03×0.20×0.20 | 0.10×0.10×0.15 | 0.10×0.10×0.20 | 0.10×0.12×0.21 |
| Сингония                                     | Моноклинная    | Моноклинная    | Моноклинная    | Триклинная     |
| Пространственная группа                      | $P2_{1}/c$     | <i>C</i> 2/c   | $P2_1/c$       | <i>P</i> -1    |
| a, Å                                         | 12.522(3)      | 11.0859(3)     | 5.0780(8)      | 5.9620(7)      |
| b, Å                                         | 8.4998(17)     | 13.7598(4)     | 20.229(3)      | 9.8601(10)     |
| <i>c</i> , Å                                 | 12.764(3)      | 12.6062(3)     | 8.5641(10)     | 11.4112(12)    |
| α, град                                      | 90             | 90             | 90             | 82.045(15)     |
| β, град                                      | 102.97(3)      | 109.311(1)     | 96.68(3)       | 76.931(17)     |
| ү, град                                      | 90             | 90             | 90             | 87.973(10)     |
| <i>V</i> , Å <sup>3</sup>                    | 1323.9(5)      | 1814.76(8)     | 873.8(2)       | 647.15(13)     |
| Ζ                                            | 4              | 4              | 4              | 2              |
| $d_c$ , $r \cdot cm^{-3}$                    | 1.437          | 1.794          | 1.248          | 1.341          |
| <i>F</i> (000)                               | 600            | 976            | 352            | 276            |
| μ, мм <sup>-1</sup>                          | 0.321          | 4.497          | 0.106          | 0.321          |
| 20 <sub>макс</sub> , град                    | 3.22-30.77     | 2.45-32.63     | 2.25-30.98     | 2.07-30.97     |
| Измеренных отражений                         | 18070          | 16478          | 13628          | 10554          |
| Независимых отражений, R <sub>int</sub>      | 3024, 0.077    | 3314, 0.054    | 1998, 0.059    | 2877, 0.062    |
| Наблюденных отражений [c I > 2 $\sigma$ (I)] | 2024           | 2692           | 1710           | 2787           |
| Уточняемых параметров                        | 186            | 129            | 116            | 168            |
| $R_1 \left[ I > 2\sigma(I) \right]$          | 0.049          | 0.031          | 0.039          | 0.037          |
| w $R_2$ (все данные)                         | 0.135          | 0.071          | 0.104          | 0.100          |
| GOF по $F^2$                                 | 1.016          | 1.053          | 1.072          | 1.071          |
| Т <sub>мин</sub> ; Т <sub>макс</sub>         | 0.930; 0.980   | 0.514; 0.630   | 0.970; 0.980   | 0.930; 0.960   |
| Коэффициент экстинкции                       | 0.010(1)       | _              | 0.033(3)       | 0.08(1)        |

Таблица 2. Кристаллоструктурные данные для соединений 11, 17, 26 и 34

0.280; -0.439

0.548; -0.795

0.252; -0.192

0.292; -0.312

 $\Delta\rho_{\text{макс}}; \Delta\rho_{\text{мин}}, e \text{\AA}^{-3}$ 

ИК спектры получали на приборе ИКС-40 в вазелиновом масле. Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С регистрировали на спектрофотометре Varian VXR-400 (399.97 и 100 МГц соответственно) в растворах DMSO-d<sub>6</sub> (для соединений 19а-d – в растворах CDCl<sub>3</sub>), внутренний стандарт – ТМС. Масс-спектры снимали на спектрометре высокого разрешения Orbitrap Elite. Образцы для HRMS растворяли в 1 мл DMSO, разбавляли в 100 раз 1%-ной НСООН в СН<sub>3</sub>СN, вводили шприцевым насосом со скоростью 40 мкл/мин в источник ионизации электрораспылением. Потоки газов источника были отключены, напряжение на игле составляло 3.5 кВ, температура капилляра 275°С. Масс-спектры регистрировали в режимах положительных и отрицательных ионов в орбитальной ловушке с разрешением 480000. Внутренние калибранты – ион 2DMSO + H<sup>+</sup> (*m*/*z* 157.03515) в положительных ионах и додецилсульфат-анион (*m/z* 265.14789) в отрицательных ионах. Для остальных соединений (16, 25, 30, 35) масс-спектры снимали на спектрометре Agilent 1100 Series с селективным детектором Agilent LS/MSDLS (образцы вводили в матрице СН<sub>2</sub>СООН, ионизация ЭУ, 70 эВ). Элементный анализ осуществляли на приборе Perkin Elmer CHN-analyser. Температуры плавления определяли на блоке Кофлера. Ход реакции и чистоту полученных соединений контролировали методом TCX на пластинках Silufol UV-254 в системе ацетон-гексан (3:5), проявление парами йода и УФ-облучением.

5-Оксо-7-фенил-5-циано-3,5-дигидро-2Нтиазоло[3,2-а]пиридин-8-карбоксамид (5). К перемешиваемой смеси 1.0г (10 ммоль) бензальдегида 1 и 1.1 мл (10 ммоль) цианоуксусного эфира 2 в 30 мл этанола при 20°С прибавляли 1 каплю раствора, приготовленного из 0.23 г (10 ммоль) Na и 40 мл этанола, перемешивали 20 мин и прибавляли 1.2 г (10 ммоль) монотиомалондиамида 3 и остаток ранее приготовленного раствора этилата натрия, перемешивали 2 ч и оставляли на 24 ч. Затем к перемешиваемой смеси прибавляли 0.9 мл (10 ммоль) 1,2-дибромэтана 4, перемешивали 4 ч и прибавляли 5.6 мл (10 ммоль) 10%ного водного раствора КОН и оставляли. Через 24 ч смесь разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 2.4 г (82%), желтый мелкокристаллический порошок, при УФ-облучении флуоресцирует, т.пл. 314– 316°С (АсОН). ИК спектр, v, см<sup>-1</sup>: 3280, 3315, 3412 (NH<sub>2</sub>), 2218 (С≡N), 1668 (СОNН). Спектр ЯМР <sup>1</sup>H, δ, м.д. (*J*, Гц): 3.49 т (2H, SCH<sub>2</sub>, *J* 7.8), 4.47 т (2H, NCH<sub>2</sub>, *J* 7.8), 6.99 уш.с (1H, NH<sub>2</sub>), 7.31–7.39 м (3H, NH<sub>2</sub> + 2H<sub>аром</sub>), 7.41–7.49 м (3H<sub>аром</sub>). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 28.8, 52.2, 97.2, 112.6, 116.5, 128.4 (2С), 128.8 (2С), 130.2, 135.3, 157.8, 158.2, 158.4, 166.2. Масс-спектр (ESI), *m/z*: 298.0653 [*M* + H]<sup>+</sup>. C<sub>15</sub>H<sub>11</sub>N<sub>3</sub>O<sub>2</sub>S. *M* + H 298.0572.

