УДК 547.73 + 543.51

МАСС-СПЕКТРЫ НОВЫХ ГЕТЕРОЦИКЛОВ: XXII.¹ ИССЛЕДОВАНИЕ 1-АЛКИЛ(ЦИКЛОАЛКИЛ, АЛКОКСИАЛКИЛ)-5-[(АЛКИЛ, АЛЛИЛ, БЕНЗИЛ)-СУЛЬФАНИЛ]-1*Н*-ПИРРОЛ-2-АМИНОВ МЕТОДАМИ ЭЛЕКТРОННОЙ И ХИМИЧЕСКОЙ ИОНИЗАЦИИ

© 2021 г. Л. В. Клыба*, Н. А. Недоля, Е. Р. Санжеева, О. А. Тарасова

ФГБУН «Иркутский институт химии им. А.Е. Фаворского СО РАН», Россия, 664033 Иркутск, ул. Фаворского, 1 *e-mail: klyba@irioch.irk.ru

> Поступила в редакцию 12.12.2020 г. После доработки 18.12.2020 г. Принята к публикации 22.12.2020 г.

Впервые изучена фрагментация 1-алкил(циклоалкил, алкоксиалкил)-5-[(алкил, аллил, бензил)сульфанил]-1*H*-пиррол-2-аминов в условиях электронной (70 эВ) и химической (газ-реагент – метан) ионизации. При ионизации электронами все исследуемые соединения образуют молекулярный ион (M^{+*}) ($I_{\text{отн}}$ 5–90%), основное направление первичной фрагментации которого связано с разрывом связи С–S в сульфанильном заместителе SR⁴ и элиминированием радикала R⁴ (за исключением 1-изопропил- и 1-циклоалкил-замещенных 1*H*-пиррол-2-аминов). При распаде 1-изопропил(циклоалкил)-*N*,*N*-диметил-5-[(метил, аллил)сульфанил]-1*H*-пиррол-2-аминов доминирует разрыв связи С–N, сопровождающийся как отрывом заместителя (R¹) от пиррольного атома азота в виде радикала, так и деструкцией пиррольного цикла с элиминированием молекулы имина (или азирана) и образованием нечетноэлектронного иона [M – NR¹]^{+*}. Для химической ионизации характерны процессы протонирования, перезарядки и электрофильного присоединения. Химическая ионизация сопровождается элиминированием радикалов Me (Et) и SMe (SEt) из ионов [M + H]⁺.

Ключевые слова: 1-алкил(циклоалкил, алкоксиалкил)-5-[(алкил, аллил, бензил)сульфанил]-1*H*-пиррол-2-амины, электронная и химическая ионизация, масс-спектры, молекулярные ионы, фрагментация

DOI: 10.31857/S0514749221030046

ВВЕДЕНИЕ

Исследования в области химии пирролов были и остаются одной из наиболее важных областей химии гетероциклических соединений [2–10]. Интерес к функционально и гетерозамещенным пирролам (выражающийся в том числе и в поиске рациональных путей их синтеза), особенно заметно возросший в последнее время [11–17], обусловлен, с одной стороны, потребностью в новых высокоактивных пиррол-содержащих строительных блоках для дизайна более сложных пиррольных молекул и ансамблей [18–23], в том числе синтетических аналогов природных соединений (с участием реакционноспособных функциональных заместителей), а с другой, хорошо установленным фактом позитивного влияния гетероатомных заместителей (включая амино и сульфанильные группы) на физические, химические, биологические и иные свойства материалов на их основе [11, 17, 18, 24–29].

Последовательное развитие предложенного нами концептуально нового общего подхода к высокоселективной однореакторной сборке пир-

¹ Сообщение XXI см. [1].

