УДК 547-326 + 547-312 + 547.363

СИНТЕЗ НОВОГО 10,11-ДИДЕГИДРОАНАЛОГА ЭПОТИЛОНА D

© 2021 г. Р. Ф. Валеев, Г. Р. Сунагатуллина, В. В. Лоза, А. Н. Лобов, М. С. Мифтахов*

Уфимский институт химии – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра РАН, Россия, 450054 Уфа, просп. Октября, 71

*e-mail: tsynth@anrb.ru

Поступила в редакцию 29.12.2020 г. После доработки 11.01.2021 г. Принята к публикации 13.01.2021 г.

Синтезирован хиральный 10,11-дидегидроаналог эпотилона D с изостерическим замещением на участке C¹⁵–C³ природных эпотилонов.

Ключевые слова: эпотилон D, аналоги, синтез, источники хиральности, *R*-(–)-карвон, *R*-(–)-пантолактон, *S*-(+)-оксазолидин-2-он Эванса, межмолекулярная этерификация, реагенты Ямагучи и Мукаяма, метатезисное циклозамыкание, реагент Граббса

DOI: 10.31857/S0514749221060033

ВВЕДЕНИЕ

Эпотилоны (Еро) – таксолоподобного действия макролиды – представляют интерес в качестве основы (scaffold) в дизайне и синтезе новых структур с высокой противоопухолевой активностью [1, 2]. Основная задача таких исследований – получение метаболически и химически более устойчивых и более активных аналогов по сравнению с природными Еро. К настоящему времени изучено влияние на биологическую активность таких структурных модификаций как замена тиазольной части на ароматические фрагменты, функционализация C^{11} – C^{12} -двойной связи, вариации с заместителями в боковой цепи при C^5 , расширение макроцикла, замена лактонной функции на лактамную и др. [3–6].

Из числа исследуемых в настоящее время Еро полусинтетический лактам Еро В ixabepilone разрешен управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США (Food and Drug Administration, FDA) в 2007 г. и применяется для лечения агрессивных и невосприимчивых форм метастатического рака молочной железы [7]. Целью данной работы было получение нового «глубоко» модифицированного диенового аналога Еро D 1, в котором C^3-C^{15} -фрагмент A природного Еро D заменен на изостерный фрагмент B (рис. 1). Полагаем, что преобразование C^{15} аллилово-спиртового фрагмента A в Еро D на гомоаллиловую группу в соединении 1 приведет к заметному увеличению химической устойчивости последнего. Кроме того, наличие в структуре 1 $\Delta^{10,11}$ -двойной связи, как и в Еро 190, приведет к увеличению противоопухолевой активности [8].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В основу синтеза принят линейный подход, предполагающий поэтапное сочетание отдельно приготовленных хиральных субъединиц, которые были синтезированы по ранее разработанным схемам из коммерчески доступных R-(–)-карвона, R-(–)-пантолактона, γ -бутиролактона и S-(+)оксазолидин-2-она Эванса при построении хирального Ме-содержащего центра в данном блоке. На завершающей стадии синтеза **1** планировали использовать технологию Ru-катализируемого

Модифицирование на участке С³–С¹⁵ природного Еро D

метатезисного циклозамыкания (RCM) [9, 10] ациклического предшественника **1** (схема 1).

Блок 5, предназначенный для использования при построении верхней полусферы 1, синтезировали из *R*-карвона (схема 2) через ациклическое моно TBS-производное соответствующего диола – спирт 2. 12-Стадийный синтез спирта 2, описанный нами ранее [11], был улучшен и число стадий сокращено до 10 [12]. Блок 2 привлекателен прежде всего тем, что содержит стереохимически чистую «происшедшую» из *R*-карвона тризамещенную Z-двойную связь Еро. Далее на пути к соединению 5 тиазолсодержащий спирт 2 ввели в реакцию ТЕМРО-катализируемого окисления PhI(OAc)₂ [13] и с высоким выходом получили альдегид 3. Осуществить метиленирование альдегида 3 in situ генерируемым метилентрифенилфосфораном не удалось. При этом выход соединения 4 был крайне низким, основным продуктом реакции была низкополярная смолообразная масса (предположительно промежуточные бетаины). Напротив, желаемый триен 5 был получен с хорошим выходом в условиях олефинирования по Джулиа-Кочински [14]. Снятие TBDPS-защитной группы в соединении 4 гладко протекает в системе CH₂Cl₂-MeOH-*p*-TSAcat и приводит к одному из ключевых блоков 5.

Блок **6** для нижней полусферы **1** синтезировали из *R*-(–)-пантолактона (схема 3) [15]. Также в наших предыдущих публикациях были приведены результаты альдольной конденсации кетона **6**

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021

и альдегида 7 [16] с получением соединения 8. В свою очередь использованный в той реакции блок 7 синтезировали по методу асимметрического алкилирования Эванса с участием 4-бромбутироилхлорида и MeI [17, 18]. Дальнейшее продвижение от соединения 8 к соединению 12 включало стадии блокировки свободной гидроксильной группы 8 в виде TES-эфира 9 и стадию олефинирования 9 по Джулиа-Кочински с ацетальдегидом. В отличие от терминальных, полученный «внутренний» Е-алкен, согласно [19, 20], должен быть менее подверженным изомеризации и ациклической полимеризации в условиях метатезиса. Переход соединений 10-11-12 был выполнен без сложностей по известным методикам и кислота 12 была введена в следующую стадию межмолекулярной этерификации.

Полученные спирт 5 и кислота 12 были испытаны в стандартных условиях межмолекулярной этерификации по Ямагучи [21]. Для активации вначале кислоту 12 обработкой 1,4,6-трихлорбензоилхлоридом в ТГФ в присутствии Et_3N превращали в смешанный ангидрид, в массу при перемешивании добавляли спирт 5 и затем в течение 5 ч прикапывали раствор 0.25 экв 4-(диметиламино)-пиридина (DMAP) в ТГФ. При этом по ТСХ наблюдали образование двух соединений, которые были выделены колоночной хроматографией на SiO₂. Минорный продукт (~7%) по структуре соответствовал образцу соединения 14, полученного ацилированием спирта 12 трихлорбензоилхлори-

дом в стандартных условиях (схема 4). Выход основного продукта **13** был на уровне 21%.

Для удобства восприятия структурная формула 13 и данные спектров приведены ниже в табл. 1.

Касательно «происхождения» соединения 14 (схема 5) отметим, что побочный продукт образовался в результате атаки спирта по трихлорбензоильной карбонильной группе в промежуточном смешанном ангидриде A (путь b). В альтернативном варианте, чтобы исключить нежелательное побочное направление для активации кислотной компоненты 12, использовали реагент Мукаямы [22]. В этом случае минимизировано образование подобных соединению 14 побочных продуктов взаимодействия спирта с интермедиатом B и выход эфира 13 составил 45%. На следующей стадии полученный по схеме 4 (вариант *a*) блок **13** испытали в ключевой RCM-реакции с использованием Ru-катализатора Граббса II поколения в условиях высокого разбавления (10 ммоль) и после обработки реакционной массы, ожидаемый продукт циклизации соединения **15** выделили с выходом 20% (схема 6).

Однако, согласно спектральным данным, полученное соединение представляло собой смесь двух изомеров в соотношении ~1:1.5 (ЯМР ¹Н). При этом, вновь образованная 10,11-двойная связь у обоих изомеров была трансоидной (J 15.5 Гц). К тому же возможная Z,E-изомеризация в C¹² центре также исключалась, поскольку в спектре ЯМР ¹³С обоих изомеров сдвиги C¹²-Ме были одинаковыми (δ_{C} ¹² 20.50 м.д.). Поэтому возможность образова-

Реагенты и условия: *a*, TEMPO, PhI(OAc)₂, CH₂Cl₂, 20°C, 6 ч, 92%; *b*, MeSO₂PT, KHMDS, TГФ, –78°C, 30 мин, 88%; *c*, *p*-TSA, CH₂Cl₂–MeOH (1:1), 20°C, 5 ч, 95%. TEMPO – (2,2,6,6-тетраметилпиперидин-1-ил)оксил, PhI(OAc)₂ – фенилйоддиацетат, MeSO₂PT – 5-(метилсульфонил)-1-фенил-1*H*-тетразол, KHMDS – гексаметилдисилазид калия.

Схема 3

Реагенты и условия: *a*, Et₃SiOTf, 2,6-лутидин, CH₂Cl₂, 0–5°С, 20 мин, 77%; *b*, KHMDS, -78°С, ТГФ, 10 мин, затем CH₃CHO, -78°С, 20 мин, 83%; *c*, CaCO₃, MeI, Me₂CO–H₂O (4:1), 50–60°С, 72 ч, 69% за две стадии; *d*, 2,3-диметилбутен-2, NaClO₂, Na₂HPO₄, *t*-BuOH–TГФ–H₂O (5:5:1), 16 ч, 20°С, 81% Et₃SiOTf – триэтилсилилтрифлат, KHMDS – гексаметилдисилазид калия, *t*-BuOH – 2-метилпропанол-2.