Диэтиламмониум 4-метил-6-оксо-3-циано-1,6-дигидропиридин-2-тиолат (8). а. К перемешиваемому раствору 1.3 мл (10 ммоль) ацетоуксусного эфира 6 и 1.0 г (10 ммоль) цианотиоацетамида 7 в 20 мл этанола при 20°С прибавляли 1.0 мл (10 ммоль) диэтиламина, перемешивали 1 ч и оставляли. Через 48 ч образовавшийся осадок отфильтровывали и промывали этанолом и гексаном. Выход 1.8 г (77%), рубиновые кристаллы, т.пл. 200-202°С (ЕtOH), при 180°С сублимируются. ИК спектр, v, см<sup>-1</sup>: 2956 (NH), 2206 (C≡N), 1632 (CONH). Спектр ЯМР <sup>1</sup>Н, δ, м.д. (J, Гц): 1.16 т (6H, 2<u>Me</u>CH<sub>2</sub>, J 6.3), 2.01 с (3H, Me), 2.96 к (4H, 2MeCH<sub>2</sub>, J 6.3), 4.43 с (1H, H<sup>5</sup>), 8.21 уш.с (2H, NH<sub>2</sub>), 10.64 уш.с (1H, NH). Найдено, %: С 54.96; Н 7.08; N 17.40. С<sub>11</sub>Н<sub>17</sub>N<sub>3</sub>OS. Вычислено, %: C 55.20; H 7.16; N 17.56. M 239.3.

*b*. К перемешиваемой суспензии 1.0 г (10 ммоль) цианотиоацетамида 7 в 20 мл этанола при 20°С прибавляли 1.0 мл (10 ммоль) диэтиламина, перемешивали 15 мин до наступления гомогенной фазы раствора, охлаждали до 0°С и прикапывали в течение 5 мин 1.14 мл (10 ммоль) этилкротоната 9 и оставляли при комнатной температуре. Через 48 ч осадок отфильровывали и промывали этанолом и гексаном. Выход 1.6 г (68%).

7-Метил-5-оксо-*N*-фенил-3,5-дигидро-2*H*тиазоло[3,2-*a*]пиридин-8-карбоксамид (11). Перемешиваемую суспензию 1.94 г (10 ммоль) 3-амино-3-тиоксо-*N*-фенилпропанамида 10 в 30 мл этанола охлаждали до 0°С, прибавляли раствор, приготовленный из 0.23 г (10 ммоль) Na и 30 мл этанола, перемешивали 15 мин до полного растворения CH-кислоты 10 и прикапывали в течение 5 мин 1.14 мл (10 ммоль) этилкротоната 9. Затем смесь оставляли на 24 ч, после чего при

перемешивании прибавляли 0.9 мл (10 ммоль) 1,2-дибромэтана 4, перемешивали 4 ч и прибавляли 5.6 мл (10 ммоль) 10%-ного водного раствора КОН и оставляли. Через 24 ч смесь разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 20 г (70%), желтые кристаллы, т.пл. 267–269°С (AcOH) ([11] – 268–270°С).

Этил-2-[2-(2-оксоэтокси)-2-(4-хлорфенил)]-6-[2-(2-оксоэтилтио)-2-(4-хлорфенил)]-5-цианоникотинат (14). К перемешиваемой суспензии 2.0 мл (10 ммоль) диэтилэтоксиметилиденмалоната 12 и 1.0 г (10 ммоль) цианотиоацетамида 7 в 20 мл этанола при 20°С прибавляли раствор, приготовленный из 0.23 г (10 ммоль) Na и 20 мл этанола, перемешивали 1 ч и оставляли. Через 24 ч при перемешивании прибавляли 2.3 г (10 ммоль) 4-хлорфенацилбромида 13, перемешивали 4 ч и вновь прибавляли такое же количество указанного выше раствора этилата натрия и алкилирующего реагента 13, после чего оставляли. Через 48 ч смесь разбавляли равным количеством воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 4.1 г (78%), бесцветный порошок, при УФ-облучении флуоресцирует, т.пл. 202-204°С (BuOH). ИК спектр, v, см<sup>-1</sup>: 2218 (С=N), 1712 (ОС=О), 1690 (C=O). Спектр ЯМР <sup>1</sup>Н, δ, м.д. (*J*, Гц): 1.27 т (3H, MeCH<sub>2</sub>, J 7.1), 4.24 к (2H, MeCH<sub>2</sub>, J 7.1), 4.76 с (2H, SCH<sub>2</sub>), 5.81 с (2H, OCH<sub>2</sub>), 7.36 д (2H<sub>аром</sub>, J 8.6), 7.39 д (2H<sub>аром</sub>, *J* 8.7), 7.61 д (2H<sub>аром</sub>, *J* 8.6), 7.65 д (2H<sub>аром</sub>, J 8.7), 8.52 с (1Н, Н<sup>4</sup><sub>Pv</sub>). Спектр ЯМР 13С, б, м.д.: 14.4, 38.9, 61.6, 69.6, 99.0, 110.0, 115.4, 129.1 (2C), 129.2 (2C), 129.7 (2C), 130.2 (2C), 132.3, 133.7, 139.1, 139.3, 146.3, 161.6, 162.6, 164.9, 191.1, 191.7. Macc-спектр (ESI), m/z: 527.0239  $[M - H]^+$ . C<sub>25</sub>H<sub>18</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>5</sub>S. *M* – H 527.0313.

