УДК 547.057

СИНТЕЗ ВЫСОКОФУНКЦИОНАЛИЗИРОВАННЫХ БИОЛОГИЧЕСКИ АКТИВНЫХ ТЕТРАЦИКЛИЧЕСКИХ ДИТЕРПЕНОИДОВ ИЗ энт-КАУР-16-ЕН-19-ОВОЙ КИСЛОТЫ В МОДИФИЦИРОВАННЫХ УСЛОВИЯХ РЕАКЦИИ ПРЕВО–ВУДВОРДА

© 2021 г. О. Морареску^{*a*}, М. Гринько^{*a*}, В. Кульчицкий^{*a*}, А. Барба^{*a*}, О. Гарбуз^{*b*}, А. Гуля^{*b*}, Н. Унгур^{*a*}, *

^а Институт химии, лаборатория химии природных и биологически активных соединений, Молдова, 2028 Кишинев, ул. Академическая, 3 ^b Государственный университет Молдовы, лаборатория передовых материалов в биофармацевтике и технике,

1 осубиретвенный унибереатет толовой, лабораторыя переобойх матерналов в биофармацеотаке и технике, Молдова, 2009 Кишинев, ул. Алексея Матеевича, 60 *e-mail: nicon.ungur@gmail.com

> Поступила в редакцию 15.07.2021 г. После доработки 27.07.2011 г. Принята к публикации 10.08.2021 г.

Впервые представлен метод синтеза высокофункционализированных тетрациклических дитерпеноидов из природной энт-каур-16-ен-19-овой кислоты в модифицированных условиях реакции Прево–Вудворда. Химический процесс протекает по необычному пути, приводя в основном к бромированным или перегруппированным производным. Трансформация энт-каур-16-ен-19-овой кислоты образует смесь, состоящую из 17-бром-энт-каур-16Z(16E)-ен-19-овой, 17-бром-15R-ацетокси-энт-каур-16E-ен-19-овой, 17-бром-16S-ацетокси-энт-каур-16-ен-19-овой кислот и 2 известных энт-каурановых производных: 15S-ацетокси-энт-каур-16-ен-19-овой и 15S-гидрокси-энт-каур-16-ен-19-овой кислот. Изучена цитотоксическая активность новых соединений на 2 линиях раковых клеток HeLa и BxPC-3.

Ключевые слова: энт-каур-16-ен-19-овая кислота, дитерпеноид, реакция Прево-Вудворда

DOI: 10.31857/S0514749221120053

ВВЕДЕНИЕ

Терпеноиды представляют собой самый разнообразный и обширный класс вторичных метаболитов, обнаруженных в живых организмах. Их роль в природных экосистемах до сих пор остается малоизученной. Сообщества ученых постоянно стремятся раскрыть функцию каждого индивидуального соединения в сложном механизме химических взаимодействий на различных уровнях, начиная от отдельных клеток и заканчивая живыми организмами. Конечная цель таких исследований вытекает из постоянно растущей потребности в новых продуктах и материалах, связанных со здоровьем, питанием, красотой или другими аспектами человеческого существования.

Многие терпеновые соединения уже нашли практическое применение, и все они являются распространенными химическими веществами. В этом контексте тетрациклические энт-каурановые дитерпеноиды – подходящие объекты для изучения, поскольку широко распространены в растениях, в том числе и культивируемых. Практический интерес к этим соединениям многогранен. Энткаураны играют решающую роль в биосинтезе гиббереллинов, важных регуляторов роста растений [1]. Кроме того, растущий интерес к энт-кауранам объясняется перспективностью их применения в фармакологии. Так, исследования растений, используемых в народной медицине, показали, что противомикробная, противовоспалительная, сердечно-сосудистая, мочегонная, цитотоксическая, анти-ВИЧ активность и другие виды их действия тесно связаны с содержанием в них энт-кауранов [2].

Типичными источниками энт-кауранов являются растения, произрастающие в дикой природе в Азии или Южной Америке. Другим значимым ресурсом этих соединений является подсолнечник (Helianthus annuus L.), который содержит большое количество дитерпеноидов во всех частях растения, включая листья, стебли и соцветия [3]. Это крайне доступный и дешевый источник дитерпеноидов, выращиваемый в промышленных масштабах по всему миру. Выделение этих соединений не оказывает отрицательного воздействия на производство подсолнечного масла и основывается на растительных отходах, оставшихся на полях [4]. Химическая модификация природной энткаур-16-ен-19-овой кислоты (1) является удобным подходом к доступным биологически активным дитерпеноидам, представляющим интерес для медицинской химии.

Цель исследования – изучение окислительной функционализации энт-каур-16-ен-19-овой кислоты (1) в модифицированных условиях реакции Прево–Вудворда (Prevost–Woodward).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ранее мы представили [5] окислительный подход к функционализации двойной связи энт-каур-16-ен-19-овой кислоты (1) методом перекисного эпоксидирования и дигидроксилирования тетраоксидом осмия. Поиск в литературе данных об альтернативных условиях дигидроксилирования олефинов привел к сообщению [6] о функционализации двойной связи в измененных условиях реакции Прево–Вудворда, включающей каталитический цикл на основе пары бис(ацетокси)йодбензола и бромида лития (BAIB/LiBr), а также периодата натрия–бромида лития (NaIO₄/LiBr). Следует отметить, что подобный подход к терпеновым субстратам ранее не использовался.