Реагенты и условия: *a*, 2,4,6-трихлорбензоилхлорид, Et₃N, ТГФ, 20°С, 2 ч, затем 5, DMAP в ТГФ, 5 ч; *b*, 2-хлор-1-метилпиридиний иодид, Bu₃N, ТГФ.

Таблица 1. ЯМР ¹Н и ¹³С эфира **13**

13

Номер атома	13 C, acetone- d_6	¹ H, acetone- d_6
1	171.23	_
2	81.20	4.38 c (1H, 2-H)
3	51.69	_
3-CH ₃	20.42	1.16 c (3H, 3-CH ₃)
3-CH ₃	22.70	1.30c (3H, 3-CH ₃)
4	216.37	_
5	44.79	3.26 м (1Н, 5-Н)
5-CH ₃	15.60	1.08 д (3H, J 6.9 Гц, 5-CH ₃),
6	78.67	3.86 м (1Н, 6-Н)
CH ₂ OSiEt ₃	5.91	0.67 м (6H, SiC <u>H</u> ₂)
CH ₃ OSiEt ₃	7.22	0.99 м (9H, SiCH ₂ C <u>H</u> ₃)
7	38.92	1.46 м (1Н, 7-Н)
7-CH ₃	17.68	0.89 д (3H, <i>J</i> 6.9 Гц, 7-СН ₃)
8	34.65	1.76 м (1-H, 8-H _A) 2.20 м (1H, 8-H _B)
9	131.05	5.40 м (1Н, 9-Н)

Таблица 1.	(продолжение).
------------	----------------

Номер атома	¹³ C, acetone- d_6	1 H, acetone- d_{6}
10	126.54	5.42 м (1Н, 10-Н)
11		1.63 д (3H, <i>J</i> 4.7 Гц, 11-Н)
7'	114.19	5.10 д (1Н, <i>J_{цис}</i> 10.9 Гц, 7'-Н _{цис}) 5.23 д (1Н, <i>J_{транс}</i> 17.1 Гц, 7'-Н _{транс}),
6'	134.18	6.87 д.д (1H, <i>J</i> 17.1, 10.9 Гц, 6'-Н)
5'		
5'-CH ₃	19.92	1.79 c (3H, 5'-CH ₃)
4'	128.98	5.45 м (1Н, 4'-Н)
3'	28.59	2.41 д.т (1Н, <i>J</i> 14.6, 8.1, 7.3 Гц, 3'-Н) 2.52 д.д.д (1Н, <i>J</i> 14.6, 7.3, 7.3 Гц, 3'-Н)
2'	49.74	2.65 м (1Н, 2'-Н)
1'	66.56	4.15 д.д (1Н, <i>J</i> 11.0, 6.0 Гц, 1'-Н _А) 4.32 д.д (1Н, <i>J</i> 11.0, 8.2 Гц, 1'-Н _В)
OCH ₂ O	97.56	4.56 м (2H, OCH ₂ O)
CH ₃ O	56.45	3.27 с (3Н, CH ₃ O)
2"	122.04	6.37 c (1H, 2"-H)
1"	139.26	_
1"-CH ₃ O	15.74	2.11 c (3H, 1"-CH ₃)
1'''	-	_
2'''	164.71	_
2'''-CH ₃	18.93	2.66 c (3H, 2'"-CH ₃)
3'''	_	_
4'''	155.74	_
5'''	116.58	7.13 c (1H, 5"'-H)

^а Сигналы ЯМР ¹Н и ¹³С приведены для образца индивидуального **13**, полученного с использованием реагента Мукаяма (методика для **13**, опыт b)

ния 12-*E*-изомера исключалась, равно, как и изомерии по C^7 центру. Напротив, здесь вполне реальна изомерия по C^3 -центру, этот центр может инвертироваться через енолообразование. Наблюдаемые в спектре значительные различия в сдвигах сигналов $C^{1'}$, C^{15} , C^{14} могут быть связаны с *транс*-аннулярным влиянием ОМОМ-заместителя в За-эпимере **15b**.

Из-за низких выходов на стадии этерификации по Ямагучи и образования трудноразделимых изо-ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021 мерных соединений **15**а, **b** этот вариант далее не разрабатывался.

Структурные формулы и спектральные данные индивидуального стереоизомера **15а** и его изомера **15b** приведены ниже в табл. 2 и в табл. 3.

Полагая, что в условиях получения соединения 13 по Ямагучи (схема 4, путь a), а также в ходе циклизации эфира 13 на катализаторе Граббса вполне возможна эпимеризация в его С³-центре, в реакцию был введен образец соединения 13, полу-

R' - спиртовая компонента в эфире 13 R - кислотная компонента в эфире 13

ченный по методу Мукаямы (схема 4, путь *b*), существенно сократив при этом время реакций, как на стадии этерификации, так и на стадии циклизации. В этом случае выход соединений **15** удалось поднять до 45% и получить индивидуальный стереоизомер **15а**. Кислотный гидролиз **15а** привел к соединению **1** с выходом 60% (схема 7).

Структурная формула и спектральные данные целевого аналога Еро 1 приведены ниже в табл. 4. Деблокирование МОМ-защитной группы в соединении 1 оказалось затруднительным, несмотря на апробацию ряда методов [23]. Поэтому в биотестировании был испытан МОМ-эфир 1, который проявил умеренную цитотоксичность в отношении испытанных линий раковых клеток (Hek293, SH-SY5Y, MCF-7, A549). Очевидно, наличие MOM-защитной группы в фармакологически значимом C^3 -гидроксиле значительно снижает токсичность. Видимо, предпринятое «глубокое» модифицирование на участке C^{15} – C^3 (A на B, рис.1)

Реагенты и условия: *а*, Граббс II (10 мол %), CH₂Cl₂ (1.0 ммоль), 20°C, 12 ч, 20%. Граббс II – [1,3-бис(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлор(фенилметилен)-(трициклогексилфосфин)рутений.

Таблица 2. ЯМР ¹Н и ¹³С мажорного изомера 15а

15a

Номер атома	¹³ C, CDCl ₃	¹ H, CDCl ₃
1	_	_
2	170.52	_
3	80.00	4.43 c (1H, 3-H)
4	51.81	_
4-CH ₃	20.69	1.08 c (3H, 4-CH ₃)
4-CH ₃	23.10	1.32 c (3H, 4-CH ₃)
5	216.77	_
6	44.26	3.22 м (1Н, 6-Н)
6-CH ₃	16.73	1.10 д (3H, ³ <i>J</i> 6.8 Гц, 6-CH ₃)
7	78.15	3.85 д.д (1Н, ³ <i>J</i> ₇₋₈ 7.7, ³ <i>J</i> ₆₋₇ 1.8 Гц, 7-Н)
8	39.78	1.44 м (1Н, 8-Н)
8-CH ₃	18.25	1.03 д (3H, ³ <i>J</i> 6.9 Гц, 8-CH ₃)
9	35.50	2.03 м (1H, 9-H _A) 2.20 м (1H, 9-H _B)
10	129.12	5.74 д.д.д (1Н, ${}^{3}J_{10-13}$ 15.7, ${}^{3}J_{10-9A}$ 10.7, ${}^{3}J_{10-9B}$ 4.3 Гц, 10-Н)
11	128.99	6.71 д (1Н, ³ J ₁₁₋₁₀ 15.7 Гц, 11-Н)
12	133.50	_
12-CH ₃	20.50	1.80 c (3H, 12-CH ₃)
13	126.17	5.36 д.д (1Н, ³ J _{13-14В} 11.4, ³ J _{13-14В} 5.2 Гц, 13-Н)
14	27.65	2.11 м (1Н, 14-Н _A) 3.02 д.д.д (1Н, ² <i>J</i> 13.6, ³ <i>J</i> _{14B-13} 11.4, ³ <i>J</i> _{14B-15} 6.1 Гц, 14-Н _B)
15	48.06	2.34 м (1Н, 15-Н)
16	65.23	4.22 м (2Н, 16-Н)
OCH ₂ O	96.90	4.67 c (2H, OCH ₂ O)
CH ₃ O	56.84	3.36 c (3H, CH ₃ O)
1'	120.02	6.38 c (1H, 1'-H)
2'	139.86	_

Номер атома	^{13}C , CDCl ₃	¹ H, CDCl ₃
3'	17.71	2.09 c (3H, 3'-H)
4''	153.04	_
5"	115.26	6.90 c (1H, 5"-H)
(CH ₂ -SiEt ₃)	7.07	0.98 м (6H, CH ₂ -SiEt ₃)
(CH ₃ -SiEt ₃)	5.49	0.64 м (9H, CH ₃ -SiEt ₃)

Таблица 2.	(продолжение).
------------	----------------

Таблица 3. ЯМР 1 Н и 13 С минорного изомера 15b

15b

Номер атома	¹³ C, CDCl ₃	¹ H, CDCl ₃
1	_	_
2	170.59	_
3	80.28	4.52 c (1H, 3-H)
4	51.45	_
4-CH ₃	20.82	1.14 c (3H, 4-CH ₃)
4-CH ₃	23.52	1.32 c (3H, 4-CH ₃)
5	217.44	_
6	44.78	3.23 м (1Н, 6-Н)
6-CH ₃	16.96	1.11 д (3H, ³ <i>J</i> 6.8 Гц, 6-CH ₃)
7	78.22	3.85 д.д (1Н, ³ <i>J</i> ₇₋₈ 7.9, ³ <i>J</i> ₆₋₇ 1.7 Гц, 7-Н)
8	39.82	1.48 м (1Н, 8-Н)
8-CH ₃	18.31	1.01 д (3Н, ³ <i>J</i> 6.9 Гц, 8-СН ₃)
9	34.46	2.04 м (1Н, 9-Н _А) 2.22 м (1Н, 9-Н _В)
10	129.26	5.79 д.д.д (1Н, ³ J ₁₀₋₁₃ 15.5, ³ J _{10-9A} 9.3, ³ J _{10-9B} 4.9 Гц, 10-Н)
11	129.38	6.69 д (1Н, ³ J ₁₁₋₁₀ 15.7 Гц, 11-Н)
12	134.52	_
12-CH ₃	20.50	1.79 c (3H, 12-CH ₃)
13	124.43	5.35 д.д (1Н, ³ J _{13-14В} 9.9, ³ J _{13-14В} 7.1 Гц, 13-Н)

Таблица 3. (продолжение).

