УДК 547.828.1

СИНТЕЗ И СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА НОВЫХ ЦИАНОЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ 2,2'-БИПИРИДИНА

© 2021 г. М. Ю. Иевлев*, Н. С. Майоров, М. А. Шишликова, М. Ю. Беликов, И. Н. Бардасов, О. В. Ершов

ФГБОУ ВО «Чувашский государственный университет им. И.Н. Ульянова», Россия, 428015 Чебоксары, Московский просп., 15 *e-mail: hiliam@bk.ru

> Поступила в редакцию 05.08.2021 г. После доработки 16.08.2021 г. Принята к публикации 18.08.2021 г.

На основе реакции 3-арил-1-(пиридин-2-ил)проп-2-ен-1-онов (азахалконов) с димером малононитрила синтезированы ранее не описанные 2-{4-арил-5-циано-[2,2'-бипиридин]-6(1*H*)-илиден}малононитрилы. Растворы полученных соединений являются окрашенными и флуоресцируют в желто-оранжевой области спектра, их максимумы испускания варьируются от 565 нм до 582 нм в зависимости от заместителя, находящегося в четвертом положении цианосодержащего пиридинового цикла. Синтезированные продукты являются перспективными для дальнейшего исследования хемосенсорных свойств, ввиду уникального сочетания в структуре 2,2'-бипиридинового ядра и бута-1,3-диен-1,1,3-трикарбонитрильного фрагмента.

Ключевые слова: 2,2'-бипиридины, цианозамещенные гетероциклы, димер малононитрила, азахалконы, флуоресценция

DOI: 10.31857/S0514749221120090

ВВЕДЕНИЕ

Производные бипиридина находят широкое применение во многих отраслях науки и техники [1]. Благодаря своей способности образовывать устойчивые комплексы со многими металлами бипиридины часто используются в аналитических целях, в том числе при изучении различных природных объектов и экосистем [2]. Фрагменты несимметричных бипиридинов встречаются в структуре многих биологически активных молекул [3-8]. Так, 2,3'-бипиридиновое ядро – это основа ряда селективных ингибиторов циклооксигеназы-2, обладающих противовоспалительным действием [3, 4], 2,4'-бипиридиновый фрагмент входит в состав противоопухолевого препарата LGK974, способного подавлять активность мембраносвязанной О-ацилтрансферазы [5, 6], а производные 3,4'-бипиридина, известные как как милринон и амринон, будучи ингибиторами фосфодиэстеразы, демонстрируют выраженную кардиотоническую и гипотензивную активность [7, 8].

Симметричные бипиридиновые системы играют большое значение для химии материалов [9–26]. Например, 4,4'-бипиридины, благодаря своей структурной жесткости, являются незаменимыми билдинг-блоками при создании многофункциональных координационных полимеров, восприимчивых к влиянию окружающей среды и проявляющих различные типы хромизма [9, 10]. 3,3'-Бипиридиновый фрагмент является основой производных индигоиндина – синих и фиолетовых водонерастворимых пигментов, выделяемых из микроорганизмов [11, 12]. Однако, наиболее значимыми и перспективными гетероциклическими системами бипиридинового ряда, несомненно, являются 2,2'-бипиридины. Именно они за свою более чем вековую историю стали одними из самых широко используемых органических лигандов в координационной и супрамолекулярной химии [13–15]. Фрагмент 2,2'-бипиридина может выступать в качестве ключевого структурного звена ротаксанов [16] и катенанов [17]. Металлокомплексы на основе производных 2,2'-бипиридина используются в гетерогенном катализе [18, 19], материалах для солнечных элементов [20, 21] и проточных аккумуляторов [22]. Красители, содержащие 2,2'-бипиридиновый фрагмент обладают высокими коэффициентами светопоглощения и интенсивной фотолюминесценцией, что позволяет использовать их в качестве фотосенсибилизаторов [23, 24] и флуоресцентных сенсоров на ионы металлов [25, 26].