Трансформация энт-каур-16-ен-19-овой кислоты (1) в модифицированных условиях реакции Прево-Вудворда приведена на схеме 1.

энт-Каур-16-ен-19-овую кислоту (1) обрабатывали ВАІВ/LiBr в ледяной уксусной кислоте при 95°С. Сырой продукт реакции пред-

ставлял собой сложную смесь, которую хроматографически разделяли на колонке с силикагелем. Градиентное элюирование позволило выделить 5 функционализированных энт-кауранов, включая новые соединения 2–5 (схема 1). Общий выход продуктов составил 72%, и в порядке возрастания полярности были выделены следующие соединения: изомерные бромиды 2 и 3 (13%), 17-бром-15*R*-ацетокси-энт-каур-16*E*-ен-19-овая кислота (4) (40%), 17-бром-16*S*-ацетоксиэнт-каур-19-овая кислота (5) (17%) и известная [7] 15*S*-ацетокси-энт-каур-16-ен-19-овая кислота (6) (2%).

Смесь изомерных бромидов **2** и **3** была повторно разделена на индивидуальные 17-бром-энт-каур-16*Z*-ен-19-овую (**2**) и 17-бром-энт-каур-16*E*ен-19-овую (**3**) кислоты.

Строение кислоты 2 было установлено на основании данных ЯМР спектроскопии (табл. 1 и 2). Отнесение сигналов в спектрах ЯМР основывалось на двумерные гомо- и гетероядерные эксперименты (HSQC, HMBC, COSY, и NOESY). Спектр ЯМР ¹Н включает 2 синглета ангулярных метильных групп при $\delta_{\rm H}$ 1.24 и 0.95 м.д., соответствующих С¹⁸ в экваториальной и С²⁰ в аксиальной конфигурациях, которые совпадают со структурой энт-каур-16-ен-19-овой кислоты (1), имеющей аксиальную С¹⁹ карбоксильную группу. Другие специфические сигналы в протонном спектре включают сигнал протона, присоединенного к С¹³ при $\delta_{\rm H}$ 3.02 м.д. и уширенный синглет при $\delta_{\rm H}$ 5.81 м.д., принадлежащий протону при С¹⁷.

Спектр ЯМР ¹³С свидетельствует о наличии в структуре метильных групп C¹⁸ ($\delta_{\rm C}$ 28.9 м.д.) и C²⁰ ($\delta_{\rm C}$ 15.6 м.д.), наряду с 9 метиленовыми углеродами, в том числе и C¹⁵ при $\delta_{\rm C}$ 48.9 м.д.. Также присутствуют сигналы четвертичных углеродов C⁴ при $\delta_{\rm C}$ 43.6 м.д., C⁸ при $\delta_{\rm C}$ 45.2 м.д., C¹⁰ при $\delta_{\rm C}$ 39.7 м.д. и тетразамещенного олефинового углерода C¹⁶ ($\delta_{\rm C}$ 151.0 м.д.). Сигнал карбоксильного атома C¹⁹ обнаруживается при $\delta_{\rm C}$ 183.1 м.д. Корреляции в спектре HMBC отражают взаимодействия 3H²⁰ \rightarrow C¹, C⁵, C⁹ и C¹⁰; 3H¹⁸ \rightarrow C³, C⁴, C⁵ и C¹⁹; H⁹ \rightarrow C⁸, C¹⁰, C¹¹, C¹⁵; H¹³ \rightarrow C¹², C¹⁴, C¹⁵ и C¹⁶, подтверждая присвоенные значения (рис. 1). Конфигурация двойной связи (*Z*/*E*) соединения **2** была установлена на основании спектра NOESY. В частности, наблюдали корреляцию протонов $H^{17} \leftrightarrow H^{15}$, а также отсутствовало взаимодействие H^{17} с H^{14} (рис. 1). Химический сдвиг сигнала H^{17} находился в менее слабом поле по сравнению с тем же протоном в бромиде **3** (δ_H 5.81 м.д. в сравнении с δ_H 5.87 м.д.). В ИК спектре видны полосы поглощения, характерные для карбоксильной группы (1690 см⁻¹), экзоциклической двойной связи (3040 см⁻¹) и связи С–Вг (740 см⁻¹).