Номер атома	¹³ C, CDCl ₃	¹ H, CDCl ₃
14	27.39	2.43 м (1H, 14-H _A) 2.58 м (1H, 14-H _B)
15	49.62	2.59 м (1Н, 15-Н)
16	65.76	3.97 д.д (1H, ² <i>J</i> 10.7, ³ <i>J</i> _{16A-15} 11.2 Гц, 16-Н _А) 4.37 д.д (1H, ² <i>J</i> 10.7, ³ <i>J</i> _{16B-15} 3.4 Гц, 16-Н _В)
OCH ₂ O	97.17	4.73 д (1H, ² <i>J</i> 7.0 Гц, H _A -OCH ₂ O) 4.78 д(1H, ² <i>J</i> 7.0 Гц, H _B -OCH ₂ O)
CH ₃ O	56.99	3.42 c (3H, CH ₃ O)
1'	120.04	6.28 c (1H, 1'-H)
2'	138.83	_
3'	18.00	2.08 c (3H, 3'-H)
1"	_	_
2"	164.52	_
2"-CH ₃	19.19	2.71 c (3H, 2"-CH ₃)
3"	_	_
4"	152.95	_
5"	115.32	6.90 c (1H, 5"-H)
(CH ₂ -SiEt ₃)	7.10	0.98 м (6H, CH ₂ -SiEt ₃)
(CH ₃ -SiEt ₃)	5.52	0.65 м (9H, CH ₃ -SiEt ₃)

Схема 7

Реагенты и условия: *а*, Граббс II (10 мол %), CH₂Cl₂ (1.0 ммоль), 20°С, 5 ч, 45%; *b*, CSA (15 мол %), MeOH–EtOH (1:1). CSA – камфора–10-сульфокислота

также нежелательно, при модифицировании следует придерживаться максимального сохранения структуры Еро В. Но в то же время эфир 1 ожидаемо отличился химической стабильностью, не претерпевал изменений даже при достаточно жестких условиях кислотного гидролиза МОМ-эфиров (MeOH, H⁺-смолы, Δ; HCl-MeOH и др.). Для успеха, очевидно, на ранних стадиях следует заменить MOM-защитную группу на другую более лабильную группу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Растворители были очищены и высушены стандартными процедурами перед использо-

Таблица 4. ЯМР ¹Н и ¹³С соединения **1**

1

		1
Номер атома	¹³ C, CDCl ₃	¹ H, CDCl ₃
1	_	_
2	170.1	_
3	78.65	4.37 c (1H, 3-H)
4	52.5	_
4-CH ₃	21.5	1.00 c (3H, 4-CH ₃)
4-CH ₃	20.5	1.30 c (3H, 4-CH ₃)
5	218.4	_
6	40.1	3.27 д.к (1Н, ³ <i>J</i> 6.8, ³ <i>J</i> 2.4 Гц, 6-Н)
6-CH ₃	12.25	1.02 д (3Н, <i>J</i> 6.8 Гц, 6-СН ₃)
7	72.35	3.76 д.д (1H, J 2.0, 6.8 Гц, 7-H)
7-OH	_	3.45–3.36 м (1Н)
8	36.36	1.95 пентет (1H, J 6.7 Гц, 8-H)
8-CH ₃	16.26	0.99 c (3H, 8-CH ₃),
9	36.15	2.05–2.12 м (1Н, 9-Н)
10	130.2	5.70 д.д.д (1Н, Ј 6.0, 15.3, 8.9, 6.0 Гц, 10-Н)
11	134.8	6.44 д (1H, <i>J</i> 15.7 Гц, 11-H)
12	141.1	_
12-CH ₃	17.8	2.08 c (3H, 12-CH ₃)
13	128.6	5.26 д.д (1Н, Ј 5.1, 9.5 Гц, 13-Н)
14	28.42	2.50-2.60 м (2Н, 14-Н)
15	48.3	2.25 д.т (1Н, <i>J</i> 5.3, 12.3 Гц, 15-Н)
16	65.62	4.35 д.д (1Н, <i>J</i> 5.9, 11.0 Гц, 16-Н) 4.04-4.14 д.д (1Н, <i>J</i> 4.6, 11.0 Гц, 16-Н)
1'	124.6	6.40 c (1H, 1'-H)
2'	140.8	-
2'-CH ₃	17.8	1.76 c (3H, 2'-CH ₃)
OCH ₂ O	96.9	4.67 к (2H, <i>J</i> 7.0Гц)

лица 4. (проволжение).			
Номер атома	¹³ C, CDCl ₃	¹ H, CDCl ₃	
CH ₃ O	56.6	3.37 c (3H, OCH ₃)	
1"	-	_	
2"	165.3	_	
2"-CH ₃	20.2	2.74 c (3H, 2"-CH ₃)	
3"	_	_	
4"	151.7	_	

115.2

Таблица 4. (продолжение)

5"

ванием. Реагенты производства «Alfa-Aestar» «Sigma-Aldrich» (CIIIA), «Lancaster» (CIIIA), (Великобритания) были высшего качества и использовались без дальнейшей очистки, если не указано иное. В работе использовали оборудование ЦКП «Химия» УфИХ РАН. ИК спектры записывали на спектрофотометре UR-20 в тонком слое или вазелиновом масле. Спектры ЯМР ¹Н и ¹³С записаны на спектрометрах Bruker AM-300 [300 МГц (¹H)] и АМ-500 [125 МГц (¹³C)] для растворов веществ в CDCl₃, (D₃C)₂CO, внутренний стандарт - ТМС. Масс-спектры сняты в этаноле на спектрометре Shimadzu LCMS-2010 EV. Для ТСХ анализа применяли хроматографические пластины Sorbfil (Россия). Для колоночной хроматографии применяли силикагель марки «Lancaster» (Великобритания). Оптическое вращение измерено на поляриметре «Perkin-Elmer 241 MC».

(2Z,5S,6E)-5-({[mpem-Бутил(диметил)силил]окси}метил)-2,6-диметил-7-(2-метил-1,3-тиазол-4-ил)гепта-2,6-диеналь (3). К раствору спирта 2 (0.18 г. 0.47 ммоль) в хлористом метилене добавляли йодбензол диацетат (0.21 г. 0.71 ммоль) и ТЕМРО (0.02 г. 0.13 ммоль), перемешивали при комнатной температуре до израсходования исходного спирта (~6 ч, контроль методом ТСХ). Раствор упаривали и остаток хроматографировали на колонке с SiO₂ (элюент 10% EtOAc-петролейный эфир). Выход 0.18 г (92%). Желтая маслянистая жидкость, R_f 0.52 (элюент 25% EtOAc-петролейный эфир), $[\alpha]_D^{20}$ +9.2 (*с* 2.02, CH₂Cl₂). ИК спектр, v, см⁻¹: 2954, 2928, 2857, 1678, 1472, 1253, 1109, 837, 776. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 0.04 с [6H, Si(CH₃)₂], 0.88 с [9H, SiC(CH₃)₃], 1.75 c (3H, =CCH₃), 2.01 c (3H, =CCH₃), 2.41–2.50

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021

м (1H, =CHC<u>H</u>), 2.66–2.76 м (4H, N=CCH₃, =CHC<u>H</u>), 2.89–3.04 м (1H, CH₂C<u>H</u>), 3.60–3.66 м (1H, CHOSi), 3.72–3.77 м (1H, CHOSi), 6.36 с (1H, =CH), 6.53 д.д (1H, =CH, *J* 8.1, 7.2 Гц), 6.88 с (1H, =CHS), 10.16 с (1H, HC=O). Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), δ , м.д.: –5.5, 16.5, 16.9, 18.2, 19.1, 25.8, 26.8, 52.1, 65.3, 115.1, 121.0, 136.6, 139.5, 147.7, 152.7, 164.5, 191.2. Масс-спектр, *m*/*z* (*I*_{0TH}, %): 381 (20) [*M*+H]⁺, 351 (100). Найдено, %: С 63.4; H 8.8; N 3.5; S 8.3. C₂₀H₃₃NO₂SSi. Вычислено, %: C 63.28; H 8.76; N 3.69; S 8.45. *M* 379.63.