рольного ядра из изотиоцианатов и алленовых или ацетиленовых карбанионов открывает простые пути к новым семействам и новым классам перспективных для практического применения и ранее недоступных пиррольных структур с редкими или трудновводимыми гетероатомными и функциональными заместителями [30–36].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В настоящей работе в продолжение систематических исследований масс-спектров новых классов функционализированных пирролов [37-40], получаемых из изотиоцианатов и ацетиленовых карбанионов, мы впервые изучили распад молекулярных ионов 1-алкил(циклоалкил, алкоксиалкил)-5-[(алкил, аллил, бензил)сульфанил]-1*H*-пиррол-2-аминов 1а-q в условиях электронной (70 эВ) и химической (газ-реагент – метан) ионизации. Соединения 1а-q синтезированы в одну препаративную стадию из монолитиированных пропаргиламинов [*N*.*N*-диметил- и *N*.*N*-диэтилпроп-2-ин-1-аминов, 1-проп-2-ин-1-илпирролидина, 1-проп-2-ин-1-илпиперидина и 4-проп-2-ин-1-илморфолина], изотиоцианатов [метил-, этил-, изопропил-, циклопентил-, циклогексил-, циклогептил- и 2-(метокси)этил-] и алкилирующих агентов [метили этилиодидов, аллил- и бензилбромидов] по разработанной нами методике (схема 1) [32].

При ионизации электронами все исследуемые соединения (за исключением 5-(аллилсульфанил)-1-изопропил-N,N-диметил-1H-пиррол-2амина **10**) образуют устойчивый молекулярный ион (M^{+*}) ($I_{\text{отн}}$ 13–90%, табл. 1). Наибольшую интенсивность имеет пик M^{+*} пиррола **11** ($I_{\text{отн}}$ 90%), содержащего эфирную группу в заместителе у пиррольного атома азота. Как и в случае ранее изученных 1-винил-5-(метилсульфанил)-1*H*-пиррол-2-аминов [38], 5-[(проп-2-ин-1-ил)сульфанил]-1*H*-пиррол-2-аминов [39] и 2,7-дигидротиопирано[2,3-*b*]пиррол-6-аминов [40], в структуре анализируемых соединений **1а–q** так же имеется несколько потенциальных центров локализации заряда и неспаренного электрона (три гетероатома и π -система), которые могут определять характер фрагментации молекулярного иона.

Доминирующее направление распада молекулярного иона практически для всех исследуемых пирролов [за исключением 1-(изопропил, циклопентил, циклогексил, циклогептил)-N,N-диметил-5-(метилсульфанил)- (**1h**-**k**) и 1-изопропил-N,N-диметил-5-(аллилсульфанил)- (**1o**) 1H-пиррол-2-аминов], связано с разрывом связи S- C_{3aM} , что приводит к образованию иона [M- R^4]⁺, возможно, имеющего структуру 5-амино-2-тиоксо-2H-пирролия (ион **A**), пик которого обладает максимальной интенсивностью в масс-спектрах (схема 2, табл. 1).

Дальнейший распад иона **A** зависит от природы заместителей у аминного и пиррольного атомов азота. Для соединений **1а–е**, **m**, **p** ($\mathbb{R}^1 = \mathbb{M}e$) изомеризация иона **A** в 5-амино-2-(метилимино)-2*H*-тиофениевую структуру (ион **A'**) с последующим элиминированием молекулы ацетонитрила объясняет появление в их спектрах пика иона **B**. Деградация иона **A**, образующегося из пирролов **1b**, **1** ($\mathbb{R}^2 = \mathbb{R}^3 = \text{Et}$), протекает как по амминному атому азота, приводя к появлению в масс-спектре пиков ионов [$\mathbb{A} - \text{Et}$]^{+•} и [$\mathbb{A} - C_2H_4$]⁺, так и с элиминированием частицы CS (схема 3).