**2,4-Диметил-6-оксо-1,6-дигидропиридин-3**карбоксамид (16). К перемешиваемому раствору 2.0 г (20 ммоль) ацетоацетамида 15 в 30 мл этанола прибавляли 3 капли Еt<sub>3</sub>N, перемешивали 1 ч и оставляли. Через 24 ч образовавшийся осадок отфильтровывали и промывали этанолом и гексаном. Выход 1.4 г (86%), бесцветный порошок, т.пл. 323–325°С (АсОН). ИК спектр, v, см<sup>-1</sup>: 3244, 3346, 3410 (NH, NH<sub>2</sub>), 1672 (CONH). Спектр ЯМР <sup>1</sup>H, δ, м.д. (*J*, Гц): 2.10 с (3H, Me), 2.18 с (3H, Me),

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021

5.94 с (1H,  $H_{Py}^5$ ), 7.33 уш.с (1H, NH<sub>2</sub>), 7.61 уш.с (1H, NH<sub>2</sub>), 11.53 уш.с (1H, NH). Спектр ЯМР <sup>13</sup>С,  $\delta$ , м.д.: 17.4, 19.9, 116.3, 117.6, 142.2, 149.7, 162.6, 168.9. Масс-спектр, *m/z* ( $I_{OTH}$ , %): 167.2 (100) [M + 1]<sup>+</sup>. Найдено, %: С 57.75; Н 5.97; N 16.77. С<sub>8</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>. Вычислено, %: С 57.82; Н 6.07; N 16.86. *M* 166.2.

5-Бром-2,4-диметил-6-оксо-1,6-дигидропиридин-3-карбоксамид (17). Перемешиваемую суспензию 1.7 г (10 ммоль) замещенного 2-пиридона 16 в 20 мл ледяной уксусной кислоты облучали лампой мощностью 500 Вт и прикапывали 0.51 мл (10 ммоль) брома со скоростью исчезновения малиновой окраски раствора, перемешивали 2 ч, разбавляли равным объемом воды и оставляли. Через 24 ч образовавшийся осадок отфильтровывали, промывали водой и гексаном. Выход 2.0 г (81%), бесцветные игольчатые кристаллы, при УФ-облучении флуоресцируют, т.пл. 285-287°С (*i*-PrOH). ИК спектр, v, см<sup>-1</sup>: 3180. 3300, 3415 (NH, NH<sub>2</sub>), 1665 (CONH). Спектр ЯМР <sup>1</sup>Н, δ, м.д. (*J*, Гц): 2.14 с (3Н, Ме), 2.22 с (3Н, Ме), 7.62 уш.с (1Н, NH<sub>2</sub>), 7.79 уш.с (1Н, NH<sub>2</sub>), 12.03 уш.с (1H, NH). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 16.7, 21.0, 113.6, 117.7, 140.3, 147.8, 158.2, 167.9. Масс-спектр (ESI), m/z: 244.9921  $[M + H]^+$ . C<sub>8</sub>H<sub>9</sub>BrN<sub>2</sub>O<sub>2</sub>. M + H244.9847.

**6-Алкилокси-5-бром-2,4-диметилникотин**амиды 19а–d (*общая методика*). К перемешиваемому раствору 2.44 г (10 ммоль) 2-пиридона 17 в 20 мл ДМСО при 20°С последовательно прибавляли 5.6 мл 10%-ного водного раствора КОН и 10 ммоль соответствующего алкилирующего реагента 18а–d, перемешивали 4 ч и разбавляли равным объемом воды. Образовавшийся осадок отфильтровывали и промывали водой, этанолом и гексаном.

**5-Бром-6-гексадецилокси-2,4-диметилникотинамид (19а).** Выход 3.2 г (68%), желтый порошок, т.пл. 30–32°С (МеОН). ИК спектр, v, см<sup>-1</sup>: 3190, 3306, 3404 (NH<sub>2</sub>), 1666 (С=О). Спектр ЯМР <sup>1</sup>H, δ, м.д. (*J*, Гц): 0.81 г (3H, <u>Me</u>, *J* 6.4), 1.18–1.42 м [24H, (CH<sub>2</sub>)<sub>12</sub>], 1.56–1.72м (2H, CH<sub>2</sub>), 1.98–2.23 м (2H, CH<sub>2</sub>), 2.28 с (3H, Me), 2.30 с (3H, Me), 4.27 г (2H, NCH<sub>2</sub>, *J* 6.6), 7.79 уш.с (1H, NH<sub>2</sub>), 7.91 уш.с (1H, NH<sub>2</sub>). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 14.0, 14.2, 14.4, 18.3, 20.0, 21.4, 22.1, 22.5, 22.8, 25.9, 26.8, 27.1, 28.7 (3H), 29.1, 31.3, 66.2, 89.9, 115.1, 128.7, 156.5, 168.4, 173.2. Масс-спектр (ESI), *m/z*: 469.2438 [*M* + H]<sup>+</sup>. С<sub>24</sub>H<sub>41</sub>BrN<sub>2</sub>O<sub>2</sub>. *M* + H 469.2351.

**5-Бром-2,4-диметил-6-(проп-2-ин-1-илокси)никотинамид (19b).** Выход 2.0 г (69%), бесцветный порошок, т.пл. 235–237°С (ВиОН). ИК спектр, v, см<sup>-1</sup>: 3195, 3311, 3405 (NH<sub>2</sub>). Спектр ЯМР <sup>1</sup>H, δ, м.д. (*J*, Гц): 2.23 с (3H, Me), 2.42 с (3H, Me), 3.36 с (1H, ≡CH), 4.92 с (2H, CH<sub>2</sub>), 7.70 уш.с (1H, NH<sub>2</sub>), 7.95 уш.с (1H, NH<sub>2</sub>). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 17.5, 21.4, 34.9, 75.3, 78.9, 114.9, 119.7, 141.5, 147.0, 157.6, 168.4. Масс-спектр (ESI), *m/z*: 283.0077 [*M* + H]<sup>+</sup>. C<sub>11</sub>H<sub>11</sub>BrN<sub>2</sub>O<sub>2</sub>. *M* + H 283.0004.