6.94 c (1H, 5'-CH₂)

4-[(1E,3S,5Z)-3-({[mpem-Бутил(диметил)силил]окси}метил)-2,6-диметилокта-1,5,7-триен-1-ил]-2-метил-1.3-тиазол (4). К перемешиваемому раствору 5-(метилсульфонил)-1-фенил-1*H*-тетразола (0.14 г, 0.63 ммоль) в 10 мл сухого ТГФ в атмосфере Ar при -78°C добавляли 1.5 М раствор КНМDS в ТГФ (0.4 мл, 0.63 ммоль). После перемешивания реакционной смеси в течение 20 мин добавляли альдегид 3 (0.16 г, 0.42 ммоль) в виде раствора в 3 мл ТГФ. Реакционную смесь перемешивали в течение 30 мин при -78°C, затем температуру реакционной массы повышали до комнатной. Добавляли 20 мл насыщенного раствора NH₄Cl, органический слой отделяли, водный слой обрабатывали этилацетатом (3×20 мл). Объединенные органические экстракты сушили MgSO₄, фильтровали, упаривали, концентрировали под вакуумом, остаток хроматографировали на SiO₂(элюент 9% EtOAc-петролейный эфир). Выход 0.14 г (88%). Светло-желтая жидкость, $R_{\rm f}$ 0.75 (элюент 25% EtOAc-петролейный эфир), $[\alpha]_{D}^{20}$ +1.2 (c 0.50, CH₂Cl₂). ИК спектр, v, см⁻¹: 2954, 2927, 2856, 1472, 1463, 1256, 1252, 1111, 837, 775. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.:

0.03 с [6H, Si(CH₃)₂], 0.88 с [9H, SiC(CH₃)₃], 1.79 с (3H, =CCH₃), 1.98 с (3H, =CCH₃), 2.23–2.42 м (2H, =CHC<u>H₂</u>), 2.51–2.60 м (1H, CH₂C<u>H</u>), 2.71 с (3H, N=CCH₃), 3.57–3.71 м (2H, CH₂OSi), 5.07 д (1H, =CH₂, *J* 10.8 Гц), 5.18 д (1H, =CH₂, *J* 17.2 Гц), 5.38 г (1H, =CH, *J* 7.0 Гц), 6.35 с (1H, =CH), 6.80 д.д (1H, <u>H</u>C=CH₂, *J* 17.2, 10.8 Гц), 6.86 с (1H, =CHS). Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), δ , м.д.: –5.4, 16.8, 18.3, 19.1, 19.8, 25.9, 27.6, 52.3, 65.5, 113.4,114.5, 120.3, 129.0, 133.0, 133.9, 141.4, 153.3, 164.3. Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 379 (33) [M + H]⁺, 433 (100). Найдено, %: С 66.7; H 9.4; N 3.6; S 8.3. С₂₁H₃₅NOSSi. Вычислено, %: С 66.79; H 9.34; N 3.71; S 8.49. *M* 377.66.

(2S,4Z)-5-Метил-2-[(E)-1-метил-2-(2-метил-1,3-тиазол-4-ил)этенил]гепта-4,6-диен-1-ол (5). К перемешиваемому раствору соединения 4 (0.14 г, 0.37 ммоль) в 16 мл смеси растворителей СН₂Сl₂-МеОН (1:1) добавляли моногидрат *n*-толуолсульфоновой кислоты (p-TSA·H₂O) (0.032 г, 0.19 ммоль) при 0°С. Смесь выдерживали при комнатной температуре в течение 5 ч, затем нейтрализовали добавлением NaHCO₃, фильтровали, концентрировали на вакууме, остаток очищали методом колоночной хроматографии на SiO₂ (элюент 70% EtOAc-петролейный эфир). Выход 0.093 г (95%). Бесцветная жидкость, Rf 0.22 (50% EtOAcпетролейный эфир), [а]²⁰+4.4 (с 0.82, CH₂Cl₂). ИК спектр, v, см⁻¹: 3353, 2969, 2923, 2861, 1457, 1437, 1375, 1268, 1183, 1047, 987, 902, 732. Спектр ЯМР ¹Н (500 МГц, CDCl₂), δ, м.д.: 1.76 с (3H, =CCH₂), 2.04 с (3H, =ССН₃), 2.23–2.43 м (2H, =СНСН₂), 2.46–2.54 м (1H, CH₂C<u>H</u>), 2.64 с (3H, N=CCH₃), 2.76 с (1Н, ОН), 3.49-3.67 м (2Н,СН₂ОН), 5.06 д (1H, =CH₂, J 10.8 Гц), 5.18 д (1H, =CH₂, J 17.2 Гц), 5.41 т (1Н, =СН, Ј 6.8 Гц), 6.30 с (1Н, =CH), 6.84 д.д (1H, <u>HC</u>=CH₂, *J* 17.2, 10.8 Гц), 7.07 с (1H, =CHS). Спектр ЯМР ¹³С (125 МГц, CDCl₃-СНСІ3), б, м.д.: 15.1, 18.2, 19.1, 27.5, 53.1, 64.0, 113.0, 115.2, 120.6, 129.3, 132.6, 133.8, 140.1, 153.9, 164.9. Масс-спектр, *m/z* (*I*_{отн}, %): 264 (18) [*M* + H]⁺, 278 (100). Найдено, %: С 68.5; Н 8.0; N 5.1; S 12.2. С₁₅H₂₁NOS. Вычислено, %: С 68.40; Н 8.04; N 5.32; S 12.17. M 263.39.

(1*R*,4*R*,5*S*,6*S*)-1-(1'3'-Дитиолан-2'-ил)-5-гидрокси-1-(метоксиметокси)-2,2,4,6-тетраметил-8-[(1''-фенил-1''*H*-тетразол-5''-ил)сульфонил]- октан-3-он (8) [15]. Светло-желтая жидкость, $[\alpha]_{D}^{20}$ +14.3 (c 1.35, CH₂Cl₂). ИК спектр, v, см⁻¹: 3512, 2971, 2936, 1684, 1498, 1465, 1342, 1152, 1027, 764, 690, 545. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 0.95 д (3H, C⁶CH₃, *J* 6.8 Гц), 1.07 д (3H, C⁴CH₃, J 6.8 Гц), 1.25–1.26 с (6H, 2CH₃-гем), 1.78 т.к.д (1Н, С⁶Н, *J* 6.4, 6.8, 9.5 Гц), 1.87–1.91 м (1Н, С⁷Н), 2.21–2.25 м (1Н, С⁷Н), 3.21–3.25 м (1Н, C⁴H), 3.05–3.20 м (4H, CH₂-дитиолан), 3.40 с (3H, ОСН₃), 3.48 д (1Н, С⁵Н, Ј 9.5 Гц), 3.80 д.т (1Н, С⁸Н, ²*J* 14.6, *J_{транс}* 11.2, *J_{цис}* 4.9 Гц), 3.92 д.т (1Н, C^8 H, ²J 14.6, J_{mpahc} 11.2, J_{uuc} 4.9 Гц), 4.14 д (1H, ОСН₂О, J 5.6 Гц), 4.45 д (1Н, ОСН₂О, J 5.6 Гц), 4.78 д (1H, C¹H, J 5.7 Гц), 4.91 д (1H, CH-дитиолан, J 6.1 Гц), 7.45–7.68 м (3H, Ph), 7.51–7.57 м (2H, Ph). Спектр ЯМР ¹³С (125 МГц, CDCl₃-CHCl₃), δ, м.д.: 10.00, 16.25, 20.00, 23.52, 26.51, 34.45, 38.07, 38.29, 41.43, 53.56, 54.63, 55.53, 56.84, 74.97, 85.52, 99.63, 125.01, 129.63, 129.73, 131.39, 133.01, 153.40, 219.50. Масс-спектр, *m/z* (*I*_{отн}, %): 574 [*M*+ H]⁺. Найдено, %: С 50.46; Н 6.41, N 9.59, S 16.85. С₂₄Н₃₆N₄O₆S₃. Вычислено, %: С 50.33; Н 6.34, N 9.78; S 16.80. M 572.76.