 $\begin{array}{l} R^1 = R^4 = \text{Me: } R^2 = R^3 = \text{Me (a)}, \ R^2 = R^3 = \text{Et (b)}, \ R^2 - R^3 = (\text{CH}_2)_4 \ (\textbf{c}), \ (\text{CH}_2)_5 \ (\textbf{d}), \\ (\text{CH}_2)_2 \text{O}(\text{CH}_2)_2 \ (\textbf{e}); \ R^1 = \text{Et: } R^4 = \text{Me}, \ R^2 - R^3 = (\text{CH}_2)_2 \text{O}(\text{CH}_2)_2 \ (\textbf{f}), \ R^2 = R^3 = R^4 = \text{Et (g)}; \\ R^2 = R^3 = R^4 = \text{Me: } R^1 = i\text{-Pr (h)}, \ \mu\mu\kappa\pi\sigma\text{-}C_5\text{H}_9 \ (\textbf{i}), \ \mu\mu\kappa\pi\sigma\text{-}C_6\text{H}_{11} \ (\textbf{j}), \ \mu\mu\kappa\pi\sigma\text{-}C_7\text{H}_{13} \ (\textbf{k}); \\ R^2 = R^3 = \text{Et, } R^4 = \text{Me, } R^1 = \text{CH}_2\text{CH}_2\text{OMe (l)}; \ R^4 = \text{CH}_2\text{CH}=\text{CH}_2: \ R^1 = R^2 = R^3 = \text{Me (m)}, \\ R^1 = \text{Et, } R^2 - R^3 = (\text{CH}_2)_4 \ (\textbf{n}), \ R^1 = i\text{-Pr, } R^2 = R^3 = \text{Me (o)}; \ R^1 = R^2 = R^3 = \text{Me, } R^4 = \text{CH}_2\text{Ph (p)}; \\ R^1 = \text{Et, } R^2 - R^3 = (\text{CH}_2)_4, \ R^4 = \text{CH}_2\text{Ph (q)}; \ X = \text{I, Br.} \end{array}$

Таблица 1. Относительные интенсивности ($I_{\text{отн}}$, %) молекулярных ионов ($M^{+\bullet}$) и иона [$M - \mathbb{R}^4$]⁺ в масс-спектрах исследуемых пирролов **1а–q**

Соединение	Ионы, т	и/z (I _{отн} , %)	Coorrespondence	Ионы, <i>m/z</i> (<i>I</i> _{отн} , %)		
	$M^{+\bullet}$	$[M - R^4]^+, A$	Соединение	$M^{+\bullet}$	$[M-\mathrm{R}^4]^+,\mathrm{A}$	
1a	170 (64)	155 (100)	1j	238 (41)	_	
1b	198 (62)	183 (100)	1k	252 (22)	_	
1c	196 (42)	181 (100)	11	242 (90)	227 (100)	
1d	210 (47)	195 (100)	1m	196 (13)	155 (100)	
1e	212 (64)	197 (100)	1n	236 (17)	195 (100)	
1f	226 (68)	211 (100)	10	224 (5)	183 (5)	
1g	226 (42)	197 (100)	1p	246 (16)	155 (100)	
1h	198 (64)	_	1q	286 (16)	195 (100)	
1i	224 (41)	_				

Распад иона **A** в пирролах **1f**, **g**, **l**, **n**, **q** характеризуется элиминированием молекулы этилена из заместителя у пиррольного атома азота ($R^1 = Et$, MeOCH₂CH₂) с образованием иона **C** и последующим выбросом молекулы амина R^2R^3NH (ион с m/z 96, схема 4). Определенный вклад в интенсив-

ность пика иона с m/z 96 в спектрах соединений **1n**, **q** может вносить и катион-радикал 1-цианопирролидина, образующийся при деструкции пиррольного цикла.

Кроме этого, у пирролов **1с-f** значительный вклад в полный ионный ток вносят ионы, образу-

Схема 4

ющиеся при распаде насыщенного цикла в аминном заместителе иона А (схема 5).

Для *N*,*N*-диэтил-1*H*-пиррол-2-аминов **1b**, **l** наблюдается еще одно – минорное направление распада молекулярного иона, связанное с отрывом этильного радикала из аминного заместителя и образованием иона D, который для пиррола 1b теряет молекулу пропионитрила (ион Е), а для пиррола 11 – радикал SMe (ион F, схема 6). Присутствие иона Е с *m/z* 142 (*I*_{отн} 5%) в масс-спектре *N*,*N*диэтил-1-этил-5-(этилсульфанил)-1Н-пиррол-2амина 1g свидетельствует о том, что образование иона с *m/z* 197 (*I*_{отн} 100%) связано с отрывом этильного радикала не только от атома серы (ион А, схема 2, табл. 1), но и, возможно, от аминного атома азота (ион **D**, схема 6).