**1-Бензилокси-5-бром-2,4-диметилникотинамид (19с).** Выход 2.8 г (84%), бесцветные кристаллы, т.пл. 252–254°С (ВиОН). ИК спектр, v, см<sup>-1</sup>: 3202, 3309, 3404 (NH<sub>2</sub>), 1668 (С=О). Спектр ЯМР <sup>1</sup>H, δ, м.д. (*J*, Гц): 2.14 с (3H, Me), 2.23 с (3H, Me), 5.36 с (2H, CH<sub>2</sub>), 7.13 д (1H<sub>аром</sub>, *J* 7.3), 7.22–7.48 м (4H<sub>аром</sub>), 7.66 уш.с (1H, NH<sub>2</sub>), 7.90 уш.с (1H, NH<sub>2</sub>). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 17.8, 21.5, 48.5, 68.1, 126.8 (2C), 127.7, 128.1, 129.2 (2C), 136.8, 142.0, 146.8, 184.2, 168.6. Масс-спектр (ESI), *m/z*: 335.0391 [*M* + H]<sup>+</sup>. C<sub>15</sub>H<sub>15</sub>BrN<sub>2</sub>O<sub>2</sub>. *M* + H 335.0317.

**5-Бром-6-[2-(4-бромфениламино)-2**оксоэтокси]-2,4-диметилникотинамид (19d). Выход 3.7 г (80%), бесцветный порошок, т.пл. 282–284°С (ВиОН). ИК спектр, v, см<sup>-1</sup>: 3199, 3308, 3400 (NH, NH<sub>2</sub>), 1667 (СОNН). Спектр ЯМР <sup>1</sup>Н, δ, м.д. (*J*, Гц): 2.61 с (3H, Me), 2.69 с (3H, Me), 4.91 с (2H, CH<sub>2</sub>), 7.49 д (2H<sub>аром</sub>, *J* 8.9), 7.54 д (2H<sub>аром</sub>, *J* 8.9), 7.69 уш.с (1H, NH<sub>2</sub>), 7.93 уш.с (1H, NH<sub>2</sub>), 10.58 уш.с (1H, NH). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 18.1, 21.5, 49.1, 113.5, 115.5, 119.2, 121.4 (2C), 132.1 (2C), 138.5, 142.5, 146.9, 158.2, 165.9, 168.6. Массспектр (ESI), *m/z*: 455.9508 [*M*+H]<sup>+</sup>. C<sub>16</sub>H<sub>15</sub>BrN<sub>3</sub>O<sub>3</sub>. Вычислено 455.9480.

**5-Бром-2,4-диметил-6-метоксиникотинамид** (20) получали аналогично соединениям 19а–d, используя соответственно 0.95 мл (10 ммоль) Me<sub>2</sub>SO<sub>4</sub>. Выход 2.0 г (77%), бесцветный порошок, т.пл. 268–270°С (ВиОН), при 180°С сублимируется. ИК спектр, v, см<sup>-1</sup>: 3187, 3301, 3413 (NH<sub>2</sub>), 1670 (С=О). Спектр ЯМР <sup>1</sup>Н, δ, м.д. (*J*, Гц): 2.22 с (3H, Me), 2.30 с (3H, Me), 3.50 с (3H, MeO), 7.65 уш.с (1H, NH<sub>2</sub>), 7.82 уш.с (1H, NH<sub>2</sub>). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 18.3, 21.3, 32.8, 114.5, 119.0, 142.4, 146.0, 158.3, 168.8. Масс-спектр (ESI), *m/z*: 259.0081 [*M* + H]<sup>+</sup>. C<sub>9</sub>H<sub>11</sub>BrN<sub>2</sub>O<sub>2</sub>. *M* + H 259.0004.

5-Бром-2,6-диметил-6-(2-оксо-2-фенилэтокси)никотинамид (22) и 5-бром-2,4-диметил-6-оксо-1-(2-оксо-2-фенилэтил)-1,6-дигидропиридин-3-карбоксамид (23) получали аналогично соединениям 19а-d, используя соответственно 2.0 г (10 ммоль) фенацилбромида **21**. Выход 2.6 г (73%), бесцветный порошок, т.пл. 275-278°С (BuOH). ИК спектр, v, см<sup>-1</sup>: 3197, 3308, 3401 (NH<sub>2</sub>), 1712 (OC=O), 1662 (CONH<sub>2</sub>). Спектр ЯМР <sup>1</sup>Н, б, м.д. (*J*, Гц): 2.14 с, тај и 2.17 с, тіп (3Н, Ме), 2.29 с, min и 2.32 с, maj (3H, Me), 5.71 с, min и 5.76 с, maj (2H, CH<sub>2</sub>), 7.52–7.74 м (4H, H<sub>аром</sub> + NH<sub>2</sub>), 7.90 уш.с (1H, NH<sub>2</sub>), 7.93-8.01 м (1H<sub>аром</sub>), 8.10 д (1H<sub>аром</sub>, J 7.6). Спектр ЯМР <sup>13</sup>С, δ, м.д.: 17.6, 19.9, 21.1, 21.5, 52.3, 68.4, 105.1, 113.2, 118.4, 127.7 (2C), 128.2 (2C), 129.0 (3C), 129.5 (2C), 133.8, 134.2, 134.5 (2C), 141.8, 146.0, 146.6, 149.1, 156.7, 157.6, 168.2, 168.9, 193.0, 194.0. Масс-спектр (ESI), *m/z*:  $363.0344 [M + H]^+$ . C<sub>16</sub>H<sub>15</sub>BrN<sub>2</sub>O<sub>3</sub>. M + H 363.0266.