(5R,8R,9S)-5-(1,3-Дитиолан-2-ил)-11,11-диэтил-6,6,8-триметил-9-{(1S)-1-метил-3-[(1-фенил-1*Н*-тетразол-5-ил)сульфонил]пропил}-2,4,10-триокса-11-силатридекан-7-он (9). К перемешиваемому раствору соединения 8 (0.25 г. 0.44 ммоль) в 30 мл CH₂Cl₂ в атмосфере аргона добавляли 2,6-лутидин (0.25 г, 2.18 ммоль) и Et₃SiOTf (0.24 мл, 1.09 ммоль) при 0°С. Полученный раствор перемешивали при этой температуре в течение 20 мин, затем нейтрализовали добавлением 30 мл насыщенного раствора NaHCO₃. Органический слой отделяли, водный слой обрабатывали CH₂Cl₂ (3×30 мл). Объединенные органические экстракты сушили MgSO₄, фильтровали, упаривали, концентрировали под вакуумом, остаток хроматографировали на SiO₂ (20% EtOAc-петролейный эфир). Выход 0.23 г (77%). Бесцветная жидкость, R_f 0.68 (элюент 30% EtOAc-петролейный эфир), [а]_D²⁰ –2.2 (*с* 1.16, CH₂Cl₂). ИК спектр, v, cm⁻¹: 2958, 2877, 1690, 1497, 1458, 1341, 1153, 1023, 990, 763, 740, 689. Спектр ЯМР ¹Н (500 МГц. CDCl₃), б, м.д.: 0.65 к (6Н, SiCH₂, J 7.9 Гц), 0.97 т (9H, SiCH₂C<u>H</u>₃, *J* 7.9 Гц), 1.05 д (3H, CHC<u>H</u>₃, J 6.8 Гц), 1.15 д (3H, CHCH₃, J 6.9 Гц), 1.22 с (3H, CCH₂), 1.31 с (3H, CCH₂), 1.55–1.66 м (1H,

С<u>Н</u>СН₃), 1.68–1.84 м (1H, CH₂), 2.03–2.11 м (1H, CH₂), 3.11–3.16 м (4H, SCH₂CH₂S), 3.21–3.25 м (1H, C<u>H</u>CH₃), 3.42 с (3H, OCH₃), 3.54–3.64 м (1H, CH₂SO₂), 3.79–3.86 м (1H, CH₂SO₂), 3.91 д.д (1H, CHOSi, *J* 7.6, 1.5 Гц), 4.19 д (1H, C<u>H</u>OCH₂OCH₃, *J* 4.2 Гц), 4.48 д (1H, SCHS, *J* 4.2 Гц), 4.78 д (1H, OC<u>H₂OCH₃</u>, *J* 6.0 Гц), 4.93 д (1H, OC<u>H₂OCH₃</u>, *J* 6.0 Гц), 7.58–7.63 м (3H, Ph), 7.69–7.71 м (2H, Ph). Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), δ , м.д.: 5.4, 7.1, 16.0, 17.9, 20.0, 23.0, 23.8, 36.2, 38.0, 38.5, 45.5, 53.4, 54.7, 55.8, 56.8, 78.2, 84.0, 99.4, 125.1, 129.6, 131.4, 133.1, 153.3, 217.0. Масс-спектр, *m/z* (I_{OTH} , %): 688 (33) [*M* + H]⁺. Найдено, %: C 52.3; H 7.3; N 8.0; S 14.1. C₃₀H₅₀N₄O₆S₃Si. Вычислено, %: C 52.45; H 7.34; N 8.16; S 14.00. *M* 687.02.

(5R,8R,9S)-5-(1,3-Дитиолан-2-ил)-11,11-диэтил-6,6,8-триметил-9-[(1S,3E)-1-метилпент-3-ен-1-ил]-2,4,10-триокса-11-силатридекан-7он (10). К перемешиваемому раствору сульфона 9 (0.23 г. 0.33 ммоль) в 35 мл ТГФ в атмосфере аргона добавляли 1.2 М раствор КНМDS в ТГФ (0.42 мл, 0.50 ммоль) при -78°С. Реакционную смесь перемешивали в течение 10 мин, затем добавляли ацетальдегид (29.5 мг, 0.67 ммоль) в 3 мл ТГФ. Смесь выдерживали в течение 20 мин, затем температуру реакционной массы доводили до комнатной. Добавляли 20 мл насыщенного раствора NH₄Cl, органический слой отделяли, водный слой обрабатывали этилацетатом (3×20 мл). Объединенные органические экстракты сушили MgSO₄, фильтровали, упаривали, концентрировали под вакуумом, остаток хроматографировали на SiO₂ (элюент 9% EtOAc-петролейный эфир). Выход 0.14 г, (83%) (Z/E, 1:7).Бесцветная жидкость, $R_{\rm f}$ 0.65 (25% EtOAc-петролейный эфир), $[\alpha]_{D}^{20}$ -0.3 (c 2.74, CH₂Cl₂). ИК спектр, v, см⁻¹: 2956, 2934, 2877, 1692, 1456, 1154, 1023, 990, 739. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 0.61 к (6H, SiCH₂, J 7.9 Гц), 0.87 д (3H, CH<u>Me</u>, J 6.7 Гц), 0.94 т (9H, SiCH₂C<u>H₃</u>, *J* 7.9 Гц), 1.08 д (3H, CHC<u>H₃</u>, J 7.0 Гц), 1.15 с (3H, CCH₃), 1.28 с (3H, CCH₃), 1.31–1.37 м (1Н, СНСН₃), 1.60 д (3Н, =СНСН₃, J 6.1 Гц), 1.68–1.74 м (1H, CH₂), 2.12–2.15 м (1H, CH₂), 3.05–3.15 м (4H, SCH₂CH₂S), 3.18–3.24 м (1H, CHCH₃), 3.39 с (3H, OCH₃), 3.82 д.д (1H, СНОЅі, J 7.4, 2.2 Гц), 4.17 д (1Н, СНОСН₂ОСН₃, J 4.2 Гц), 4.44 д (1H, SCHS, J 4.2 Гц), 4.75 д (1H, ОС<u>Н</u>₂ОСН₃, *J* 6.4 Гц), 4.93 д (1H, ОС<u>Н</u>₂ОСН₃, *J*

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021

6.4 Гц), 5.26–5.32 м (1H, =CH), 5.34–5.40 м (1H, =CH). Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), δ, м.д.: 5.5, 7.1, 15.6, 17.8, 17.9, 19.3, 24.4, 33.8, 37.9, 38.5, 45.1, 53.3, 56.0, 56.7, 78.1, 84.3, 99.5, 126.0, 130.0, 217.0. Масс-спектр, *m/z* (*I*_{отн}, %): 506 (21) [*M* + H]⁺. Найдено, %: С 59.3; Н 9.4; S 12.6. С₂₅H₄₈O₄S₂Si. Вычислено, %: С 59.47; Н 9.58; S 12.70. *M* 504.86.

(2R.5R.6S.7S.9E)-2-(Метоксиметокси)-3.3.5.7тетраметил-4-оксо-6-[(триэтилсилил)окси]ундека-9-еналь (11). К перемешиваемому раствору соединения 10 (0.14 г, 0.27 ммоль) в 10 мл смеси растворителей ацетон-вода (4:1) добавляли СаСО₂ (0.83 ммоль) и MeI (2,7 ммоль) порциями в течение 5-6 ч при 50-60°С. К реакционной смеси добавляли CH₂Cl₂, сушили над MgSO₄, фильтровали, упаривали, остаток хроматографировали на SiO₂ (элюент 20% EtOAc-петролейный эфир). Выход 0.06 г (59%). Бесцветная жидкость, R_f 0.65 (элюент 25% EtOAc-петролейный эфир), $[\alpha]_D^{20}$ +6.5 (с 1.058, CH₂Cl₂). ИК спектр, v, см⁻¹: 2957, 2936, 2913, 2877, 1729, 1710, 1653, 1471, 1108, 1049, 1032, 985, 737. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 0.62, 0.64 (6Н, перекрывающиеся квартеты, Si-CH₂, J 8.0 Гц), 0.88 д (3H, CHC<u>H</u>₃, J 6.8 Гц), 0.97 д (9Н, 5-СН₃, J 7.8 Гц), 1.10 д (3Н, 5-С<u>Н</u>₃, J 7.2 Гц), 1.26 с (3Н, ССН₃), 1.33 с (3Н, ССН₃), 1.63 д (3H, =СНС<u>Н</u>₃, *J* 5.5 Гц), 1.52–1.70 м (2H), 2.08-2.13 м (1Н), 3.05-3.18 м (1Н, 7-Н), 3.39 с (3H, OCH₂), 3.75 с (1H, 2-H), 3.84 д (1H, CHOSi, J 7.0 Гц), 4.67 к (2Н, ОСН2ОСН2, Ј 6.2 Гц), 5.25-5.50 м (2H, H⁹, H¹⁰), 9.72 д (1H, CHO, J 2.4 Гц). Спектр ЯМР ¹³С (125 МГц, CDCl₃-CHCl₃), б, м.д.: 5.4 (SiCH₂), 7.0 (SiCH₂CH₃), 15.8 (CH₃), 17.9 (CH₃), 18.0 (CH₃), 22.0 (CH₃), 22.4 (CH₃), 33.4 (C⁸), 37.3 (C^7) , 44.8 (C^5) , 53.4 (C^3) , 56.2 (OCH_3) , 78.4 (C^6) , 86.7 (C²), 97.6 (OCH₂O), 126.1 (C¹⁰), 130 (C⁹), 202.3 (C¹), 216.5 (C⁴). Масс-спектр, *m/z* (*I*_{отн}, %): 427.4 $(100) [M + H]^+$. M 428.67.