Следует отметить, что, кроме рассмотренных выше каналов распада М^{+•}, для молекулярного иона пирролов **1f**, $l(R^1 > Me)$ дополнительно появляются два новых направления распада, связанных как с отрывом радикала R¹ от пиррольного атома азота (ион G), так и с деструкцией пиррольного цикла - с элиминированием молекулы соответственно этан-1-имина и 2-метоксиэтан-1-имина

или их структурных изомеров – азирана и 2-метоксиазирана и образованием нечетноэлектронного иона **H** (схема 7). По массе ионы **H** совпадают с ионами **C**, образующимися при выбросе молекулы этилена ионом **A** (схема 4). Возможно, этим объясняется кажущаяся предпочтительность канала распада $M^{+\bullet}$, ведущего к ионам **H** (более высокая интенсивность пиков ионов **H** по сравнению с ионами **G**).

Эти два канала фрагментации молекулярного иона практически подавляют все другие каналы распада M^{+} пирролов **1h–k** (с вторичными алкили циклоалкил-заместителями у пиррольного атома азота) (схема 8). Причем, в отличие от пирролов **1f**, **l**, отрыв радикала R¹ от пиррольного атома азота доминирует. Интенсивность пика образующегося иона **G** с m/z 155 максимальная ($I_{\text{отн}}$ 100%). Отрыв молекулы NR¹ (предположительно, в виде соответствующего имина или азирана) приводит к катион-радикалу N,N-диметил-4-(метилсульфанил)циклобута-1,3-диенамина или его структурного изомера – N,N-диметил-2H-тиопиран-3-амина (ионы **H** и **H'**, m/z 141), интенсивность пика которого лежит в интервале 28–55%.

Аналогичный процесс распада, связанный с разрывом связи N_{пирр}-С_{зам}, отмечен нами для 1-[2-(винилокси)этил]-5-(метилсульфанил)-1*H*-пиррол-2-аминов [37], 1-[алкил, 2-(винилокси)этил]-5-[(проп-2-ин-1-ил)сульфанил]-1*H*-пиррол-2аминов [39] и 2,7-дигидротиопирано[2,3-*b*]пиррол-6-аминов [40]. Для последних двух случаев это направление также доминирует.

Еще один, минорный канал первичной фрагментации молекулярного иона пирролов **1h–k** включает выброс молекулы алкена из заместителя R^1 , давая нечетноэлектронный ион с m/z 156, который, в свою очередь, может отщеплять метильный радикал из заместителя SMe с образованием иона с m/z 141 (схема 8). Очевидно, что к наблюдаемым в масс-спектрах анализируемых пирролов ионам могут привести различные каналы фрагментации как молекулярного, так и осколочных ионов. Специфическая особенность фрагментации молекулярного иона 5-(аллилсульфанил)-1*H*-пиррол-2-аминов **1m–о** – образование достаточно стабильного иона $[M – H]^+$, возможно, имеющего структуру 6-амино-3*H*,4*H*,7*H*-тиопирано[2,3-*b*]пирролия, и отсутствующего при распаде всех других исследуемых соединений. Кроме того, в масс-спектрах 5-(бензилсульфанил)-замещенных пирролов **1p**, **q** ($\mathbb{R}^4 = \mathbb{B}n$) регистрируется интенсивный пик бензилкатиона (ион с *m/z* 91) (схема 9).