17-бром-*энт*-каур-16*Е*-ен-19-овой Структура кислоты (3) была доказана на основании того же набора спектрометрических экспериментов. Так, в ИК спектре соединения 3 присутствуют характерные полосы поглощения карбоксильной группы (1695 $c M^{-1}$). лля экзоциклической двойной связи (3030 см⁻¹) и связи С-Вг (733 см⁻¹). В спектре ЯМР ¹Н кислоты 3 объективны синглеты метильных групп: С¹⁸ при $\delta_{\rm H}$ 1.25 м.д. и С²⁰ при $\delta_{\rm H}$ 0.94 м.д., уширенный синглет протона С¹³ ($\delta_{\rm H}$ 2.76 м.д.) и триплет протона С¹⁷ (б_н 5.87 м.д., *J* 2.5 Гц). В спектре ЯМР ¹³С имеются сигналы C^{18} (δ_C 28.9 м.д.), C^{20} (б_с 15.6 м.д.) метильных групп и 9 метиленовых атомов углерода. Спектр ЯМР ¹³С подтверждает энт-каурановый скелет, включая сигналы тетразамещенных четвертичных углеродов С⁴ (б_С 43.6 м.д.), С⁸ (δ_{C} 43.7 м.д.), С¹⁰ (δ_{C} 39.7 м.д.) и олефинового углерода С¹⁶ (δ_{C} 152.5 м.д.), также присутствует карбоксильная группа С¹⁹ (б_с 183.6 м.д.). Такое отнесение подтверждается НМВС спектром, включающим корреляции $3H^{20} \rightarrow C^{1}, C^{5}, C^{9} \mu C^{10}; 3H^{18} \rightarrow C^{3}, C^{4}, C^{5} \mu$ C^{19} ; $H^9 \rightarrow C^8$, C^{10} , C^{11} , C^{15} ; $H^{13} \rightarrow C^{12}$, C^{14} , C^{15} и С¹⁶. Эти данные аналогичны спектральным характеристикам бромида 2, за исключением конфигурации двойной связи. Вывод был сделан на основании спектра NOESY, который показывает отчетливые взаимодействия протонов $H^{11} \leftrightarrow H^{17} \leftrightarrow H^{13}$ (рис. 2), подтверждая Е-конфигурацию двойной связи соединения 3.

Кислота **4** включает ацетатную группу, наличие которой в ИК спектре наглядно демонстрируется характерной полосой поглощения при 1725 см⁻¹, карбоксильную группу при 1690 см⁻¹, а также экзоциклическую двойную связь при 3100 см⁻¹

Положение атома	Соединение							
углерода	2	3	4	5	6			
1	1.89, м 0.80, м	1.87, м 0.81, м	1.87, м 0.81, м	1.83, м 0.79, м	1.88, м 0.82, м			
2	1.52, м 1.42, м	1.58, м 1.42, м	1.85, м 1.43, м	1.85, м 1.45, м	1.85, м 1.44, м			
3	2.17, м 1.0, м	2.16, м 1.02, м	2.16, м 1.02, м	2.15, м 1.00, м	2.14, м 1.00, м			
4	_	_	_	_	_			
5	1.04, м	1.09, м	1.09, м	1.05, м	1.08, м			
6	1.84, м	1.85, м 1.80, м	1.86, м 1.76, м	1.82, м 1.76, м	1.85, м 1.76, м			
7	1.51, м 1.42, м	1.54, м 1.50, м	1.69, м 1.22, м	1.55, м 1.42, м	1.64, м 1.23, м			
8	_	_	_	_	-			
9	1.06, м	1.09, м	1.09, м	1.01, м	1.09, м			
10	-	_	_	_	_			
11	1.61, м 1.45, м	1.85, м 1.42, м	1.66, м 1.43, м	1.65, м 1.42, м	1.60, м 1.53, м			
12	1.78, м 1.48, м	1.58, м 1.49, м	1.77, м 1.49, м	1.71, м 1.50, м	1.60, м 1.49, м			
13	3.02, уш.с	2.76, уш.с	3.12, уш.с	2.47, уш.с	2.78, уш.с			
14	2.03, м 1.18, м	2.08, м 1.21, м	1.99, м 1.51, м	1.97, м 1.48, м	1.96, м 1.44, м			
15	2.04, м	2.11, м 1.97, м	5.16, c	2.03, м 1.71, м	5.26, c			
16	_	_	_	_	_			
17	5.81, уш.с	5.87, т, 2.5	6.38, уш.с	4.35, д, 11.1 3.89, д, 11.1	5.09, уш.с			
18	1.24, c	1.25, c	1.23, c	1.23, c	1.23, c			
19	_	_	_	_	-			
20	0.95, c	0.94, c	0.96, c	0.954, c	0.95, c			
Me (OAc)			2.06, c	2.05, c	2.07, c			

Таблица 1. Спектр ЯМР ¹Н (400 МГц, $\delta_{\rm H}$, *J*, Гц) соединений 2–6

и связь С–Вг при 730 см⁻¹. В спектре ЯМР ¹Н присутствуют синглеты ангулярных С¹⁸ экваториального и С²⁰ аксиального метилов при $\delta_{\rm H}$ 1.23 и 0.96 м.д., соответственно. Другими специфическими сигналами протонного спектра яв-

ляются сиглет ацетатной группы при $\delta_{\rm H}$ 2.06 м.д., уширенный синглет протона C^{13} при $\delta_{\rm H}$ 3.12 м.д., синглет протона C^{15} при $\delta_{\rm H}$ 5.16 м.д. и уширенный синглет протона C^{17} при $\delta_{\rm H}$ 6.38 м.д. Данные ЯМР 13 С подтверждают наличие C^{18} ($\delta_{\rm C}$ 28.9 м.д.), C^{20}