(2*R*,5*R*,6*S*,7*S*,9*E*)-2-(Метоксиметокси)-3,3,5,7тетраметил-4-оксо-6-[(триэтилсилил)окси]ундека-9-еновая кислота (12). К перемешиваемому раствору альдегида 11 (0.06 г, 0.14 ммоль) в 13.2 мл смеси растворителей *t*-BuOH–ТГФ–H₂O (5:5:1) добавляли 2,3-диметилбут-2-ен (2.1 мл), Na₂HPO₄ (0.06 г, 0.35 ммоль) и NaClO₂ (0.08 г, 0.73 ммоль). Реакционную массу перемешивали

при комнатной температуре в течение 16 ч и затем фильтровали. Осадок на фильтре промывали EtOAc (10 мл), фильтрат сушили над MgSO₄ и концентрировали. Остаток хроматографировали на SiO₂ (элюент 50% EtOAc-петролейный эфир). Выход 0.05 г (82%). Желтая маслянистая жидкость, $R_{\rm f}$ 0.23 (EtOAc), $[\alpha]_{\rm D}^{20}$ +9 (с 0.13, CH₂Cl₂). ИК спектр, v, см⁻¹: 3396, 2957, 2931, 2876, 2855, 1723, 1697, 1457, 1046, 999, 737, 726. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 0.65 т (6Н, SiCH₂, J 7.9 Гц), 0.88 (1H, 7-CH₃, J 6.8 Гц), 0.97 т (9H, SiCH₂CH₃, J 7.7 Гц), 1.2 д (3H, 5-H, J 7.0 Гц), 1.27 с (3H, 3-CH₃), 1.32 с (3H, 3-CH₃), 1.63 д (3H, =CH₃, J 5.3 Гц), 1.50–1.60 м (2Н), 2.11–2.15 м (1Н), 3.17 т.д (1Н, 5-Н, J7.2, 13.5 Гц), 3.79–3.88 м (1Н, 6-Н), 4.40 с (1Н, 2-Н), 5.25-5.40 м (2Н, 9Н, 10-Н). Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), б, м.д.: 5.5 (SiCH₂), 7.0 (SiCH₂CH₃), 12.9 (CH₃), 17.7 (CH₃), 17.9 (CH₃), 20.7 (CH₃), 22.6 (CH₃), 33.7 (C⁸), 37.9 (C^7) , 44.7 (C⁵), 56.5 (OCH₃), 78.2 (C⁶), 80.9 (C²), 97.4 (OCH₂O), 126.0 (C⁹), 130.1 (C¹⁰), 174.6 (C¹), 217.0 (С⁴). Масс-спектр, *m/z* (*I*_{0TH}, %): 443.0 (100) $[M - H]^{-}$. M 444.67.

(2S,4Z)-5-Метил-2-[(E)-1-метил-2-(2-метил-1,3-тиазол-4-ил)винил]гепта-4,6-диен-1ил(2R,5R,6S,7S,9E)-2-(метоксиметокси)-3.3.5.7-тетраметил-4-оксо-6-[(триэтилсилил)окси]ундека-9-еноат (13). а. Методика с использованием реагента Ямагучи. К перемешиваемому раствору кислоты 12 (0.06 г, 0.135 ммоль) в 10 мл ТГФ в атмосфере аргона добавляли Et₃N (0.027 г, 0.27 ммоль) и 2,4,6-трихлорбензоил хлорид (0.033 г, 0.135 ммоль). Реакционную массу перемешивали при комнатной температуре 2 ч, затем добавляли раствор спирта 5 (0.035 г, 0.135 ммоль) в 1 мл ТГФ. Затем DMAP (0.004 г, 0.034) разбавляли 0.5 мл ТГФ и добавляли порциями в течение 5 ч. Реакционную смесь концентрировали в вакууме, остаток очищали колоночной хроматографией (элюент 9% EtOAc-петролейный эфир). Выход 0.020 г (21%). Светло-желтая жидкость, R_f 0.44 (20% EtOAc-петролейный эфир), $[\alpha]_D^{20}$ -7 (с 0.2, CH₂Cl₂). ИК спектр, v, см⁻¹: 2936, 1744, 1701, 1460, 1369, 1154, 1040, 994, 738. Спектр ЯМР ¹Н (500 МГц, ацетон-*d*₆), δ, м.д.: 0.67 м (6H, SiCH₂), 0.89 д (3Н, 7-СН₃, *J* 6.9 Гц), 0.94-0.97 м (9Н, SiCH₂CH₃), 1.08 д (3H, 5-CH₃, *J* 6.9 Гц), 1.16 с (3H, 3-СН₃), 1.30 с (3H, 3-СН₃), 1.45–1.51 м (1H, 8-H),

1.63 д (3Н, 11-Н, Ј 4.7 Гц), 1.74–1.78 м (1Н, 8-Н_А), 1.79 c (3H, 5'-CH₂), 2.11 c (3H, 1"-CH₂), 2.19–2.23 м (1H, 9-H_B), 2.41 д.т (1H, 3'-H, *J* 14.6, 8.1, 7.3 Гц), 2.52 д.д.д (1Н, 3'-Н, J 14.6, 7.3, 7.3 Гц), 2.62–2.68 м (1H, 15-H), 2.66 с (3H, 2^{'''}-CH₃), 3.24–3.29 м (1H, 6-Н), 3.27 с (3Н, СН₃О), 3.84–3.89 м (1Н, 6-Н), 4.15 д.д (1Н, 1'-Н, Ј 11.0, 6.0 Гц), 4.32 д.д (1Н, 1'-Н, Ј 11.0, 8.2 Гц), 4.38 с (1Н, 2-Н), 4.55–4.59 м (2H, OCH₂O), 5.10 д (1H, 7'-H_{иис}, J_{иис} 10.9 Гц), 5.23 д (1Н, 7'-Н_{транс}, *J*_{транс} 17.1 Гц), 5.37–5.41 м (1Н, 9-Н), 5.40–5.45 м (1Н, 10-Н), 5.42–5.48 м (1Н, 4'-Н), 6.37 с (1Н, 2"-Н), 6.87 д.д (1Н, 6'-Н, J 17.1, 10.9 Гц), 7.13 с (1Н, 5"'-Н). Спектр ЯМР ¹³С (125 МГц, ацетон-d₆), δ, м.д.: 5.91 (SiCH₂), 7.22 (SiCH₂CH₂), 15.60 (5-CH₂), 15.74 (1"-CH₂), 17.68 (7-CH₃), 18.93 (2^{'''}-CH₃), 19.92 (5[']-CH₃), 20.42 (3-CH₃), 22.70 (3-CH₃), 28.59 (C^{3'}), 34.65 (C⁸), 38.92 (C^7) , 44.79 (C^5) , 51.69 (C^3) , 56.45 (CH_3O) , 66.56 (C¹), 78.67 (C⁶), 82.20 (C²), 97.56 (OCH₂O), 114.19 $(C^{7'})$, 116.58 $(C^{5'''})$, 122.04 $(C^{2''})$, 126.54 (C^{10}) , 128.98 (C⁴), 131.05 (C⁹), 134.18 (C⁶), 139.26 (C¹"), 155.74 $(C^{4'''})$, 164.71 $(C^{2'''})$, 171.23 (C^1) , 216.37 (C^4) . M 690.06.

(2S,4Z)-5-Метил-2-[(E)-1-метил-2-(2-метил-1,3-тиазол-4-ил)винил]гепта-4,6-диен-1-ил-2,4,6-трихлорбензоат (14). Выход 0.0029 г (5%). Бесцветная жидкость, R_f 0.51 (EtOAc-петролейный эфир, 4:1), [а]_D²⁰ –8.40, (с 3.355, CH₂Cl₂). ИК спектр, v, см⁻¹: 3082, 2970, 2925, 2856, 1739, 1576, 1549, 1507, 1437, 1373, 1272, 1120, 856, 734. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м.д.: 1.78 с (CH₃), 2.15 с (СН₃), 2.45 д.т (1Н, СН₂, J 14.9, 7.9 Гц), 2.55 д.т (1H, CH₂, J 14.9, 6.8 Гц), 2.63 с (CH₃), 2.75 д.д.д (1Н, СН, Ј 6.2, 8.2, 14.4 Гц), 4.45 д.д (1Н, СН₂О, Ј 9.7, 11.0 Гц), 4.55 д.д (1Н, СН₂О, Ј 10.4, 11.0 Гц), 5.10 д (1Н, =СН₂, *J* 10.9 Гц), 5.22 д (1Н, =CH₂, *J* 17.2), 5.45 д.д (1H, CH, *J* 7.2, 7.3 Гц), 6.40 с (1Н, 2'-Н), 6.85 д.д (1Н, 6-Н, J 10.8, 17.3 Гц), 7.10 (1H, SCH=), 7.55 уш.с (2H_{аром}), 7.55 уш.с (2H_{аром}). Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), δ, м.д.: 14.9 (CH₃), 18.4 (CH₃), 19.2 (CH₃), 27.7 (CH₂), 48.90 (CH), 67.4 (CH₂O), 113.6 (=CH₂), 115.9 (S-CH=), 121.6, 127.8, 128.2, 128.7 (Счетв), 132.2 (Счетв), 132.5 (С_{четв}), 133.5, 136.0, 137.8, 153.5 (С_{четв}), 163.4 (CO), 163.9 [CH₃C(S⁻)=N⁻]. Масс-спектр, *m/z* $(I_{\text{отн}}, \%)$: 472.1 (100) $[M + \text{H}]^+$. M 470.84.

b. Методика с использованием реагента Мукаямы. К перемешиваемому раствору кис-ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021 лоты 12 (0.03 г, 0.067 ммоль) и спирта 5 (0.018 г, 0.067 ммоль) в 10 мл CH_2Cl_2 в атмосфере аргона добавляли 1-метил-2-бромпиридиний йодид (0.04 г, 0.013), затем DMAP (0.033 г, 0.27 ммоль). Реакционную массу перемешивали при комнатной температуре 2 ч, затем фильтровали, упаривали, концентрировали под вакуумом, остаток хроматографировали на SiO₂ (элюент 9% EtOAc–петролейный эфир). Выход 0.02 г (45%).