Несмотря на это, цианозамещенные производные 2,2'-бипиридина и их спектрально-люминесцентные свойства являются недостаточно хорошо исследованной областью. Особенно актуальным является изучение возможности внедрения в 2,2'-бипиридиновый каркас фрагмента бута-1,3-диен-1,1,3-трикарбонитрила, который зарекомендовал себя как важнейшее структурное звено многих практически значимых гетероциклических хромофоров [27-29]. О синтезе единственного примера такого полицианозамещенного производного 2,2'-бипиридина имеется только одна публикация [30], а сведения о фотофизических свойствах молекул данного ряда совершенно отсутствуют в современной научной литературе. В связи с вышеизложенным, нами был разработан метод направленного синтеза ранее не описанных производных 2,2'-бипиридина, содержащих бута-1,3-диен-1,1,3-трикарбонитрильный фрагмент, с целью изучения их спектрально-люминесцентных свойств и определения перспектив дальнейшего практического применения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Лля построения цианозамешенного 2.2'-бипиридинового фрагмента нами была впервые использована реакция димера малононитрила с производными 3-арил-1-(пиридин-2-ил)проп-2-ен-1она 1 (азахалконами) (схема 1). Промежуточные соединения 1 являются доступными и были получены путем конденсации 2-ацетилпиридина с соответствующими ароматическими альдегидами [31–36]. Синтезированные азахалконы – 1a–f – далее вовлекались в реакцию с димером малононитрила при нагревании в присутствии триэтиламина и последующем окислении полупродукта молекулярным иодом. В результате осуществленного взаимодействия нам удалось выделить с выходом 54-73% и охарактеризовать новые полицианозамещенные соединения 2,2'-бипиридинового ряда – 2-{4-арил-5-циано-[2,2'-бипиридин]-6(1*H*)илиден } малононитрилы 2а-f.

Структура всех соединений 2a-f была подтверждена методами ИК-, ¹Н и ¹³С ЯМРспектроскопии, масс-спектрометрии и элементным анализом. Особенностью ИК спектров является наличие трех выраженных полос поглощения в области 2220, 2200 и 2180 см⁻¹, соответствующих колебаниям сопряженных цианогрупп. В спектрах ЯМР ¹Н присутствуют характерные сигналы протонов незамещенного пиридинового цикла в интервале 7.7–8.8 м.д., синглет СН-фрагмента цианосодержащего пиридина в районе 7.5– 7.7 м.д., а также сигналы ароматического замести-

теля в четвертом положении. Подвижный атом водорода NH-фрагмента находится в обмене и проявляется спектрах ЯМР ¹Н вместе с остаточным пиком воды в виде уширенного сигнала в широком диапазоне от 3.9 м.д. до 7.2 м.д. В спектрах ЯМР ¹³С для всех соединений **2а–f** характерным является наличие пика атома углерода дицианометилиденовой группы $\underline{C}(CN)_2$ при 41.2–42.2 м.д., сигналов трех цианогрупп в интервале 115–120 м.д., две из которых эквивалентные, а также остальных пиков, соответствующих атомам углерода пиридиновых циклов и арильных заместителей.

Синтезированные производные 2,2'-бипиридина **2** являются кристаллическими веществами от оранжевого до темно-красного цвета. Они плохо растворимы в неполярных средах и хорошо растворимы в полярных ДМСО и ДМФА, а также в пиридине и муравьиной кислоте. Для изучения спектрально-люминесцентных свойств синтезированных продуктов **2** и определения перспектив их дальнейшего практического применения нами были приготовлены растворы соединений **2а–f** в ДМСО с концентрацией 5×10^{-5} М и зарегистрированы их спектры поглощения (рис. 1) и флуоресценции (рис. 2).

Установлено, что все соединения 2 имеют несколько выраженных полос поглощения (рис. 1, см. таблицу). Длинноволновый максимум, связанный, по-видимому, с возбуждением двойной связи илиденмалононитрильного фрагмента, обладает небольшим коэффициентом экстинкции ($\varepsilon = 2820$ – 4800 M⁻¹ см⁻¹) и находится в видимой области в интервале 459–470 нм, обуславливая оранжевую окраску растворов. Коротковолновый максимум, отличающийся наибольшей интенсивностью ($\varepsilon =$ 24080–31620 M⁻¹ см⁻¹), лежит в УФ-области при 332–346 нм и отвечает за разрешенные π - π * электронные переходы в сопряженной системе. В спектре поглощения продукта **2f** также присутствуют дополнительные полосы с максимумами 369 нм и 389 нм, что является характерной особенностью многих соединений антраценового ряда.