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 12 2021

1709

п	Соединение						
Положение атома углерода	2	3	4	5	6		
1	40.7, т	40.6, т	40.6, т	40.5, т	40.6, т		
2	19.0, т	19.0, т	19.0, т	18.9, т	19.0, т		
3	37.8, т	37.7, т	37.6, т	37.7, т	37.7, т		
4	43.6, c	43.6, c	43.7, c	43.7, c	43.7, c		
5	56.9, д	56.9, д	56.6, д	56.6, д	56.7, д		
6	21.8, т	21.8, т	20.8, т	21.8, т	20.8, т		
7	41.1, т	40.9, т	34.7, т	41.8, т	34.7, т		
8	45.2, c	43.7, c	48.6, т	45.0, c	47.5, c		
9	54.9, д	54.6, д	52.4, д	52.7, д	53.0, д		
10	39.7, c	39.7, c	39.9, c	39.6, c	39.9, c		
11	18.9, т	18.4, т	19.0, т	18.6, т	18.4, т		
12	28.9, т	32.7, т	28.7, т	25.4, т	32.7, т		
13	43.1, д	44.0, д	41.9, д	44.0, д	42.6, д		
14	39.1, т	40.2, т	36.6, т	37.1, т	37.2, т		
15	48.9, т	49.4, т	82.8, д	52.7, т	83.0, д		
16	151.0, c	152.5, c	151.4, c	90.0, c	155.5, c		
17	94.6, д	95.3, д	104.6, д	34.7, т	109.0, т		
18	28.9, к	28.9, к	28.9, к	28.9, к	28.9, к		
19	183.1, c	183.6, c	183.6, c	183.9, c	183.9, c		
20	15.6, к	15.6, к	15.7, к	15.4, к	15.8, к		
CO (OAc)			170.9, c	170.9, c	171.1, c		
Me (OAc)			21.1, к	22.3, к	21.3, к		

Таблица 2. Спектр ЯМР ¹³С (100 МГц, δ_{C} , м, *J*, Гц) соединений **2–6**

Рис. 1. Выбранные HMBC, COSY и NOESY корреляционные взаимодействия соединения 2

Рис. 2. Выбранные NOESY корреляционные взаимодействия соединений 3-5

(δ_{C} 15.7 м.д.) и ОАс (δ_{C} 21.1 м.д.) метилов, наряду с 9 метиленовыми группами, принадлежащими С¹ ($\delta_{\rm C}$ 40.6 м.д.), C² ($\delta_{\rm C}$ 19.0 м.д.), C³ ($\delta_{\rm C}$ 37.6 м.д.), C⁶ $(\delta_{C}$ 20.8 м.д.), C^{7} (δ_{C} 34.7 м.д.), C^{11} (δ_{C} 19.0 м.д.), C^{12} ($\delta_{\rm C}$ 28.7 м.д) и C¹⁴ ($\delta_{\rm C}$ 36.6 м.д.) атомам углерода. Присутствуют сигналы тетразамещенных углеродов С⁴, С⁸ и С¹⁰ при б_С 43.7, 48.6 и 39.9 м.д., соответственно, наряду с олефиновым С¹⁶ (б_С 151.4 м.д.), карбонильным АсО-С¹⁵ (б_с 170.9 м.д.) и карбоксильным С¹⁹ (б_с 183.6 м.д.) фрагментами. Корреляции в спектре НМВС аналогичны таковым кислот 2 и 3, за исключением дополнительного взаимодействия H^{15} и ОАс (δ_{C} 170.9 м.д.) с C^{9} , С¹³, С¹⁴ и С¹⁶. Конфигурация группы АсО-С¹⁵ была установлена на основе спектра NOESY, показывающего взаимодействия $H^9 \leftrightarrow H^{15} \leftrightarrow H^{17}$ и $2H^{14} \leftrightarrow H^{13} \leftrightarrow 2H^{12}$ (рис. 2), что соответствует α -ориентированному C¹⁵ протону.

Согласно спектральным данным, соединение 5 является продуктом присоединения по двойной связи. В ИК спектре наблюдаются полосы поглощения, характерные для карбоксильной (1690 см⁻¹), АсО– (1717 см⁻¹) и С–Вг (720 см⁻¹) функциональных групп. Спектр ЯМР ¹Н показывает синглеты С¹⁸ ($\delta_{\rm H}$ 0.95 м.д.), С²⁰ ($\delta_{\rm H}$ 1.23 м.д.) и ацетокси- ($\delta_{\rm H}$ 2.05 м.д.) метилов, уширенный триплет протона С¹³ ($\delta_{\rm H}$ 2.47 м.д.) и дублеты протонов С¹⁷ ($\delta_{\rm H}$ 3.89 и 4.35 м.д., КССВ 11.1 Гц). Спектр ЯМР ¹³С подтверждает наличие энт-кауранового скелета, а также показывает