Как уже отмечалось, только пиррол 10 при электронной ионизации образует молекулярный ион низкой интенсивности (*m/z* 224, *I*_{отн} 5%). Кроме этого, характер его деградации существенно отличается от выше рассмотренных каналов. Типичное направление распада, обусловленное разрывом связи S-С_{зам} и приводящее к образованию иона А, практически подавляется (m/z 183, $I_{\text{отн}}$ 5%, табл. 1). Первичный распад M^{+•} характеризуется образованием ионов $[M - H]^+$ (схема 9) и [M *i*-Pr]⁺ (ион I, схема 10), который может стабилизироваться циклизацией как по атому азота пиррольного цикла (ион I'), так и по атому C^3 (ион I''). Дальнейший распад этих ионов протекает с деградацией пиррольного цикла с образованием интенсивных ионов с *m/z* 126 (*I*_{отн} 46%) и 84 (*I*_{отн} 100%).

Аминопирролы легко протонируются в газовой фазе. При химической ионизации метаном протекают реакции протонирования (ионы $[M + H]^+$), перезарядки (ионы M^{+*}) и электрофильного присоединения (ионы $[M + Et]^+$). Наряду с этим в спектрах присутствуют пики фрагментных ионов $[(M + H) - Me]^+$, $[(M + H) - SMe]^+$, а для пиррола **1g** – $[(M + H) - Et]^+$ и $[(M + H) - SEt]^+$ (табл. 2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Масс-спектры положительных ионов электронной ионизации (70 эВ) исследуемых соединений зарегистрированы на приборе Shimadzu GCMS-QP5050A с системой прямого ввода образца DI-50 (масс-анализатор квадрупольный, диапазон детектируемых масс 34–650 Да). Температуру

Таблица 2. Основные характеристические ионы в масс-спектрах пирролов 1a, b, d-h, j-l (химическая ионизация, газ-реагент – метан)

Ионы	<i>m/z</i> (I _{отн} , %)									
	1 a	1b	1d	1e	1f	1g	1h ^a	1j	1k ^b	11 ^c
$M^{+ ullet}$	170 (100)	198 (100)	210 (100)	212 (73)	226 (67)	226 (100)	198 (100)	238 (92)	252 (99)	242 (99)
$[M + H]^+$	171 (88)	199 (80)	211 (99)	213 (100)	227 (100)	227 (97)	199 (87)	239 (100)	253 (100)	243 (100)
$[M + \mathrm{Et}]^+$	199 (3)	227 (5)	239 (10)	241 (10)	255 (10)	255 (10)	227 (5)	267 (10)	281 (15)	271 (10)
$[(M+H) - Me]^+$	156 (80)	184 (55)	196 (94)	198 (33)	212 (28)	198 ^d (59)	184 (63)	224 (41)	238 (62)	228 (3)
$[(M + H) - SMe]^+$	124 (44)	152 (25)	164 (43)	166 (23)	180 (16)	166 ^e (17)	152 (31)	192 (12)	206 (12)	196 (30)

^а Ион $[(M + H) - R^2 R^3 NCCH]^+$, *m/z* 130 ($I_{\text{отн}}$ 8%)

^b Ионы $[M - \mathbb{R}^1]^+$, *m/z* 155 ($I_{\text{отн}}$ 10%), $[(M + \text{H}) - \mathbb{C}_7 \text{H}_{12}]^+$, *m/z* 157 ($I_{\text{отн}}$ 12%)

^с Ионы $[M - Me]^+$, m/z 227 ($I_{\text{отн}}$ 12%), $[M - C_2H_4]^{+\bullet}$, m/z 214 ($I_{\text{отн}}$ 14%)

^d Ион $[(M + H) - Et]^+$

^е Ион $[(M + H) - SEt]^+$

ионного источника и ввода образца подбирали так, чтобы обеспечить получение качественного масс-спектра, исключив при этом термическую деструкцию вещества. Масс-спектры химической ионизации положительных ионов зарегистрированы на приборе Agilent 5975С, газ-реагент – метан. Ввод образцов осуществляли через хроматограф Agilent 6890N. Разделение осуществляли на хроматографической колонке HP-5MS (30 м× 0.25 мм×0.25 мкм) при постоянной скорости потока, газ-носитель – гелий, режим программирования: от 60 до 180°С со скоростью 5 град/мин.