Отмечено, что синтезированные производные 2,2'-бипиридина 2 обладают оранжевой фотолюминесценцией в растворе ДМСО с максимумом испускания в интервале 565-582 нм, причем ее интенсивность увеличивается при введении в четвертое положение цианозамещенного пиридинового цикла электронодонорных заместителей (рис. 2. см. таблицу). Так для соединения 2с. содержащего *п*-диметиламинофенильный фрагмент, квантовый выход флуоресценции составил 3.2%, что несколько выше, чем у остальных производных **2a**, **b**, **d**, **f** ($\Phi = 1.3-2.0\%$). В свою очередь соединение 2е, содержащее нитрогруппу характеризуется практически полным тушением фотолюминесценции ($\Phi = 0.1\%$), что, по-видимому, связано со стабилизацией возбужденного состояния электроноакцепторным действием заместите-

Рис. 1. Спектры поглощения растворов соединений **2a–f** в ДМСО (5×10^{-5} М)

Рис. 2. Спектры флуоресценции растворов соединений **2а–f** в ДМСО (5×10⁻⁵ М), для возбуждения использовались длинноволновые максимумы поглощения

Соединение	λ _{погл} , нм	ε, М ⁻¹ см ⁻¹	λ _{фл} , нм	Стоксов сдвиг		<u>Ф 9/а</u>
				НМ	см ⁻¹	Ψ, Ϋ0"
2a	343	26760	582	119	4415	1.3
	463	3380				
2b	341	27580	574	113	4270	1.5
	461	3380				
2c	343	31620	565	107	4135	3.2
	458	4800				
2d	346	30320	577	121	4600	2.0
	456	4320				
2e	332	24080	573	103	3825	0.1
	470	2820				
2f	339	24960	574	115	4365	1.9
	369	11240				
	389	9300				
	459	3160				

Спектрально-люминесцентные свойства соединений **2а–f** в ДМСО (5×10⁻⁵ M)

^а Относительный квантовый выход фотолюминесценции (Ф) был определен с использованием раствора родамина Б в этаноле в качестве стандарта, длина волны возбуждения 490 нм, $\Phi_{\text{станд}} = 50\%$ [37]

ля. Кроме того, все соединения характеризуются достаточно большим значением стоксова сдвига 103–121 нм (3825–4600 см⁻¹), свидетельствующем о значительных потерях энергии возбуждения и высокой вероятности безызлучательной релаксации возбуждённого состояния, что коррелирует с установленными значениями квантовых выходов фотолюминесценции.

Обнаруженные флуоресцентные свойства синтезированных цианозамещенных соединений 2,2'-бипиридинового ряда **2**, а также уникальное сочетание функциональных фрагментов в их структуре демонстрируют дальнейшие перспективы для исследования данных веществ в качестве новых флуоресцентных хемосенсоров для определения отдельных ионов металлов и аминов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений осуществлён методом TCX на пластинах Sorbfil ПТСХ-АФ-А-УФ. В качестве элюента использовался EtOAc и его смеси

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 12 2021

с н-гексаном в объемном соотношении 1:1 и 2:3. Пластинки ТСХ проявляли УФ-облучением (254 и 365 нм) и термическим разложением. Температуры плавления определены на автоматическом приборе OptiMelt MPA100 (США). ИК спектры зарегистрированы на Фурье-спектрометре ФСМ-2201 (Россия) в тонком слое (суспензия в вазелиновом масле). Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометрах Bruker DRX-500 (США), Bruker DRX-400 (США) и Varian 400 (США) в ДМСО-*d*₆, в качестве стандарта использовались ТМС или остаточный пик растворителя. Масс-спектры записаны на приборах Finnigan MATINCOS-50 (США) и Shimadzu GCMS-QP2020 (Япония) (ионизация ЭУ, 70 эВ). Элементный анализ выполнен на CHNанализаторе FlashEA 1112 (Италия). Спектры поглощения зарегистрированы на приборе Cary 60 (США), а спектры флуоресценции на приборе Cary Eclipse (США). Относительный квантовый выход флуоресценции (Ф) был определен с использованием раствора Родамина Б в этаноле в качестве стандарта, квантовый выход эталона при длине волны возбуждения 490 нм - 50% [37].

Азахалконы **1а–f** были синтезированы из коммерчески доступных альдегидов и 2-ацетилпиридина (98%) по известным методикам: 1-(пиридин-2-ил)-3-фенилпроп-2-ен-1-он (**1a**) [31], 3-(4-метоксифенил)-1-(пиридин-2-ил)проп-2-ен-1-он (**1b**) [32], 3-[4-(диметиламино)фенил]-1-(пиридин-2ил)проп-2-ен-1-он (**1c**) [33], 3-[4-(дифениламино)фенил]-1-(пиридин-2-ил)проп-2-ен-1-он (**1d**) [34], 3-(4-нитрофенил)-1-(пиридин-2-ил)проп-2-ен-1он (**1e**) [35], 3-(антрацен-9-ил)-1-(пиридин-2-ил)проп-2-ен-1-он (**1f**) [36]. Димер малононитрила был получен из малононитрила по известной методике [38]. Остальные используемые растворители и реагенты – коммерчески доступные соединения.