2-Циано-2-циклогексилиденацетамид (26). К перемешиваемой смеси 1.93 г (10 ммоль) циклогексилиденцианоуксусного эфира 24 и 0.84 г (10 ммоль) цианоацетамида 25 в 25 мл этанола при 20°С прибавляли 1.4 мл (10 ммоль) Et<sub>2</sub>N, перемешивали 4 ч и оставляли. Через 24 ч образовавшийся осадок отфильтровывали и промывали этанолом и гексаном. Выход 1.3 г (78%), бесцветные кристаллы, т.пл. 96-98°С (EtOH) ([25] -100-102°С). ИК спектр, v, см<sup>-1</sup>: 2902, 3214, 3376 (NH<sub>2</sub>), 2188 (C≡N). Спектр ЯМР <sup>1</sup>Н, δ, м.д. (*J*, Гц): 1.56–1.72 м [6Н, (СН<sub>2</sub>)<sub>3</sub>], 2.40 т (2Н, СН<sub>2</sub>, *J* 6.4), 2.56 т (2H, CH<sub>2</sub>, J 6.2), 7.47 уш.с (1H, NH<sub>2</sub>), 7.64 уш.с (1H, NH<sub>2</sub>). Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 165.2 (100) [M + 1]<sup>+</sup>. Найдено, %: С 65.70; Н 7.28; N 16.97. C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>O. Вычислено, %: С 65.83; Н 7.37; N 17.06. M 164.2.

**2-Оксо-4-фенил-5-циано-3-азаспиро[5.5]ундец-4-ен-1-карбоксамид (28).** Смесь 1.8 г (10 ммоль) циклогексилиденцианоацетамида **26**, 1.5 г (10 ммоль) бензоилацетонитрила **27** и 1.03 мл (10 ммоль) Еt<sub>3</sub>N в 40 мл этанола перемешивали 5 ч и оставляли. Через 48 ч образовавшийся осадок отфильтровывали, промывали этанолом и гексаном. Выход 2.3 г (74%), желтый порошок, т.пл. 237–239°С (ЕtOH). ИК спектр, v,

см<sup>-1</sup>: 2842, 2914, 3178, 3363 (NH, NH<sub>2</sub>), 2186 (С=N), 1670 (СОNН). Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м.д. (*J*, Гц): 1.19– 1.76 м [10H, (CH<sub>2</sub>)<sub>5</sub>], 3.61 с (1H, H<sup>3</sup><sub>Py</sub>), 7.21 уш.с (1H, NH<sub>2</sub>), 7.49 уш.с (5H, Ph), 7.77 уш.с (1H, NH<sub>2</sub>), 10.47 уш.с (1H, NH). Спектр ЯМР <sup>13</sup>С,  $\delta$ , м.д.: 21.0, 21.3, 25.6, 32.1, 34.6, 38.0, 53.6, 94.8, 119.5, 128.8 (2С), 128.9 (2С), 130.8, 133.4, 150.5, 168.0, 168.1. Масс-спектр, *m*/*z* (*I*<sub>отн</sub>, %): 310.2 (100) [*M* + 1]<sup>+</sup>. Найдено, %: С 69.77; H 6.15; N 13.45. С<sub>18</sub>H<sub>19</sub>N<sub>3</sub>O<sub>2</sub>. Вычислено, %: С 69.88; H 6.19; N 13.58. *M* 309.4.

Этил-2-аллилтио-4-оксо-5-циано-3-азаспиро[5.5] ундец-1-ен-1-карбоксилат (31). К перемешиваемой смеси 1.93 г (10 ммоль) циклогексилиденцианоуксусного эфира 24 и 1.5 г (10 ммоль) этил-3-амино-3-тиоксопропаноата 29 в 20 мл этанола при 20°С прибавляли раствор, приготовленный из 0.23 г (10 ммоль) Na и 30 мл этанола, перемешивали 4 ч, прибавляли 0.85 мл (10 ммоль) аллилбромида 30, перемешивали 1 ч и оставляли. Через 24 ч смесь разбавляли равным объемом воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 2.6 г (79%), бесцветный мелкокристаллический порошок, т.пл. 161-163°С (ВиОН). ИК спектр, v, см<sup>-1</sup>: 2937 (NH), 2250 (С≡N), 1701 (ОС=О), 1621 (CONH). Спектр ЯМР <sup>1</sup>Н, δ, м.д. (*J*, Гц): 1.31 т (3Н, <u>Ме</u>, J 7.0), 1.42–1.78 м [10H, (CH<sub>2</sub>)<sub>5</sub>], 3.44 к (2H, OCH<sub>2</sub>, J 7.0), 4.03 с (1H, H<sup>5</sup><sub>Pv</sub>), 4.18 д (2H, SCH<sub>2</sub>, J 6.8), 5.05 д (1Н, =CH<sub>2</sub>, J<sub>иис</sub> 9.9), 5.10 д (1Н, =CH<sub>2</sub>, *J<sub>транс</sub>* 16.9), 5.68–5.81 м (1Н, СН=), 10.39 уш.с (1H, NH). Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 335.2 (100) [M + 1]<sup>+</sup>. Найдено, %: С 60.96; Н 6.50; N 8.29. С<sub>17</sub>Н<sub>22</sub>N<sub>2</sub>O<sub>3</sub>S. Вычислено, %: С 61.05; Н 6.63; N 8.38. M 334.4.

2-Метилтио-3,5-дициано-4,5-дигидроспиро[циклогексан-1',4-пиридин]-6(1*H*)-он (34). К перемешиваемой смеси 1.93 г (10 ммоль) циклогексилиденцианоуксусного эфира 24 и 1.34 г (10 ммоль) пропанбис(тиоамида) 32 в 20 мл этанола при 20°С прибавляли раствор, приготовленный из 0.23 г (10 ммоль) Na и 30 мл этанола, перемешивали 4 ч, прибавляли 0.63 мл (10 ммоль) этилиодида 33, перемешивали 1 ч и оставляли. Через 24 ч реакционную смесь разбавляли равным количеством воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Получили соединение 34,

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021

идентичное по спектральным данным синтезированному нами ранее [28]. Выход 1.8 г (79%), т.пл. 180–182°С (AcOH) ([28] – 180–182°С).