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 12 2021

наличие дополнительных ацетатного фрагмента ($\delta_{\rm C}$ 22.3 м.д.) и C¹⁷ метиленового углерода ($\delta_{\rm C}$ 34.7 м.д.). Два карбонила ацетатной и карбоксильной групп представлены сигналами при $\delta_{\rm C}$ 170.9 и 183.9 м.д. соответственно. Наиболее значимые корреляции в HMBC спектре, показанные в соединении **5**, включают 3H²⁰ \rightarrow C¹, C⁵, C⁹, C¹⁰; 3H¹⁸ \rightarrow C³, C⁴, C⁵, C¹⁹; H⁹ \rightarrow C⁸, C¹⁰, C¹¹, C¹⁵; H¹³ \rightarrow C¹², C¹⁴, C¹⁵, C¹⁶; 2H¹⁷ \rightarrow C¹³, C¹⁵, C¹⁶ взаимодействия. На основе спектра NOESY была установлена α -конфигурация ацетоксигруппы, показывающая специфическую корреляцию протонов 2H¹⁷ \leftrightarrow 2H¹⁵ (рис. 2).

Ацетат **6** показал идентичные спектральные данные с описанной в литературе 15α-ацетоксиэнт-каур-16-ен-19-овой кислотой [7], известной также как ацетоксиграндифлоровая кислота. Доказав структуру всех продуктов, образующихся в ходе реакции, можно сделать важные выводы, связанные с действием модифицированных реагентов Прево–Вудворда на тетрациклическую энт-кауреновую кислоту **1**.

Прежде всего следует отметить, что бифункционализация двойной связи происходит совершенно по-другому, чем в случае более простых субстратов [6]. Фактически нам удалось выделить только одно бифункциональное соединение C¹⁶–C¹⁷ – ацетоксибромид **5**. Это минорный продукт реакции, и ожидаемого диоксигенирования олефиновой связи в этом

случае не произошло, поскольку атом брома был прочно присоединен к тетрациклической основе. Другие продукты реакции, в том числе и основной ацетоксибромид 5, образуются в результате процессов перегруппировки. Это очень распространенный исход катион-индуцированных превращений энт-кауранов, предполагаемый механизм, приводящий к соединениям 2-6, представлен на схеме 2. Добавление на первом этапе иона бромония приводит к иону карбения А, который из-за стерических затруднений вогнутой тетрациклической структуры вряд ли может принять анти-атаку ацетата. Происходит вторичный процесс син-присоединения вследствие повышенной стабильности иона А, что позволяет минимизировать конформационную подвижность цепи CH2-Br для размещения ацетата с менее затрудненной α-стороны молекулы, приводящей к соединению 5. С другой стороны,

более предпочтительным процессом является элиминирование протона либо до бромидов 2 и 3, либо до гипотетического бромида i, который присоединяет ацетат и в результате аллильной перегруппировки приводит к продуктам 6 и 4.

Этот путь реакции был подтвержден при взаимодействии энт-каур-16-ен-19-овой кислоты (1) с альтернативной системой реагентов NaIO₄– LiBr [6]. Продукт реакции состоял из смеси изомерных бромидов 2 и 3 (10%), 17-бром-16*S*ацетокси-энт-каур-19-овой кислоты (5) (17%), 15*S*-ацетокси-энт-каур-16-ен-19-овой кислоты (6) (32%) и 15*S*-гидрокси-энт-каур-16-ен-19-овой кислоты (7) (19%). Последнее соединение является природным дитерпеноидом, часто встречающимся в растениях, его спектральные данные соответствуют описанным в литературе [8].

Антипролиферативное действие соединений 4, 5 и 6 на раковые клетки эпителия шейки

матки линии HeLa и эпителиальные клетки аденокарциномы поджелудочной железы человека линии BxPC-3 было определено при использовании цитотоксического теста резазурина, позволяющего измерить количество жизнеспособных клеток [9]. Чтобы оценить результаты цитостатического эффекта на клеточных линиях, тестируемые соединения сравнивали с доксорубицином (DOXO), антрациклиновым антибиотиком в качестве препарата сравнения, который используется в клинике при лечении широкого спектра онкологических заболеваний.

Изучение антипролиферативной активности показало, что существует концентрационная зависимость между ингибирующими эффектами исследуемых соединений в микромолярном диапазоне. Подавляющий эффект зависит от дозы. Сравнительный анализ антипролиферативной активности исследуемых соединений **4–6** и контрольного образца DOXO в концентрации 10 мкМ в отношении раковых клеток линий HeLa и BxPC-3 показан на рис. 3.

Согласно полученным данным, ингибирующие показатели исследуемых соединений на раковых клетках линий HeLa и BxPC-3 были ниже, чем DOXO. В результате соединения **4**, **5** и **6** проявили цитотоксическую активность в отношении тестируемых линий раковых клеток со значениями $IC_{50} \ge 100$ мкМ. Значения IC_{50} линий HeLa и BxPC-3 для DOXO составляют 2.8 ± 0.7 мкМ, 4.0 ± 0.9 мкМ соответственно. Исследуемые соединения **4**, **5** и **6** в концентрации 10 мкМ подавляют пролиферацию раковых клеток в диапазоне 12.5–30.7, 2.9-26.4, 0.6-9.9 и 5.6-6.5% соответственно.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуру плавления измеряли на микронагревательном столике «Воеtius». Удельное вращение определяли на поляриметре Jasco-DIP-370 в CHCl₃. ИК спектры регистрировали на спектрофотометре «Spectrum-100 FTIR» (Perkin Elmer, Beaconsfield, UK), снабженном универсальным устройством для отбора проб НПВО (v, см⁻¹). Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре Bruker (Rheinstetten, Germany) Avance-III (400.13 и 100.64 МГц) в растворе CDCl₃. Химические сдвиги δ приведены в м.д. с использованием в качестве внутреннего стандарта