выводы

При электронной ионизации доминирующее направление фрагментации молекулярного иона 5-сульфанил-1*Н*-пиррол-2-аминов, содержащих метильный или этильный заместитель у пиррольного атома азота, связано с разрывом связи S-C_{зам} и элиминированием заместителя R⁴ в виде радикала. Минорный канал распада *N*,*N*-диэтил-1*H*пиррол-2-аминов обусловлен отрывом этильного радикала от аминного заместителя. Стерически объемные заместители у пиррольного атома азота (изопропильный, циклопентильный, циклогексильный и циклогептильный) полностью подавляют эти направления распада молекулярного иона. Основной канал фрагментации *М*^{+•} этих пирролов обусловлен разрывом связи N-С и элиминированием радикала R¹ и молекулы NR¹ (в виде имина или азирана). Природа заместителя в сульфанильной группе не влияет на характер первичного распада молекулярного иона исследованных пирролов, но способствует образованию специфических ионов. Так, из (аллилсульфанил)-замещенных пирролов образуется ион $[M - H]^+$. Химическая ионизация исследуемых пирролов сопровождается элиминированием радикалов Me (Et) и SMe (SEt) из ионов $[M + H]^+$.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Байкальского аналитического центра коллективного пользования СО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Клыба Л.В., Недоля Н.А., Санжеева Е.Р., Тарасова О.А. *ЖОрХ*. 2020, *56*, 711–718. [Klyba L.V., Nedolya N.A., Sanzheeva E.R., Tarasova O.A. *Russ. J. Org. Chem.* 2020, *56*, 768–774.] doi 10.1134/ S1070428020050073
- Walsh C.T., Garneau-Tsodikova S., Howard-Jones A.R. Nat. Prod. Rep. 2006, 23, 517–531. doi 10.1039/ b605245m
- Bellina F., Rossi R. *Tetrahedron*. 2006, 62, 7213–7256. doi 10.1016/j.tet.2006.05.024
- Forte B., Malgesini B., Piutti C., Quartieri F., Scolaro A., Papeo G. *Mar. Drugs.* 2009, 7, 705–753. doi 10.3390/md7040705
- Russel J.S., Pelkey E.T., Yoon-Miller S.J.P. Prog. Heterocycl. Chem. 2011, 22, 143–180. doi 10.1016/ S0959-6380(11)22006-3
- Ferreira V.F., de Souza M.C.B.V., Cunha A.C., Pereira L.O.R., Ferreira M.L.G. Org. Prep. Proced. Int. 2001, 33, 411–454. doi 10.1080/00304940109356613
- Носова Е.В., Потеева А.Д., Липунова Г.Н., Слепухин П.А., Чарушин В.Н. *ЖОрХ*. 2019, 55, 446–450. [Nosova E.V., Poteeva A.D., Lipunova G.N., Slepukhin P.A., Charushin V.N. *Russ. J. Org. Chem.* 2019, 55, 384–387.] doi 10.1134/S0514749219030200
- Arabpourian K., Behbahani F.K. Russ. J. Org. Chem. 2019, 55, 682–685. doi 10.1134/S0514749219050240
- Rostami H., Shiri L. Russ. J. Org. Chem. 2019, 55, 1204–1211. doi 10.1134/S0514749219080251
- Хафизова Л.О., Шайбакова М.Г., Рихтер Н.А., Джемилев У.М. *ЖОрХ*. 2020, 56, 210–217. [Khafizova L.O., Shaibakova M.G., Richter N.A., Dzhemilev U.M. Russ. J. Org. Chem. 2020, 56, 218–224.] doi 10.31857/S051474922002007X
- Абель Е., Абель Р., Лукевиц Е. *ХГС*. 2004, 40, 3–19. [Abele E., Abele R., Lukevics E. *Chem. Heterocycl. Compd.* 2004, 40, 1–15.] doi 10.1023/ B:COHC.0000023761.76443.34
- Joshi S.D., More U.A., Kulkarni V.H., Aminabhavi T.M. *Curr. Org. Chem.* 2013, 17, 2279–2304. doi 10.2174/13852728113179990040
- Estévez V., Villacampa M., Menéndez J.C. Chem. Soc. Rev. 2010, 39, 4402–4421. doi 10.1039/b917644f
- 14. Patil N.T., Yamamoto Y. *Arkivoc*. **2007**, *x*, 121–141. doi 10.3998/ark.5550190.0008.a11
- 15. Leeper F.J., Kelly J.M. Org. Prep. Proced. Int. 2013, 45, 171–210. doi 10.1080/00304948.2013.786590
- Muzalevskiy V.M., Shastin A.V., Balenkova E.S., Haufe G., Nenajdenko V.G. *Synthesis*. 2009, 3905– 3929. doi 10.1055/s-0029-1217080