2-{4-Фенил-5-циано-[2,2'-бипиридин]-6(1H)илиден}малононитрил (2а). Смесь 0.132 г (1 ммоль) димера малононитрила, 0.21 г (1 ммоль) 1-(пиридин-2-ил)-3-фенил-проп-2-ен-1-она (1a)и 0.133 г (1.33 ммоль) триэтиламина в 5 мл этанола нагревали при температуре 60-70°С и интенсивном перемешивании в течение 5 ч. После исчезновения в реакционной массе димера малононитрила (контроль с помощью ТСХ) реакционную массу охлаждали и подкисляли муравьиной кислотой до рН 3-4. Перемешивание продолжали при комнатной температуре еще в течение 1 ч, после чего добавляли 10 мл воды, выпавший осадок отфильтровывали, добавляли к нему 5 мл ацетонитрила и 0.34 г (1.33 ммоль) кристаллического иода. Полученную массу кипятили с обратным холодильником в течение 2 ч, после чего охлаждали, выпавший осадок отфильтровывали, промывали охлажденным ацетонитрилом, а затем водой (10 мл) и этанолом (5 мл), перекристаллизовывали из ацетонитрила.

Выход 0.221 г (68%), оранжевые кристаллы, т.пл. 308–310°С (разл.). ИК спектр, v, см⁻¹: 3135 (NH), 2220, 2208, 2190 (CN), 1599 (С=С), 1586 (С=С). Спектр ЯМР ¹Н (400.13 МГц, ДМСО- d_6 , 297 К), δ , м.д.: 7.06 уш.с (>1H, NH в обмене с водой), 7.48–7.68 м (6H, C₆H₅ и CH_{пирид}), 7.75 т (1H, C₅H₄N, *J* 6.3 Гц), 8.28 т (1H, C₅H₄N, *J* 7.8 Гц), 8.55 д (1H, C₅H₄N, *J* 8.0 Гц), 8.80 д (1H, C₅H₄N, *J* 5.1 Гц). Спектр ЯМР ¹³С (100.62 МГц, ДМСО- d_6 , 298 К), δ , м.д.: 41.19, 94.63, 110.57, 116.26, 121.20 (2CN), 123.10, 126.21, 128.59 (2C_{аром}), 128.75 (2C_{аром}), 129.81, 137.14, 140.83, 147.20, 150.93, 151.94, 156.76, 160.39. Масс-спектр, *m/z* (*I*_{отн}, %): 321 (100). Найдено, %: С 74.28; Н 3.51; N 21.65. С₂₀Н₁₁N₅. Вычислено, %: С 74.76; Н 3.45; N 21.79. *М* 321.34.

Соединения 2b-f получали аналогично.

2-{4-(4-Метоксифенил)-5-циано-[2,2'-бипиридин]-6(1*H*)-илиден}малононитрил (2b). Выход 0.210 г (60%), оранжевые кристаллы, т.пл. 295-297°С (разл.). ИК спектр, v, см⁻¹: 3195 (NH), 2223, 2210, 2189 (CN), 1582 (С=С). Спектр ЯМР ¹Н (500.13 МГц, ДМСО-*d*₆, 299 К), δ, м.д.: 3.85 с (3H, OCH₃), 3.91 уш.с (>1H, NH в обмене с водой), 7.10 д (2H, C₆H₄, J 8.7 Гц), 7.56–7.65 м (4H, C₆H₄, СН_{пирил}, С₅Н₄N), 8.15 т (1Н, С₅Н₄N, *J* 7.8 Гц), 8.49 д (1H, C₅H₄N, J 7.9 Гц), 8.75 д (1H, C₅H₄N, J 4.7 Гц). Спектр ЯМР ¹³С (125.76 МГц, ДМСО-*d*₆, 353 К), б, м.д.: 41.57, 55.58, 95.77, 110.49, 114.40 (2C_{apow}), 115.62, 119.46 (2CN), 122.88, 126.14, 128.91, 130.27 (2С_{аром}), 139.52, 148.12, 149.88, 150.19, 157.77, 158.48, 161.17. Масс-спектр, m/z (*I*_{отн}, %): 351 (25), 78 (100). Найдено, %: С 71.96; Н 3.80; N 19.67. С₂₁Н₁₃N₅O. Вычислено, %: С 71.79; H, 3.73; N, 19.93. M 351.11.