(3R,6R,7S,8S,10E,12Z,15S)-3-(Метоксиметокси)-7-[(триэтилсилил)окси]-4,4,6,8,12пентаметил-15-[(Е)-1-(2-метилтиазол-4-ил)проп-1-ен-2-ил]оксациклогексадека-10,12-диен-2,5-дион (15а) и его 3S-изомер (15b). a. К перемешиваемому раствору соединения 13 (0.064 г. 0.093 ммоль) в 93 мл (1.0 ммоль) дегазированного CH₂Cl₂ добавляли второго поколения реагент Граббса (10 мол %). Смесь перемешивали при комнатной температуре в течение 12 ч, фильтровали через слой SiO₂, промывая последовательно CH₂Cl₂ и Et₂O. Объединенные фильтраты концентрировали в вакууме и остаток очищали колоночной хроматографией на SiO₂ (элюент 9% EtOAc-петролейный эфир). Выход 0.012 г (20%). Бесцветная жидкость, Rf 0.36 (25% EtOAc-петролейный эфир), [а]_D²⁰-10.6 (с 0.43, CH₂Cl₂).

Мажорный изомер 15а. Спектр ЯМР ¹Н (500МГц,CDCl₃), б, м.д.: 0.62–0.66м(9H,CH₃–SiEt₃), 0.96–1.00 м (6H, CH₂–SiEt₃), 1.03 д (3H, 8-CH₃, ³J 6.9 Гц), 1.08 с (3H, 4-CH₃), 1.10 д (3H, 6-CH₃, ³J 6.8 Гц), 1.32 с (3H, 4-CH₃), 1.42–1.46 м (1H, 8-H), 1.80 с (3H, 12-СН₃), 2.01–2.05 м (1H, 9-Н_A), 2.09 с (3H, 3'-H), 2.09–2.13 м (1H, 14-H_A), 2.18–2.22 м (1H, 9-H_в), 2.33–2.35 м (1H, 15-H), 2.70 с (3H, 2"-CH₃), 3.02 д.д.д (1H, 14-H_B, ²J 13.6, ³J_{14B-13} 11.4, ³*J*_{14В-15} 6.1 Гц), 3.21–3.23 м (1Н, 6-Н), 3.36 с (3Н, СН₃О), 3.85 д.д (1Н, 7-Н, ³*J*₇₋₈ 7.7, ³*J*₆₋₇ 1.8 Гц), 4.21-4.23 м (2Н, 16-Н), 4.43 с (1Н, 3-Н), 4.67 с (2Н, ОСН₂О), 5.36 д.д (1Н, 13-Н, ³*J*_{13-14B} 11.4, ³*J*_{13-14B} 5.2 Гц), 5.74 д.д.д (1Н, 10-Н, ³J₁₀₋₁₃ 15.7, ³J_{10-9A} 10.7, ³*J*_{10-9В} 4.3 Гц), 6.38 с (1Н, 1'-Н), 6.71 д (1Н, 11-Н, ³*J*₁₁₋₁₀ 15.7 Гц), 6.90 с (1Н, 5"-Н).Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), б, м.д.: 5.49 (CH₃-SiEt₃), 7.07 (CH₂-SiEt₃), 16.73 (6-CH₃), 17.71 (C³), 18.25 (8-CH₃), 19.17 (2"-CH₃), 20.50 (12-CH₃), 20.69 (4-CH₃), 23.10 (4-CH₃), 27.65 (C¹⁴), 35.50 (C⁹), 39.78 (C⁸), 44.26 (C⁶), 48.06 (C¹⁵), 51.81 (C⁴), 56.84

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021

(CH₃O), 65.23 (C¹⁶), 78.15 (C⁷), 80.00 (C³), 96.90 (OCH₂O), 115.26 (C^{5"}), 120.02 (C^{1'}), 126.17 (C¹³), 128.99 (C¹¹), 129.12 (C¹⁰), 133.50 (C¹²), 139.86 (C^{2'}), 153.04 (C^{4"}), 164.42 (C^{2"}), 170.52 (C²), 216.77 (C⁵).

Минорныйизомер 15b. Спектр ЯМР ¹Н (500 МГц, CDCl₃), б, м.д.: 0.64–0.66 м (9Н, CH₃– SiEt₃), 0.97–0.99 м (6Н, CH₂–SiEt₃), 1.11 д (3Н, 6-CH₃, ³J 6.8 Гц), 1.14 с (3H, 4-CH₃), 1.32 с (3H, 4-СН₂), 1.47–1.49 м (1Н, 8-Н), 1.79 с (3Н, 12-СН₃), 2.03–2.05 м (1Н, 9-Н_A), 2.08 с (3Н, 3'-Н), 2.21–2.23 м (1Н, 9-Н_в), 2.42–2.44 м (1Н, 14-Н_д), 2.57–2.59 м (1H, 14-H_в), 2.58–2.60 м (1H, 15-H), 2.71 с (3H, 2"-СН₃), 3.22–3.24 м (1H, 6-H), 3.42 с (3H, CH₃O), 3.85 д.д (1H, 7-H, ³J₇₋₈ 7.9, ³J₆₋₇ 1.7 Гц), 3.97 д.д (1H, 16-H_A, ²J 10.7, ³J_{16A-15} 11.2 Гц), 4.37 д.д (1H, 16-H_B, ²J 10.7, ³J_{16B-15} 3.4 Гц), 4.52 с (1H, 3-H), 4.73 д (1H, H_A-OCH₂O, ²*J* 7.0 Гц), 4.78 д (1Н, Н_В-ОСН₂О, ²*J* 7.0 Гц), 5.35 д.д (1H, 13-H, ³*J*_{13-14B} 9.9, ³*J*_{13-14B} 7.1 Гц), 5.79 д.д.д (1H, 10-H, ${}^{3}J_{10-13}$ 15.5, ${}^{3}J_{10-9A}$ 9.3, ${}^{3}J_{10-9B}$ 4.9 Гц), 6.28 с (1H, 1'-H), 6.69 д (1H, 11-H, ³J₁₁₋₁₀ 15.7 Гц), 6.90 с (1Н, 5"-Н). Спектр ЯМР ¹³С (125 МГц, CDCl₂-CHCl₂), б, м.д.: 5.52 (CH₂-SiEt₂), 7.10 (CH_2-SiEt_3) , 16.96 (6-CH₃), 18.00 (C^{3'}), 18.31 (8-CH₃), 19.19 (2"-CH₃), 20.50 (12-CH₃), 20.82 (4-CH₃), 23.52 (4-CH₃), 27.39 (C¹⁴), 34.46 (C⁹), 39.82 (C^8) , 44.78 (C^6) , 49.62 (C^{15}) , 51.45 (C^4) , 56.99 (CH₃O), 65.76 (C¹⁶), 78.22 (C⁷), 80.28 (C³), 97.17 (OCH₂O), 115.32 (C^{5"}), 120.04 (C^{1'}), 124.43 (C¹³), 129.26 (C^{10}), 129.38 (C^{11}), 134.52 (C^{12}), 138.83 (C²), 152.95 (C⁴"), 164.52 (C²"), 170.59 (C²), 217.44 (C⁵). Macc-cnektp, m/z (I_{0TH2} %): 648.5 [M + H]⁺. M647.98.

b. К перемешиваемому раствору соединения 13 (0.04 г, 0.058 ммоль) в 60 мл (1.0 ммоль) дегазированного CH_2Cl_2 добавляли второго поколения реагент Граббса (10 мол %). Смесь перемешивали при комнатной температуре в течение 6 ч, фильтровали через слой SiO₂,промывая последовательно CH_2Cl_2 и Et₂O. Объединенные фильтраты концентрировали в вакууме и остаток очищали колоночной хроматографией на SiO₂ (элюент 9% EtOAc–петролейный эфир). Выход 0.0175 г (45%).