2.6-Диоксо-5-(4-фенилтиазол-2-ил)-3-азаспиро[5.5]ундекан-1-карбонитрил (36). К перемешиваемой суспензии 1.93 г (10 ммоль) шиклогексилиленцианочксусного эфира 24 и 2.2 г (10 ммоль) 2-(4-фенилтиазол-2-ил)анетамила 35 в этаноле при 20°С прибавляли раствор, приготовленный из 0.23 г (10 ммоль) Na и 30 мл этанола, перемешивали 1 ч и оставляли. Через 24 ч реакционную смесь разбавляли равным количеством воды и отфильтровывали образовавшийся осадок. Промывали водой, этанолом и гексаном. Выход 2.5 г (68%), бесцветный порошок, т.пл. 237–239°С (АсОН). ИК спектр, v, см<sup>-1</sup>: 3300 (NH), 2248 (C≡N), 1665 (CONH). Спектр ЯМР <sup>1</sup>Н, б, м.д. (*J*, Гц): 1.16–1.83 м [10H, (CH<sub>2</sub>)<sub>5</sub>], 4.56 с (1H, H<sup>5</sup><sub>Pv</sub>), 4.87 с (1H, H<sup>1</sup><sub>Pv</sub>), 7.27–7.49 м (4H<sub>аром</sub>), 7.87 д (1H<sub>аром</sub>, J 7.02), 8.04 с (1H, H<sup>5</sup><sub>тиазола</sub>), 8.37 уш.с (1H, NH). Масс-спектр, *m/z* (*I*<sub>отн</sub>, %): 366.2 (100)  $[M + 1]^+$ . Найдено, %: С 65.61; Н 5.16; N 11.42. С<sub>20</sub>Н<sub>10</sub>N<sub>3</sub>O<sub>2</sub>S. Вычислено, %: С 65.73; Н 5.24; N 11.50. M 365.4.

#### выводы

Многокомпонентные конденсации, инициируемые последовательно протекаемыми реакциями Кнёвенагеля, Михаэля или нуклеофильного винильного замещения, расширяют границы применения этого синтетического подхода для получения практически важных органических веществ, основным структурным фрагментом которых является 2-пиридон [35–37].

## БЛАГОДАРНОСТИ

Публикация подготовлена при поддержке Программы стратегического академического лидерства РУДН.

### ИНФОРМАЦИЯ ОБ АВТОРАХ

Дяченко Иван Владимирович, ORCID: http:// orcid.org/0000-0001-7255-3446

Дяченко Владимир Данилович, ORCID: http:// orcid.org/0000-0002-0993-4091

Хрусталев Виктор Николаевич, ORCID: http:// orcid.org/0000-0001-8806-2975 Ненайденко Валентин Георгиевич, ORCID: http://orcid.org/0000-0001-9162-5169

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

## СПИСОК ЛИТЕРАТУРЫ

- Würthner F., Yao Sh. J. Org. Chem. 2003, 68, 8943– 8949. doi 10.1021/jo0351670
- 2. Lee K.T., Son Y.S., Han W.S., Joo B.J., Eom S.Y. Пат. 5929218 (**1999**). США. *РЖХим.* **2000**, 00.05-19Н.160П.
- Carlini R., Mayo J.D., Duff J.M., Banning J.H., Smith P.F., Liebermann G., Gaynor R.F. Пат. 6576748 (2003). США. РЖХим. 2004, 04.02-19H.143П.
- Mohamed S.F., Youssef M.M., Amr A.E.-G., Kotb E.R. Sci. Pharm. 2008, 76, 279–304. doi 10.3797/ scipharm.0804-09
- 5. Kaplan G.L., Sidduri A., Tilley J.W. Пат. 6388084 (2002). США. *РЖХим*. 2003, 03.06-19О.171П.
- Masatoshi K., Hiroyuki K., Satoshi Y., Hidenori A., Yuji T. Заявка 1897870 (2006). ЕПВ. РЖХим. 2008, 09.23-19О.68П.
- Удодов В.В., Михалев А.И., Коньшин М.Е., Сыропятов Б.Я., Вахрин М.И. Пат. 2315040 (2006). Россия. РЖХим. 2008, 08.10-190.71П.
- Mizuta E., Kuno S., Hanada T., Ueno M. Заявка 1875912 (2006). ЕПВ. РЖХим. 2008, 09.14-19О.220П.
- Peukert S., Guessregen S., Hofmeister A., Schreuder H., Schwahn U. Заявка 102004050196 (2004). Германия. *РЖХим.* 2004, 07.06-19О.97П.
- 10. Murooka M., Morishita K., Aida N., Tanaka M., Yuri M., Ohashi N. Пат. 6452008 (2001). США. *РЖХим.* 2002, 03.09-19О.95П.
- Дяченко И.В., Дяченко В.Д., Дороватовский П.В., Хрусталев В.Н., Ненайденко В.Г. *XГС*. 2020, 56, 1579–1585. [Dyachenko I.V., Dyachenko V.D., Dorovatovsky P.V., Khrustalev V.N., Nenajdenko V.G. *Chem. Heterocycl. Compd.* 2020, 56, 1579–1585.] doi 10.1007/s10593-020-02852-9
- Никишин А.А., Дяченко В.Д., Чернега А.Н. ЖОрХ.
  2009, 45, 1544–1545. [Nikishin A.A., Dyachenko V.D., Chernega A.N. Russ. J. Organic Chem. 2009, 45, 1528.] doi 10.1134/S1070428009100182
- Дяченко В.Д. ЖОрХ. 2006, 42, 1101–1102. [Dyachenko V.D. Russ. J. Org. Chem. 2006, 42, 1085–1086.] doi 10.1134/S1070428006070281
- Дяченко В.Д. ЖОрХ. 2006, 42, 791–792. [Dyachenko V.D. Russ. J. Org. Chem. 2006, 42, 1877–1879.] doi 10.1134/S1070428006120256