- Saracoglu N. Top. Heterocycl. Chem. 2007, 11, 1–61. doi 10.1007/7081 2007 073
- Khajuria R., Dham S., Kapoor K.K. *RSC Adv.* 2016, 6, 37039–37066. doi 10.1039/c6ra03411j
- Lion D.C., Baudry R., Hedayatullah M., Da Conceiçlato L., Genard S., Maignan J. J. Heterocycl. Chem. 2002, 39, 125–130. doi 10.1002/jhet.5570390118
- Kozekov I.D., Koleva R.I., Palamareva M.D. J. Heterocycl. Chem. 2002, 39, 229–236. doi 10.1002/ jhet.5570390134
- de Dios A., de la Puente M.L., Rivera-Sagredo A., Espinosa J.F. *Canad. J. Chem.* 2002, *80*, 1302–1307. doi 10.1139/v02-175
- Калинин А.А., Мамедов В.А. *ХГС*. 2010, 1763–1787. [Kalinin A.A., Mamedov V.A. *Chem. Heterocycl. Compd.* 2011, 46, 1423–1442.] doi 10.1007/s10593-011-0688-1
- Cravotto G., Tagliapietra S., Caporaso M., Garella D., Borretto E., Di Stilo A. *XTC*. **2013**, *49*, 869–885. [Cravotto G., Tagliapietra S., Caporaso M., Garella D., Borretto E., Di Stilo A. *Chem. Heterocycl. Compd.* **2013**, *49*, 811–826.] doi 10.1007/s10593-013-1317-y
- Montalbano A., Parrino B., Diana P., Barraja P., Carbone A., Spanò V., Cirrincione G. *Tetrahedron*. 2013, 69, 2550–2554. doi 10.1016/j.tet.2013.01.076
- Xiao X.-Y., Zhou A.-H., Shu C., Pan F., Li T., Ye L.-W. *Chem. Asian J.* 2015, *10*, 1854–1858. doi 10.1002/asia.201500447
- Zeng Z., Jin H., Rudolph M., Rominger F., Hashmi A.S.K. Angew. Chem., Int. Ed. 2018, 57, 16549– 16553. doi 10.1002/anie.201810369
- 27. Gillis H.M., Greene L., Thompson A. Synlett. 2009, 2009, 112–116. doi 10.1055/s-0028-1087486
- Misra N.C., Panda K., Ila H., Junjappa H. J. Org. Chem. 2007, 72, 1246–1251. doi 10.1021/jo062139j
- Bhardwaj V., Gumber D., Abbot V., Dhiman S., Sharma P. *RSC Adv.* 2015, *5*, 15233–15266. doi 10.1039/ C4RA15710A