2-{4-[4-(Диметиламино)фенил]-5-циано-[2,2'-бипиридин]-6(1*H*)-илиден}малононитрил **(2с).** Выход 0.233 г (64 %), оранжевые кристаллы, т.пл. 323-325°С (разл.). ИК спектр, v, см⁻¹: 3203 (NH), 2220, 2202, 2175 (CN), 1599 (С=С). Спектр ЯМР ¹Н (400.17 МГц, ДМСО-*d*₆, 296 К), б, м.д.: 3.05 с (6H, N(CH₃)₂), 4.83 уш.с (>1H, NH в обмене с водой), 6.90 д (2H, C₆H₄, J 8.6 Гц), 7.51-7.82 м (4H, C₆H₄, CH_{пирил}, C₅H₄N), 8.17 т (1H, C₅H₄N, J 7.9 Гц), 8.54 д (1H, C₅H₄N, J 8.1 Гц), 8.80 д (1H, С₅H₄N, J 4.9 Гц). Спектр ЯМР ¹³С (100.62 МГц, ДМСО-*d*₆, 353 К), δ, м.д.: 40.61 (2СН₃), 41.94, 95.36, 110.67, 112.72 (2С_{аром}), 116.49, 119.44 (2СN), 123.38, 123.65, 126.91, 130.97 (2C_{apon}), 139.73, 149.10, 149.22, 150.48, 152.52, 157.95, 159.11. Масс-спектр, *m/z* (*I*_{отн}, %): 364 (100). Найдено, %: С 71.99; Н 4.50; N 23.23. С₂₂Н₁₆N₆. Вычислено, %: C 72.51; H, 4.43; N, 23.06. M 364.14.

2-{4-[4-(Дифениламино)фенил]-5-циано-[**2,2'-бипиридин]-6(1***H***)-илиден}малононитрил (2d**). Выход 0.263 г (54%), темно-красные кристаллы, т.пл. 288–290°С (разл.). ИК спектр, v, см⁻¹: 3176 (NH), 2223, 2197, 2178 (CN), 1589 (С=С).

Спектр ЯМР ¹Н (400.17 МГц, ДМСО- d_6 , 293 К), δ , м.д.: 5.79 уш.с (>1H, NH в обмене с водой), 7.01 д (2H, C₆H₄, J 8.4 Гц), 7.11–7.20 м (6H, 2C₆H₅), 7.34–7.42 м (4H, 2C₆H₅), 7.59 д (2H, C₆H₄, J 8.4 Гц), 7.64 с (1H, CH_{пирид}), 7.74 т (1H, C₅H₄N, J 6.4 Гц), 8.25 т (1H, C₅H₄N, J 7.8 Гц), 8.56 д (1H, C₅H₄N, J 8.0 Гц), 8.56 д (1H, C₅H₄N, J 5.0 Гц). Спектр ЯМР ¹³С (100.63 МГц, ДМСО- d_6 , 293 К), δ , м.д.: 41.79, 94.95, 110.94, 116.90, 123.64, 125.02, 125.98, 126.90, 129.61, 130.52, 130.74, 141.05, 147.06, 148.16, 149.82, 150.79, 151.46, 157.25, 160.15. Масс-спектр, *m/z* (I_{0TH} , %): 488 (100). Найдено, %: С 79.09; H 4.20; N 17.01. С₃₂H₂₀N₆. Вычислено, %: С 78.67; H, 4.13; N, 17.20. *M* 488.17.