- Ненайденко В.Г. Усп. хим. 2020, 89, 1274–1336. [Nenajdenko V.G. Russ. Chem. Rev. 2020, 89, 1274– 1336.] doi 10.1070/RCR5010
- Титце Л., Браше Г., Герике К. Домино-реакции в органическом синтезе. М.: БИНОМ. Лаборатория знаний, 2010.
- Дяченко В.Д., Ткачев Р.П. ЖОрХ. 2003, 39, 807–842. [Tkachev R.P. Russ. J. Org. Chem. 2003, 39, 757–793.] doi 10.1023/B:RUJO.0000003153.20325.22
- Дяченко В.Д., Ткачев Р.П. ЖОрХ. 2006, 42, 167–188. [Dyachenko V.D., Tkachev R.P. Russ. J. Org. Chem. 2006, 42, 149–171.] doi 10.1134/S1070428002120011
- Калита Е.В., Ким Д.Г. ЖОрХ. 2018, 54, 1552–1554. [Kalita E.V., Kim D.G. Russ. J. Org. Chem. 2018, 54, 1565–1568.] doi 10.1134/S1070428018100214
- 20. Montanary S.M.P. Пат. 6613904 (**2003**). США. *РЖХим.* **2004**, 04.10-19О.94П.
- 21. Montanary S.M.P. Пат. 6881843 (2005). США. *РЖХим.* 2006, 06.01-19О.74П.
- Dyachenko V.D., Krivokolysko S.G., Litvinov V.P. Mend. Commun. 1998, 1, 23–24. doi 10.1070/ MC1998v008n01ABEH000816
- Дяченко В.Д., Дяченко А.Д., Чернега А.Н. *ЖОрХ.* 2004, 40, 424–433. [Dyachenko V.D., Dyachenko A.D., Chernega A.N. *Russ. J. Org. Chem.* 2004, 40, 397–406.] doi 10.1023/ B:RUJO.0000034978.81993.bd
- Дяченко И.В., Рамазанова Е.Ю., Дяченко В.Д. ЖОрХ.
  2014, 50, 1839–1843. [Dyachenko I.V., Ramazanova E.Yu., Dyachenko V.D. Russ. J. Org. Chem. 2014, 50, 1821–1825.] doi 10.1134/S1070428014120185
- Xin X., Xiang D., Yang J., Zhang Q., Zhou F., Dong D. J. Org. Chem. 2013, 78, 11956–11961. doi 10.1021/jo401997v
- Dimrot K., Wolf K., Kroke H. Justus Liebigs Ann. Chem. 1964, 678, 183–201. doi 10.1002/jlac.19646780119
- Subbotina J.O., Fabian W.M.F., Tarasov E.V., Volkova N.N., Bakulev V. *Eur. J. Org. Chem.* 2005, 2914– 2923. doi 10.1002/ejoc.200400875
- Дяченко В.Д., Митрошин А.Е., Литвинов В.П. *ХГС*. **1996**, *9*, 1235–1242. [Dyachenko V.D., Mitroshin А.Е., Litvinov V.P. *Chem. Heterocycl. Compd.* **1996**, *32*, 1058–1065.] doi 10.1007/BF01164713
- Batran S.A., Osman A.E.N., Ismail M.M., El Saed A.M. *Inflammopharmacology*. 2006, 14, 62–71. doi 10.1007/s10787-006-1498-4
- Battye T.G.G., Kontogiannis L., Johnson O., Powell H.R., Leslie A.G.W. *Acta Crystallogr., Sect. D.* 2011, 67, 271–281. doi 10.1107/S0907444910048675

- Evans P.R. Acta Crystallogr., Sect. D. 2006, 62, 72–82. doi 10.1107/S0907444905036693
- 32. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2013.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. J. Appl. Crystallogr. 2015, 48, 3–10. doi 10.1107/ S1600576714022985
- 34. Sheldrick G.M. Acta Crystallogr., Sect. C. 2015, 71, 3–8. doi 10.1107/S2053229614024218
- 35. Антипин И.С., Казымова М.А., Кузнецов М.А., Васильев А.В., Ищенко М.А., Кирюшкин А.А., Кузнецова Л.М., Макаренко С.В., Островский В.А., Петров М.Л., Солод О.В., Тришин Ю.Г., Яковлев И.П., Ненайденко В.Г., Белоглазкина Е.К., Белецкая И.П., Устынюк Ю.А., Соловьев П.А., Иванов И.В., Малина Е.В., Сивова Н.В., Негребецкий В.В., Бауков Ю.И., Пожарская Н.А., Травень В.Ф., Щекотихин А.Е., Варламов А.В., Борисова Т.Н., Лесина Ю.А., Краснокутская Е.А., Рогожников С.И., Шуров С.Н., Кустова Т.П., Клюев М.В., Хелевина О.Г., Стужин П.А., Федоров А.Ю., Гущин А.В., Додонов В.А., Колобов А.В., Плахтинский В.В., Орлов В.Ю., Кривенько А.П., Федотова О.В., Пчелинцева Н.В., Чарушин В.Н., Чупахин О.Н., Климочкин Ю.Н., Климочкина А.Ю., Курятников В.Н., Малиновская Ю.А., Левина А.С., Журавлев О.Е., Ворончихина Л.И., Фисюк А.С., Аксенов А.В., Аксенов Н.А., Аксенова И.В. ЖОрХ. 2017, 53, 1257-1408. [Antipin I.S., Kazymova M.A., Kuznetsov M.A., Vasilyev A.V., Ishchenko M.A., Kiryushkin A.A., Kuznetsova L.M., Makarenko S.V., Ostrovskii V.A., Petrov M.L., Solod O.V., Trishin Yu.G., Yakovlev I.P., Nenaidenko V.G., Beloglazkina E.K., Beletskaya I.P., Ustynyuk Yu.A., Solov'ev P.A., Ivanov I.V., Malina E.V., Sivova N.V., Negrebetskii V.V., Baukov Yu.I., Pozharskaya N.A., Traven' V.F., Shchekotikhin A.E., Varlamov A.V., Borisova T.N., Lesina Yu.A., Krasnokutskaya E.A., Rogozhnikov S.I., Shurov S.N., Kustova T.P., Klyuev M.V., Khelevina O.G., Stuzhin P.A., Fedorov A.Yu., Gushchin A.V., Dodonov V.A., Kolobov A.V., Plakhtinskii V.V., Orlov V.Yu., Kriven'ko A.P., Fedotova O.V., Pchelintseva N.V., Charushin V.N., Chupakhin O.N., Klimochkin Yu.N., Klimochkina A.Yu., Kuryatnikov V.N., Malinovskaya Yu.A., Levina A.S., Zhuravlev O.E., Voronchikhina L.I., Fisyuk A.S., Aksenov A.V., Aksenov N.A., Aksenova I.V. Russ. J. Org. Chem. 2017, 53, 1275-1434.] doi 10.1134/ S1070428017090019
- Коновалов А.И., Антипин И.С., Бурилов В.А., Маджидов Т.И., Курбангалиева А.Р., Немтарев А.В., Соловьева С.Е., Стойков И.И., Мамедов В.А., Захаро-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 11 2021