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 12 2021

сигналов CDCl₃ (б_Н 7.26 и б_С 77.0 м.д.), КССВ (Л) указана в Гц. Аналитические измерения проводили методом ГХ-МС при помощи газового хроматографа Agilent 7890A (Wilmington, DE, USA) (капиллярная колонка HP-5ms, 30 м×0.25 мкм), снабженного масс-селективным детектором 5975С с квадрупольным масс-анализатором. Содержание углерода и водорода в соединениях определяли стандартным микроанализом на элементном анализаторе Vario-EL-III-CHNOS. Для колоночной хроматографии использовали силикагель марки Merck 60 (70-230 меш ASTM). Для ТСХ применяли пластинки Silica gel 60 F₂₅₄ (Merck). Хроматограммы опрыскивали 0.1% раствором сульфата церия(IV) в 2 н серной кислоте и нагревали 5 мин при 80°С для обнаружения пятен. Обработка реакционных смесей в органических растворителях включала экстракцию диэтиловым эфиром, промывание экстракта водой до нейтральной реакции, высушивание над безводным Na₂SO₄, фильтрование и удаление растворителя в вакууме. В исследовании цитотоксических свойств использовали клеточные линии; культуральную среду; фактор роста при рутинном культивировании клеток; красители; буферный раствор. Измерения абсорбции проводили при помощи гибридного сканера для микропланшетов (Multi-detector microplate reader Synergy H1 Hybrid, BioTek). Коммерчески доступные реагенты и растворители марки Merck использовали без предварительной очистки.

Функционализация энт-каур-16-ен-19-овой кислоты (1) посредством PhI(OAc)₂/LiBr. К раствору энт-каур-16-ен-19-овой кислоты (1)

Рис. 3. Сравнительный анализ антипролиферативной активности контрольного образца DOXO и тестируемых соединений **4**, **5** и **6** в концентрации 10 мкМ

(106 мг, 0.35 ммоль) и PhI(OAc)₂ (113 мг, 0.35 ммоль) в ледяной AcOH (4 мл) добавляли LiBr (31 мг, 0.35 ммоль). Реакционную смесь перемешивали 18 ч при 95°С. Затем её охлаждали и добавляли H₂O (10 мл). После обычной обработки сырой продукт (113 мг) хроматографировали на колонке с силикагелем (22 г) (градиентное элюирование, петролейный эфир–этилацетат), получив в порядке увеличения полярности смесь соединений 2 и 3 (15 мг, 13%), соединения 4, 6 и 5. Смесь бромидов 2 и 3 (15 мг) повторно разделяли на колонке с SiO₂ (2.0 г) на индивидуальные 17-бромэнт-каур-16Z-ен-19-овую (2) и 17-бром-энт-каур-16E-ен-19-овую (3) кислоты.

17-Бром-энт-каур-16Z-ен-19-овая кислота (2). Выход 10 мг (9%). Аморфное соединение, $[\alpha]_D^{20}$ -21.2 (*c* 0.7, CHCl₃). ИК спектр, v, см⁻¹: 3030, 2937, 1690, 1258, 874, 794, 740, 635. Спектры ЯМР ¹Н и ¹³С приведены в табл. 1 и 2. Найдено, %: С 63.00; Н 7.66. С₂₀Н₂₉ВгО₂. Вычислено, %: С 62.99; Н 7.67.

17-Бром-энт-каур-16*E*-ен-19-овая кислота (3). Выход 4 мг (4%). Аморфное соединение, $[\alpha]_D^{20}$ -11.2 (*с* 0.4, CHCl₃). ИК спектр, v, см⁻¹: 3040, 2943, 1695, 1258, 874, 794, 733. Спектры ЯМР ¹Н и ¹³С приведены в табл. 1 и 2. Найдено, %: С 63.01; Н 7.65. С₂₀Н₂₉ВгО₂. Вычислено, %: С 62.99; Н 7.67.

17-Бром-15*R*-ацетокси-*энт*-каур-16*E*-ен-19овая кислота (4). Выход 45 мг (40%). Аморфное соединение, $[\alpha]_D^{20}$ -22.3 (*c* 1.0, CHCl₃). ИК спектр, v, см⁻¹: 3100, 2943, 1725, 1690, 1258, 874, 794, 730. Спектры ЯМР ¹Н и ¹³С приведены в табл. 1 и 2. Найдено, %: С 60.19; Н 7.09. С₂₂Н₃₁ВгО₄. Вычислено, %: С 60.14; Н 7.11.