2-{4-(4-Нитрофенил)-5-циано-[2,2'-бипиридин]-6(1Н)-илиден}малононитрил (2е). Выход 0.212 г (58%), темно-красные кристаллы, т.пл. 289–290°С (разл.). ИК спектр, v, см⁻¹: 3207 (NH), 2212, 2199, 2176 (CN), 1589 (С=С). Спектр ЯМР ¹Н (400.13 МГц, ДМСО-*d*₆, 297 К), δ, м.д.: 7.15 уш.с (>1H, NH в обмене с водой), 7.55 с (1H, CH_{пирил}), 7.70 т (1Н, С₅Н₄N, *J* 6.4 Гц), 7.89 д (2Н, С₆Н₄, *J* 8.2 Гц), 8.19–8.28 м (1Н, С₅Н₄N), 8.37 д (2Н, С₆Н₄, J 8.1 Гц), 8.50 д (1H, C₅H₄N, J 8.0 Гц), 8.77 д (1H, С₅Н₄N, J 4.9 Гц). Спектр ЯМР ¹³С (100.62 МГц, ДМСО-*d*₆, 299 К), б, м.д.: 41.50, 93.52, 110.11, 116.29, 121.58 (2СМ), 122.86, 123.88 (2Саром), 126.09, 130.25 (2C_{apon}), 140.45, 143.88, 147.49, 148.14, 151.85, 153.59, 154.10, 161.17. Масс-спектр, *m/z* (*I*_{отн}, %): 366 (36), 341 (100). Найдено, %: С 65.41; H 2.80; N 22.75. С₂₀Н₁₀N₆O₂. Вычислено, %: C 65.57; H, 2.75; N, 22.94. M 366.09.

2-{4-(Антрацен-9-ил)-5-циано-[2,2'-бипиридин]-6(1*H***)-илиден}малононитрил (2f). Выход 0.307 г (73%), оранжевые кристаллы, т.пл. 319– 320°С (разл.). ИК спектр, v, см⁻¹: 3220 (NH), 2217, 2205, 2179 (CN), 1578 (С=С). Спектр ЯМР ¹H (400.17 МГц, ДМСО-d_6, 293 K), \delta, м.д.: 7.50– 7.63 м (4H, 4CH_{антрацен}), 7.64–7.72 м (3H, CH_{пирид}, 2CH_{антрацен}), 7.80 т (1H, C₅H₄N,** *J* **5.6 Гц), 8.21 д (2H, 2CH_{антрацен},** *J* **8.3 Гц), 8.33 т (1H, C₅H₄N,** *J* **7.9 Гц), 8.61 д (1H, C₅H₄N,** *J* **8.1 Гц), 8.78–8.83 м (2H, C₅H₄N, CH_{антрацен}). Спектр ЯМР ¹³С (100.62 МГц, ДМСО-d_6, 299 K), \delta, м.д.: 42.16, 99.58, 113.38, 115.83, 121.26, 124.22, 125.75, 126.35, 127.27, 127.66, 129.01, 129.18, 129.38, 131.42, 131.60, 142.43, 147.33, 150.34, 151.63, 156.37,**

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 12 2021

160.21. Масс-спектр, *m/z* (*I*_{отн}, %): 421 (100). Найдено, %: С 79.95; Н 3.66; N 16.50. С₂₈Н₁₅N₅. Вычислено, %: С 79.80; Н, 3.59; N, 16.62. *M* 421.13.

выводы

Разработан простой способ синтеза ранее не описанных полицианозамещенных производных 2,2'-бипиридина – 2-{4-арил-5-циано-[2,2'-бипиридин]-6(1*H*)-илиден}малононитрилов, заключающийся в катализируемой триэтиламином реакции гетероциклизации с участием димера малононитрила и производных 3-арил-1-(пиридин-2-ил)проп-2-ен-1-она (азахалконов). Оценено влияние заместителя в четвертом положении цианозамещенного пиридинового кольца на спектрально-люминесцентные свойства синтезированных веществ. Установлено, что полученные продукты обладают желто-оранжевой флуоресценцией в растворе ДМСО с максимумом в диапазоне от 565 до 582 нм, интенсивность которой несколько выше в присутствии электронодонорного заместителя в четвертом положении цианосодержащего пиридинового цикла. Синтезированные соединения являются перспективными объектами для дальнейшего исследования их хемосенсорных свойств, ввиду уникального сочетания в структуре 2,2'-бипиридинового ядра и бута-1,3-диен-1,1,3-трикарбонитрильного фрагмента.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено в рамках гранта Президента Российской Федерации для государственной поддержки молодых российских ученых, проект МК-708.2021.1.3, соглашение № 075-15-2021-082.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Иевлев Михаил Юрьевич, ORCID: https:// doi.org/0000-0003-0741-2254

Майоров Никита Сергеевич, ORCID: https:// doi.org/0000-0002-9782-8386

Шишликова Мария Александровна, ORCID: https://doi.org/0000-0002-7034-2888

Беликов Михаил Юрьевич, ORCID: https:// doi.org/0000-0001-6444-3810

Бардасов Иван Николаевич, ORCID: https:// doi.org/0000-0002-5843-3381 Ершов Олег Вячеславович, ORCID: http:// doi.org/0000-0002-0938-4659