ва Л.Я., Гаврилова Е.Л., Синяшин О.Г., Балова И.А., Васильев А.В., Зенкевич И.Г., Красавин М.Ю., Кузнецов М.А., Молчанов А.П., Новиков М.С., Николаев В.А., Родина Л.Л., Хлебников А.Ф., Белецкая И.П., Вацадзе С.З., Громов С.П., Зык Н.В., Лебедев А.Т., Леменовский Д.А., Петросян В.С., Ненайденко В.Г., Негребецкий В.В., Бауков Ю.И., Шмиголь Т.А., Корлюков А.А., Тихомиров А.С., Щекотихин А.Е., Травень В.Ф., Воскресенский Л.Г., Зубков Ф.И., Голубчиков О.А., Семейкин А.С., Березин Д.Б., Стужин П.А., Филимонов В.Д., Краснокутская Е.А., Федоров А.Ю., Нючев А.В., Орлов В.Ю., Бегунов Р.С., Русаков А.И., Колобов А.В., Кофанов Е.Р., Федотова О.В., Егорова А.Ю., Чарушин В.Н., Чупахин О.Н., Климочкин Ю.Н., Осянин В.А., Резников А.Н., Фисюк А.С., Сагитуллина Г.П., Аксенов А.В., Аксенов Н.А., Грачев М.К., Масленникова В.И., Коротеев М.П., Брель А.К., Лисина С.В., Медведева С.М., Шихалиев Х.С., Субоч Г.А., Товбис М.С., Миронович Л.М., Иванов С.М., Курбатов С.В., Клецкий М.Е., Буров О.Н., Кобраков К.И., Кузнецов Д.Н. ЖОрХ. 2018, 54, 161-360. [Konovalov A.I., Antipin I.S., Burilov V.A., Madzhidov T.I., Kurbangalieva A.R., Nemtarev A.V., Solovieva S.E., Stoikov I.I., Mamedov V.A., Zakharova L.Ya., Gavrilova E.L., Sinyashin O.G., Balova I.A., Vasilyev A.V., Zenkevich I.G., Krasavin M.Yu., Kuznetsov M.A., Molchanov A.P., Novikov M.S., Nikolaev V.A., Rodina L.L., Khlebnikov A.F., Beletskaya I.P., Vatsadze S.Z., Gromov S.P., Zyk N.V., Lebedev A.T., Lemenovskii D.A., Petrosyan V.S., Nenaidenko V.G., Negrebetskii V.V., Baukov Yu.I., Shmigol' T.A., Korlyukov A.A., Tikhomirov A.S., Shchekotikhin A.E., Traven' V.F., Voskresenskii L.G., Zubkov F.I., Golubchikov O.A., Semeikin A.S., Berezin D.B., Stuzhin P.A., Filimonov V.D., Krasnokutskaya E.A., Fedorov A.Yu., Nyuchev A.V., Orlov V.Yu., Begunov R.S., Rusakov A.I., Kolobov A.V., Kofanov E.R., Fedotova O.V., Egorova A.Yu., Charushin V.N., Chupakhin O.N., Klimochkin Yu.N., Osyanin V.A., Reznikov A.N., Fisyuk A.S., Sagitullina G.P., Aksenov A.V., Aksenov N.A., Grachev M.K., Maslennikova V.I., Koroteev M.P., Brel' A.K., Lisina S.V., Medvedeva S.M., Shikhaliev Kh.S., Suboch G.A., Tovbis M.S., Mironovich L.M., Ivanov S.M., Kurbatov S.V., Kletskii M.E., Burov O.N., Kobrakov K.I., Kuznetsov D.N. Russ. J. Org. Chem. 2018, 54, 157-371.] doi 10.1134/S107042801802001X

 Дяченко В.Д., Дяченко И.В., Ненайденко В.Г. Усп. хим. 2018, 87, 1–27. [Dyachenko V.D., Dyachenko I.V., Nenajdenko V.G. Russ. Chem. Rev. 2018, 87, 1–27.] doi 10.1070/RCR4760 ДЯЧЕНКО и др.

# New Variants of Multicomponent Condensations Leading to Functional Derivatives of 2-Pyridons

I. V. Dyachenko<sup>*a*</sup>, V. D. Dyachenko<sup>*a*</sup>, P. V. Dorovatovsky<sup>*b*</sup>, V. N. Khrustalev<sup>*c*, *d*</sup>, and V. G. Nenajdenko<sup>*e*</sup>, \*

<sup>a</sup> Lugansk State Pedagogical University, ul. Oboronnaya, 2, Lugansk, 91011 Ukraine
 <sup>b</sup> National Research Center "Kurchatov Institute", ul. Akademika Kurchatova, 1, Moscow, 123182 Russia
 <sup>c</sup> Peoples' Friendship University of Russia (RUDN University), ul. Miklukho-Maklaya, 6, Moscow, 117198 Russia
 <sup>d</sup> Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp., 47, Moscow, 119991 Russia
 <sup>e</sup> Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991 Russia
 \*e-mail: nenajdenko@gmail.com

Received July 11, 2021; revised July 23, 2021; accepted July 26, 2021

Multicomponent condensations of activated olefins, functionalized CH-acids and alkylating reagents, which open up the possibility of obtaining derivatives of substituted 2-pyridones, have been studied. The structure of a number of compounds was studied by X-ray.

**Keywords:** multicomponent reaction, cyanothioacetamide, 2-pyridone, nicotinamide, alkylation, X-ray structural analysis