17-Бром-16*S*-ацетокси-энт-каур-19-овая кислота (5). Выход 19 мг (17%). Аморфное соединение, $[\alpha]_D^{20}$ -73.4 (*c* 1.0, CHCl₃). ИК спектр, v, см⁻¹: 2943, 1717, 1690, 1258, 874, 794, 720. Спектры ЯМР ¹Н и ¹³С приведены в табл. 1 и 2. Найдено, %: С 59.81; Н 7.53. С₂₂Н₃₃ВгО₄. Вычислено, %: С 59.86; Н 7.54.

15*S*-Ацетокси-энт-каур-16-ен-19-овая кислота (6). Выход 2.8 мг (2%). Бесцветные кристаллы, т.пл. 172–174°С (из EtOH) (173–174°С [7]). $[\alpha]_D^{20}$ –86.0 (*с* 0.2, CHCl₃) { $[\alpha]_D^{20}$ –84.9 (*с* 0.15, CHCl₃) [7]}. ИК спектр, v, см⁻¹: 3415–2725, 1730,

1690, 1620, 895. Спектры ЯМР ¹Н и ¹³С приведены в табл. 1 и 2.

Функционализация энт-каур-16-ен-19-овой кислоты (1) посредством NaIO₄/LiBr. К раствору энт-каур-16-ен-19-овой кислоты (1) (163 мг, 0.54 ммоль) и NaIO₄ (116 мг, 0.54 ммоль) в ледяной AcOH (5 мл) добавляли LiBr (28 мг, 0.32 ммоль). Реакционную смесь перемешивали 18 ч при 95°С. Затем её охлаждали и добавляли H₂O (10 мл). После обычной обработки сырой продукт (201 мг) хроматографировали на колонке с силикагелем (18 г) (градиентное элюирование, петролейный эфир–этилацетат), получив в порядке увеличения полярности смесь соединений 2 и 3 (20 мг, 10%), соединение 6 (64 мг, 32%), соединение 5 (34 мг, 17%) и соединение 7 [8] (27 мг, 19%).

Цитотоксические свойства синтезированных энт-кауранов. Культивирование клеток. В исследовании использовали раковые клетки эпителия шейки матки человека линии HeLa (ATCC) и клетки эпителия аденокарциномы поджелудочной железы человека линии BxPC-3 (ATCC). HeLa культивировали в модифицированной питательной среде DMEM (Dulbecco's Modified Eagle's Medium) с фетальной бычьей сывороткой (Fetal Bovine Serum, FBS) (10%). Линию BxPC-3 культивировали в виде монослоя в среде RPMI-1640 (Roswell Park Memorial Institute), дополненного FBS (10%). Клетки выдерживали при 37°C во влажной атмосфере с 3% CO₂ в инкубаторе в чашках для культивирования площадью 25 см².

Анализ пролиферации клеток Резазурином. Резазурин – нефлуоресцентный индикаторный краситель, превращающийся в ярко флуоресцирующий розовый резоруфин в реакции восстановления метаболически активных клеток. Интенсивность производимой флуоресценции пропорциональна количеству живых клеток. Резазурин растворяли в физиологическом буфере: 0.9% водном растворе хлорида натрия (образовался раствор темно-синего цвета) и в гомогенном виде добавляли непосредственно к культуре клеток в присутствии НАДФН-дегидрогеназы или НАДН-дегидрогеназы как фермента. НАДФН или НАДН является восстановителем, который превращает резазурин в резоруфин [9].

Клетки трипсинизировали из субконфлюэнтных культур, добавляя трипсин-этилендиаминтетрауксусную кислоту (трипсин-ЭДТА) (0.05%, 3 мл) (Invitrogen) в пробирки для центрифугирования объемом 50 мл с конфлюэнтными клетками с последующей инкубацией в течение 5 мин при 37°С. Реакцию трипсина останавливали добавлением 10 мл соответствующей питательной среды, содержащей 10% FBS. Суспензию клеток центрифугировали при 750 об/мин в течение 10 мин. Остаток клеток суспендировали в 2 мл среды с 10% FBS и тщательно перемешивали. Клетки подсчитывали и доводили до концентрации 10¹⁰ клеток/мл. Полученную суспензию переносили в дублированные 96-луночные микропланшеты (90 мкл/лунка) и инкубировали при 37°С с 3% СО2. После первоначального периода в течение 4 ч, позволяюшего клеткам прикрепиться, 10 мкл экспериментальных соединений добавляли непосредственно в полученную среду. Синтезированные соединения растворяли в ДМСО для приготовления 10 мкМ маточных растворов, которые использовали в качестве эталона для конечных концентраций в диапазоне 1-100 мкМ и далее инкубировали в течение 24 ч. После каждой обработки в каждую лунку добавляли 20 мкл индикаторного раствора резазурина и инкубировали при 37°С с 3% СО₂ в течение 4 ч. Далее абсорбцию считывали при 570 (Abs₅₇₀) и 600 (Abs₆₀₀) нм. Измерения проводили при помощи сканера для микропланшетов (BioTek). Процент ингибирования рассчитывали по формуле (1):

% интенсивность = $100 - \frac{Abs_{570 \text{ HM}_{(проба)}} - Abs_{600 \text{ HM}_{(проба)}}}{Abs_{570 \text{ HM}_{(контроль)}} - Abs_{600 \text{ HM}_{(контроль)}} \times 100$ (1) ВЫВОДЫ