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Summers L.A. The Bipyridines. In Advances in Heterocyclic Chemistry. Ed. A.R. Katritzky. 1984, 35, 281–374. doi 10.1016/s0065-2725(08)60151-8
- Schilt A.A. Analytical Applications of 1,10-Phenanthroline and Related Compounds. Oxford: Pergamon Press. 1969. doi 10.1016/c2013-0-02135-4
- Javaloyes J.F.C., Warrellow G. Междунар. заявка. WO2004072037.
- Blobaum A.L., Marnett L.J. J. Med. Chem. 2007, 50, 1425–1441. doi 10.1021/jm0613166
- Bagheri M., Tabatabae Far M.A., Mirzaei H., Ghasemi F. *Fundam. Clin. Pharmacol.* 2019, *34*, 51–64. doi 10.1111/fcp.12492
- Jang J., Song J., Lee H., Sim I., Kwon Y.V., Jho E., Yoon Y. *Exp. Mol. Med.* 2021, 53, 407–421. doi 10.1038/s12276-021-00577-z
- Tang X., Liu P., Li R., Jing Q., Lv J., Liu L., Liu Y., Basic Clin. Pharmacol. Toxicol. 2015, 117, 186–194. doi 10.1111/bcpt.12385
- Bottorff M.B., Rutledge D.R., Pieper J.A. *Pharmacotherapy*. **1985**, *5*, 227–237. doi 10.1002/ j.1875-9114.1985.tb03422.x
- Papadakis R. *Molecules*. 2019, 25, 1. doi 10.3390/ molecules25010001
- Adarsh N.N., Dastidar P. Chem. Soc. Rev. 2012, 41, 3039. doi 10.1039/C2CS15251G
- Kuhn R., Starr M.P., Kuhn D.A., Bauer H., Knackmuss H.-J. Archiv. Mikrobiol. 1965, 51, 71–84. doi 10.1007/BF00406851
- Kobayashi H., Nogi Y., Horikoshi K. *Extremophiles*. 2006, 11, 245–250. doi 10.1007/s00792-006-0032-3
- Constable E.C., Housecroft C.E. *Molecules*. 2019, 24, 3951. doi 10.3390/molecules24213951
- Kaes C., Katz A., Hosseini M.W. Chem. Rev. 2000, 100, 3553–3590. doi 10.1021/cr990376z
- Tu T.N., Nguyen M.V., Nguyen H.L., Yuliarto B., Cordova K.E., Demir S. *Coord. Chem. Rev.* 2018, 364, 33–50. doi 10.1016/j.ccr.2018.03.014
- Lewis J.E.M., Bordoli R.J., Denis M., Fletcher C.J., Galli M., Neal E.A., Rochette E.M., Goldup S.M. *Chem. Sci.* 2016, 7, 3154–3161. doi 10.1039/C6SC00011H