(3*R*,6*R*,7*S*,8*S*,10*E*,12*Z*,15*S*)-7-Гидрокси-3-(метоксиметокси)-4,4,6,8,12-пентаметил-15-[(*E*)-1-(2-метилтиазол-4-ил)проп-1-ен-2-ил]оксациклогексадека-10,12-диен-2,5-дион (1). К пе-

ремешиваемому раствору соединения 15 (0.0175 г. 0.027 ммоль) в 10 мл смеси растворителей МеОН-EtOH (1:1) добавляли камфора-10-сульфокислоту (15 мол %). Смесь выдерживали при комнатной температуре в течение 4 ч, затем нейтрализовали добавлением насыщенного раствора NaHCO₂, упаривали, водный слой обрабатывали этилацетатом (3×10 мл). Объединенные органические экстракты сушили MgSO₄, фильтровали, упаривали, концентрировали под вакуумом, остаток хроматографировали на SiO₂(элюент 25% EtOAc-петролейный эфир). Выход 0.0085 г (60%). Бесцветное масло, $R_{\rm f}$ 0.52 (элюент 50% EtOAc-петролейный эфир), $[\alpha]_{D}^{20}$ +42 (c 0.17, CH₂Cl₂). Спектр ЯМР ¹Н (500 МГц, CDCl₃), б, м.д.: 0.99 с (3H, CH₃), 1.02 д (3H, 6-CH₃, *J* 6.8 Гц), 1.13 д (3H, CH₃, *J* 6.8 Гц), 1.30 с (3Н, СН₃), 1.76 с (СН₃), 1.95 пентет (1Н, J 6.7 Гц), 2.08 с (CH₃), 2.05–2.12 м (1Н), 2.25 д.т (1Н, J 5.3, 12.3 Гц), 2.50–2.60 м (2H), 2.74 с (CH₃), 3.27 д.к (1H, J 6.8, 2.4 Гц), 3.37 с (3H, OCH₃), 3.45–3.36 м (1Н, ОН), 3.76 д.д (1Н, J 2.0, 6.8 Гц), 4.04-4.14 д.д (1Н, J 4.6, 11.0 Гц), 4.35 д.д (1Н, J 5.9, 11.0 Гц), 4.37 с (1H, 3-H), 4.67 к (2H, J 7.0 Гц), 5.26 д.д (1H, J 5.1, 9.5 Гц), 5.70 д.д.д (1H, 10-H, J 6.0, 15.3, 8.9, 6.0 Гц), 6.40 с (1Н), 6.44 д (1Н, 11-Н, J 15.7 Гц), 6.94 с (1Н). Спектр ЯМР ¹³С (125 МГц, CDCl₃–CHCl₃), δ, м.д.: 12.25, 16.26, 17.8, 20.2, 20.5, 21.5 (СН₃), 28.42, 36.15 (2CH₂), 36.36, 40.0, 48.3, 52.5, 56.6 (OCH₃), 65.62 (CH₂O), 72.35 (C⁷), 78.65 (C³), 96.9 (OCH₂O), 115.2, 124.6, 128.6, 130.3, 134.8, 140.8, 141.1, 151.7, 165.3, 170.1, 218.4. Масс-спектр, *m/z* $(I_{\text{OTH}}, \%)$: 534 (100) $[M + \text{H}]^+$. *M* 533.72.

выводы

Нами описан разработанный полный синтез из R-(–)-карвона нового 10,11-дегидроаналога эпотилона D. Ключевые этапы этого синтеза включают оригинальный вариант дециклизации R-(–)карвона с сохранением его Z-тризамещенной двойной связи с получением важной спиртовой компоненты сложного эфира для RCM-циклизации; в синтезе новой топологии кислотной компоненты данного эфира задействованы R-(–)-пантолактон (8 стадий) и хиральный метилсодержащий блок (6 стадий); в финале межмолекулярная конденсация кислотной и спиртовой компонент и внутримолекулярная циклизация полученного α , ω -непредельного эфира выполнена с использованием катализатора Граббса. В итоге целевой аналог Еро 1 получен из *R*-(–)-карвона в 16 стадий с общим выходом 1.1%.

БЛАГОДАРНОСТИ

Спектральная часть исследования и теоретические вычисления проведены на оборудовании ЦКП «Химия» УфИХ УФИЦ РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (тема «Направленные синтезы природных и неприродных биоактивных соединений, конструирование новых структур для оптоэлектроники», госзадание АААА-А20-120012090021-4 и № АААА-А17-117011910032-4) и финансовой поддержке РФФИ (грант № 20-33-90039 Аспиранты).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОКЛИТЕРАТУРЫ

- Kingston D.G.I. Chem. Biol. 2004, 11, 153–155. doi 10.1016/j.chembiol.2004.02.009
- Feyen F., Cachoux F., Gertsch J., Wartmann M., Altmann K.-H. Acc. Chem. Res. 2008, 41, 21–31. doi 10.1021/ar700157x
- Harris C.R., Danishefsky S.J. J. Org. Chem. 1999, 64, 8434–8456. doi 10.1021/jo991006d
- 4. Monti C., Sharon O., Gennari C. *Chem. Commun.* **2007**, 4271–4273.doi 10.1039/B708820E
- Gerth K., Bedorf N., Höfle G., Irshik H., Reichenbach H. J. Antibiotics. 1996, 49, 560–563. doi 10.7164/antibiotics.49.560
- 6. Mulzer J., Altmann K.-H., Höfle G., Müller R., Prantz K. C. R. Chim. **2008**, *11*, 1336–1368.
- http://www.cancer.gov/cancertopics/druginfo/fdaixabepilone
- Biswas K., Lin H., Njardarson J.T., Chappel M.D., Chou T.-C., Guan Y., Tong W.P., He L., Horwitz S.B., Danishefsky S.J. *J. Am. Chem. Soc.* 2002, *124*, 9825– 9832. doi 10.1021/ja0262333
- Scholl M., Ding S., Lee C.W., Grubbs R.H. Org. Lett. 1995, 1, 953–956. doi 10.1021/o1990909q
- Scholl M., Trnka T.M., Morgan J.P., Grubbs R.H. Tetrahedron Lett. 1999, 40, 2247–2250. doi 10.1016/ S0040-4039(99)00217-8

- Valeev R.F., Bikzhanov R.F., Yagafarov N.Z., Miftakhov M.S. *Tetrahedron*. 2012, 68, 6868–6872. doi 10.1016/j.tet.2012.06.020
- Валеев Р.Ф., Бикжанов Р.Ф., Мифтахов М.С. ЖОрХ.
 2015, 51, 679–682. [Valeev R.F., Bikzhanov R.F., Miftakhov M.S. Russ. J. Org. Chem. 2015, 51, 660– 663.] doi 10.1134/S1070428015050139
- De Mico A., Margarita R., Parlanti L., Vescovi A., Piancatelli G. J. Org. Chem. 1997, 62, 6974–6977. doi 10.1021/jo971046m
- Blakemore P.R., Cole W.J., Kocienski P.J., Morley A. Synlett. 1998, 1, 26–28. doi 10.1055/s-1998-1570
- Валеев Р.Ф., Сунагатуллина Г.Р., Мифтахов М.С. *ЖОрХ.* 2017, 53, 1651–1654. [Valeev R.F., Sunagatullina G.R., Miftakhov M.S. *Russ. J. Org. Chem.* 2017, 53, 1687–1690.] doi 10.1134/ S1070428017110136
- Валеев Р.Ф., Сунагатуллина Г.Р., Лоза В.В., Мифтахов М.С. *ЖОрХ*. 2018, 54, 1535–1539. [Valeev R.F., Sunagatullina G.R., Loza V.V., Miftakhov M.S. *Russ. J. Org. Chem.* 2018, 54, 1548–1552.] doi 10.1134/ S1070428018100172

- Evans D.A., Ennis M.D., Mathre D.J. J. Am. Chem. Soc. 1982, 104, 1737–1739. doi 10.1021/ja00370a050
- Bull S.D., Davies S.G., Jones S., Sanganee H.J. J. Chem. Soc. Perkin Trans. 1. 1999, 52, 387–398. doi 10.1039/A809715A
- 19. Kotha S., Mandal K. *Eur. J. Org. Chem.* **2006**, *23*, 5387–5393. doi 10.1002/ejoc.200600549
- Sytniczuk A., Dabrowski M., Banach L., Urban M., Czarnocka–Sniadala S., Milewski M., Kajetanowicz A., Grela K. J. Am. Chem. Soc. 2018, 140, 8895–8901. doi 10.1021/jacs.8b04820
- Inanaga J., Kirata K., Saeki H., Katsuki T., Yamaguchi M. *Bull. Chem. Soc. Jpn.* **1979**, *52*, 1989–1993. doi 10.1246/bcsj.52.1989
- Mukaiyama T., Usui M., Shimada E., Saigo K. Chem. Lett. 1975, 4, 1045–1048. doi 10.1246/ cl.1975.1045
- Kocienski P.G. Protecting Groups. Stuttgard, New York: Thieme. 1994, 129–131. doi 10.1002/ ange.19951071834

Synthesis of the New 10,11-Didehydro Analogue of Epothilone D

R. F. Valeev, G. R. Sunagatullina, V. V. Loza, A. N. Lobov, and M. S. Miftakhov*

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, prosp. Oktyabrya, 71, Ufa, 450054 Russia *e-mail: bioreg@anrb.ru

Received December 29, 2020; revised January 11, 2021; accepted January 13, 2021

A chiral 10,11-didehydro analogue of epothilone D with isosteric substitution at the $C^{15}-C^3$ region of natural epothilones was synthesized.

Keywords: epothilone D, analogs, synthesis, sources of chirality, D-carvone, (+)-pantolactone, Evans oxazolidin-2-one, intermolecular esterification, Yamaguchi and Mukayama reagents, metathesis cyclic closure, Grubbs reagent