- 30. Nedolya N.A. PhD Thesis, Utrecht University, The Netherlands, **1999**.
- Brandsma L., Nedolya N.A. Synthesis. 2004, 735–745. doi 10.1055/s-2004-816005
- Tarasova O.A., Nedolya N.A., Vvedensky V.Yu., Brandsma L., Trofimov B.A. *Tetrahedron Lett.* 1997, 38, 7241–7242. doi 10.1016/S0040-4039(97)01680-8
- Brandsma L., Nedolya N.A., Trofimov B.A. *Eur. J.* Org. Chem. 1999, 2663–2664. doi 10.1002/(SICI)1099-0690(199910)1999:10
- Nedolya N.A., Tarasova O.A., Albanov A.I., Trofimov B.A. *Tetrahedron Lett.* 2010, *51*, 5316–5318. doi 10.1016/j.tetlet.2010.07.179
- Tarasova O.A., Nedolya N.A., Albanov A.I., Trofimov B.A. *Synthesis*. 2019, *51*, 3697–3708. doi 10.1055/ s-0037-1611883
- Tarasova O.A., Nedolya N.A., Albanov A.I., Trofimov B.A. *ChemistrySelect.* 2020, *5*, 5726–5731. doi 10.1002/slct.202000577
- Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. *ЖОрХ*. 2013, 49, 398–404. [Klyba L.V., Nedolya N.A., Tarasova O.A., Sanzheeva E.R. *Russ. J. Org. Chem.* 2013, 49, 384–390.] doi 10.1134/S1070428013030123
- Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. *ЖОрХ*. 2014, *50*, 43–51. [Klyba L.V., Nedolya N.A., Tarasova O.A., Sanzheeva E.R. J. Org. Chem. 2014, *50*, 35–44.] doi 10.1134/S1070428014010072
- Клыба Л.В., Недоля Н.А., Санжеева Е.Р., Тарасова О.А., Шагун В.А. *ЖОрХ*. 2019, 55, 1857–1869.
 [Klyba L.V., Nedolya N.A. Sanzheeva E.R., Tarasova O.A., Shagun V.A. *Russ. J. Org. Chem.* 2019, 55, 1853–1863.] doi 10.1134/S1070428019120078
- Клыба Л.В., Недоля Н.А., Санжеева Е.Р., Тарасова О.А. *ЖОрХ*. 2019, 55, 930–937. [Klyba L.V., Nedolya N.A., Sanzheeva E.R., Tarasova O.A. *Russ. J. Org. Chem.* 2019, 55, 824–830.] doi 10.1134/ S1070428019060125

КЛЫБА и др.

Mass-Spectra of New Heterocycles: XXII. Electron Impact and Chemical Ionization Study of 1-Alkyl(cycloalkyl, alkoxyalkyl)-5-[(alkyl, allyl, benzyl)sulfanyl]-1*H*-pyrrole-2-amines

L. V. Klyba*, N. A. Nedolya, E. R. Sanzheeva, and O. A. Tarasova

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo, 1, Irkutsk, 664033 Russia *e-mail: klyba@irioch.irk.ru

Received December 12, 2020; revised December 18, 2020; accepted December 22, 2020

The fragmentation of 1-alkyl(cycloalkyl, alkoxyalkyl)-5-[(alkyl, allyl, benzyl) sulfanyl]-1*H*-pyrrole-2-amines under conditions of electron (70 eV) and chemical (methane as reactant gas) ionization was studied for the first time. Under the electron impact, all the compounds under study form a molecular ion (M^{++}) (I_{rel} 5–90%), the main direction of the primary fragmentation of which is associated with the cleavage of the C–S bond in the sulfanyl SR⁴ substituent and the elimination of the R⁴ radical (with the exception of 1-isopropyl and 1-cycloalkyl-substituted 1*H*-pyrrole-2-amines). Under decay of 1-isopropyl(cycloalkyl)-*N*,*N*-dimethyl-5-[(methyl, allyl)sulfanyl]-1*H*-pyrrole-2-amines, cleavage of the C–N bond dominates, accompanied by both the abstraction of the substituent (R¹) from the pyrrole atom nitrogen in the form of a radical, and the destruction of the pyrrole ring with the elimination of the imine (or azirane) molecule and the formation of the odd-electron ion [M -NR¹]⁺⁺. Chemical ionization is accompanied by the elimination of Me (Et) and SMe (SEt) radicals from [M +H]⁺ ions, and the processes of protonation, charge exchange, and electrophilic addition are also be observed.

Keywords: 1-alkyl(cycloalkyl, alkoxyalkyl)-5-[(alkyl, allyl, benzyl)sulfanyl]-1*H*-pyrrole-2-amines, electron and chemical ionization, mass spectra, molecular ions, fragmentation