- Hu Y.-Z., Bossmann S.H., van Loyen D., Schwarz O., Dürr H. *Chem. Eur. J.* **1999**, *5*, 1267–1277. doi 10.1002/(SICI)1521-3765(19990401)5:4<1267::AID-CHEM1267>3.0.CO;2-T
- Chardon-Noblat S., Deronzier A., Ziessel R. Collect. Czech. Chem. Commun. 2001, 66, 207–227. doi 10.1135/cccc20010207
- Johnson S.I., Blakemore J.D., Brunschwig B.S., Lewis N.S., Gray H.B., Goddard W.A., Persson P. *Phys. Chem. Chem. Phys.* 2021, 23, 9921–9929. doi 10.1039/ D1CP00545F
- Nguyen P.T., Phan T.A.P., Ngo N.H.T., Huynh T.V., Lund T. Solid State Ionics. 2018, 314, 98–102. doi 10.1016/j.ssi.2017.11.023
- 21. Aranyos V., Hjelm J., Hagfeldt A., Grennberg H. *Dalton Trans.* **2003**, 1280–1283. doi 10.1039/B208807J
- Sánchez-Castellanos M., Flores-Leonar M.M., Mata-Pinzón Z., Laguna H.G., García-Ruiz K.M., Rozenel S.S., Ugalde-Saldívar V.M., Moreno-Esparza R., Pijpers J.J.H., Amador-Bedolla C. *Phys. Chem. Chem. Phys.* **2019**, *21*, 15823–15832. doi 10.1039/ C9CP03176F
- Jamshidvand A., Keshavarzi R., Mirkhani V., Moghadam M., Tangestaninejad S., Mohammadpoor-Baltork I., Afzali N., Nematollahi J., Amini M. *J. Mater. Sci.: Mater. Electron.* 2021, *32*, 9345–9356. doi 10.1007/s10854-021-05598-y
- Mills I.N., Kagalwala H.N., Chirdon D.N., Brooks A.C., Bernhard S. *Polyhedron* 2014, *82*, 104– 108. doi 10.1016/j.poly.2014.05.012
- Hagimori M., Mizuyama N., Tominaga Y., Mukai T., Saji H. Dyes Pigm. 2015, 113, 205–209. doi 10.1016/ j.dyepig.2014.07.032
- Hagimori M., Mizuyama N., Yamaguchi Y., Saji H., Tominaga Y. *Talanta*. 2011, *83*, 1730–1735. doi 10.1016/j.talanta.2010.12.003
- Belikov M.Yu., Fedoseev S.V., Ershov O.V., Ievlev M.Yu., Tafeenko V.A. *Tetrahedron Lett.* 2016, *57*, 4101–4104. doi 10.1016/j.tetlet.2016.07.095
- Belikov M.Yu., Ievlev M.Yu., Fedoseev S.V., Ershov O.V. New J. Chem. 2019, 43, 8414–8417. doi 10.1039/C9NJ01648A
- Chunikhin S.S., Ershov O.V., Ievlev M.Y., Belikov M.Y., Tafeenko V.A. *Dyes Pigm.* 2018, *156*, 357– 368. doi 10.1016/j.dyepig.2018.04.024
- Arafa W.A.A., Hussein M.F. Chin. J. Chem. 2020, 38, 501–508. doi 10.1002/cjoc.201900494
- 31. Engler C., Engler A. *Ber. Dtsch. Chem. Ges.* **1902**, *35*, 4061–4066. doi 10.1002/cber.19020350437

- 32. Li C.-W., Shen T.-H., Shih T.-L. *Tetrahedron*. **2017**, *73*, 4644–4652. doi 10.1016/j.tet.2017.06.033
- Niu C., Tuerxuntayi A., Li G., Kabas M., Dong C.-Z., Aisa H.A. *Chin. Chem.Lett.* 2017, 28, 1533–1538. doi 10.1016/j.cclet.2017.03.018
- Liang Z.-Q., Wang X.-M., Dai G.-L., Ye C.-Q., Zhou Y.-Y., Tao X.-T. *New J. Chem.* 2015, *39*, 8874– 8880. doi 10.1039/C5NJ01072A
- 35. Qi Q., Lv S., Hao M., Dong X., Gu Y., Wu P., Zhang W., Chen Y., Wang C. *Eur. J. Org.*

Chem. **2020**, *2020*, 4417–4424. doi 10.1002/ ejoc.202000652

- Song B., Wang G., Yuan J. Chem. Commun. 2005, 3553. doi 10.1039/B503980K
- Brouwer A.M. Pure Appl. Chem. 2011, 83, 2213–2228. doi 10.1351/PAC-REP-10-09-31
- Mittelbach M. Monatsh. Chem. 1985, 116, 689–691. doi 10.1007/BF00798796

Synthesis and Spectral-Luminescent Properties of Novel Cyano-Substituted 2,2'-Bipyridine Derivatives

M. Yu. Ievlev*, N. S. Mayorov, M. A. Shishlikova, M. Yu. Belikov, I. N. Bardasov, and O. V. Ershov

I.N. Ulyanov Chuvash State University, Moskovskii prosp., 15, Cheboksary, 428015 Russia *e-mail: hiliam@bk.ru

Received August 5, 2021; revised August 16, 2021; accepted August 18, 2021

Previously undescribed 2- $\{4-aryl-5-cyano-[2,2'-bipyridine]-6(1H)-ylidene\}$ malononitriles were synthesized *via* the reaction of azachalcone derivatives with malononitrile dimer. Solutions of the obtained compounds are colored and possess photoluminescence in the yellow-orange region of the spectrum with emission maxima from 565 to 582 nm, depending on the substituent in the fourth position of the cyano-containing pyridine ring. The synthesized products are promising for further investigation of chemosensory properties, due to the unique combination of the 2,2'-bipyridine core and buta-1,3-diene-1,1,3-tricarbonitrile fragment in the structure.

Keywords: 2,2'-bipyridines, cyano-substituted heterocycles, malononitrile dimer, azachalcones, fluorescence