Установлено, что применение модифицированной реакции Прево–Вудворда к энт-кауреновой кислоте привело к расширенной одностадийной функционализации и, как следствие, получению ряда соединений, обладающих энт-каурановым скелетом. В отличие от предыдущих сообщений об использовании данной системы реагентов, исследуемый тетрациклический дитерпен показал совершенно иную реакционную

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 12 2021

способность, включающую присоединение брома

и скелетные перегруппировки. Такие свойства можно объяснить стерическими затруднениями конденсированных циклических систем субстрата, препятствующих *цис*-дигидроксилированию. В то же время энт-каурановый субстрат образует в рассматриваемых условиях реакции высокофункционализированные соединения без перегруппировки скелета. Изучение цитотоксичности основных продуктов реакции показало умеренную активность в отношении 2 линий раковых клеток.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Национального Агентства по Исследованиям и Развитию (ANCD) Республики Молдова проекты: код 20.80009.8007.03 (О.М., М.Г., В.К. и Н.У.); код 20.80009.5007.10 (О.Г. и А.Г.); код 20.80009.5007.27 (А.Б.).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Морареску Ольга, ORCID: http://doi.org/0000-0003-0715-8225

Гринько Марина, ORCID: http://doi.org/0000-0002-2264-2974

Кульчицкий Вячеслав, ORCID: http://doi.org/ 0000-0002-9363-1615

Барба Алик, ORCID: http://doi.org/0000-0002-5816-6252

Гарбуз Ольга, ORCID: http://doi.org/0000-0001-8783-892X

Гуля Аурелиан, ORCID: http://doi.org/0000-0003-2010-7959

Унгур Никон, ORCID: http://doi.org/0000-0002-7457-4520

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Tudzynski B., Hedden P., Carrera E., Gaskin P. Appl. Environ. Microbiol. 2001, 67, 3514–3522. doi 10.1128/ AEM.67.8.3514-3522.2001
- 2. Ghisalberti E.L. Fitoterapia. 1997, 68, 303-325.
- Pyrek J.St. *Tetrahedron*. **1970**, *26*, 5029–5032. doi 10.1016/S0040-4020(01)93154-0

- Ungur N., Grinco M., Kulcitki V., Barba A., Bizicci T., Vlad P.F. *Chem. J. Mold.* 2008, *3*, 105–108. doi 10.19261/cjm.2008.03(2).01
- Morarescu O., Grinco M., Kulcitki V., Barba A., Garbuz O., Gudumac V., Gulea A., Ungur N. Synth. Commun. 2021, 51, 123–133. doi 10.1080/ 00397911.2020.1821225
- Emmanuve L., Ali Shaikh T.M., Sudalai A. Org. Lett. 2005, 7, 5071–5074. doi 10.1021/ol052080n
- Brieskorn C.H., Poehlmann E. Chem. Ber. 1969, 102, 2621–2628. doi 10.1002/cber.19691020817
- Grinco M., Chetraru O., Kulcitki V., Barba A., Boico A., Vlad P.F., Ungur N. *Chem. J. Mold.* 2010, *5*, 106–108. doi 10.19261/cjm.2010.05(1).11
- Anoopkumar-Dukie S., Carey J.B., Conere T., O'Sullivan E., van Pelt F.N., Allshire A. *Brit. J. Radiol.* 2005, 78, 945–947. doi 10.1259/bjr/54004230

Synthesis of Highly Functionalized Biologically Active Tetracyclic Diterpenoids from *ent*-Kaur-16-en-19-oic Acid under Modified Prevost-Woodward Reaction Conditions

O. Morarescu^a, M. Grinco^a, V. Kulciţki^a, A. Barba^a, O. Garbuz^b, A. Gulea^b, and N. Ungur^{a, *}

^a Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, ul. Akademicheskaya, 3, Chişinău, MD 2028 Moldova

^b Laboratory of Advanced Materials in Biopharmaceuticals and Technics, Moldova State University, ul. Alekseya Mateevicha, 60, MD-2009, Chişinău Moldova *e-mail: nicon.ungur@gmail.com

Received July 15, 2021; revised July 27, 2021; accepted August 10, 2021

The paper presents for the first time the synthesis of highly functionalized tetracyclic diterpenoids from natural *ent*-kaur-16-en-19-oic acid under the condition of the modified Prevost-Woodward reaction. The reaction with both substrates follows an unusual pathway, leading mainly to brominated or rearranged derivatives. Transformation of *ent*-kaur-16-en-19-oic acid provided a mixture consisting of 17-bromo-16*Z*-*ent*-kaur-16-en-19-oic acid, 17-bromo-16*E*-*ent*-kaur-16-en-19-oic acid, 17-bromo-16*E*-*ent*-kaur-16-en-19-oic acid and the known 15*S*-acetoxy-*ent*-kaur-16-en-19-oic acid. The obtained new compounds have been submitted to a cytotoxicity assay on two HeLa and BxPC-3 cancer cell lines

Keywords: ent-kauran-19-oic acid, diterpenoid, Prevost-Woodward reaction

1716