— КРАТКИЕ СООБЩЕНИЯ

УДК 547.849:547.31:547.914.4

СИНТЕЗ ТРИТЕРПЕНОИДА С ЭТИЛИДЕНОВЫМ ФРАГМЕНТОМ В ЦИКЛЕ Е ИЗ АЛЛОБЕТУЛИНА

© 2021 г. З. И. Галимова, М. С. Бабаев, А. Н. Лобов, О. Б. Казакова*

Уфимский Институт химии – обособленное структурное подразделение ФГБНУ «Уфимского федерального исследовательского центра РАН», 450054, Россия, Уфа, просп. Октября, 71 *e-mail: obf@anrb.ru

> Поступила в редакцию 18.02.2021 г. После доработки 11.03.2021 г. Принята к публикации 14.03.2021 г.

Из аллобетулина через стадию его превращения в 3 β -ацетокси-21 β -ацетил-20 β ,28-эпокси-18 α ,19 β H-урсан с последующей кислотно-катализируемой дегидратацией продукта восстановления ацетильного фрагмента синтезировали тритерпеноид с транс-этилиденовым заместителем в цикле E, структура которого установлена с использованием двумерных корреляционных методик {¹H, ¹H} COSY, {¹H, ¹H} NOESY, {¹H, ¹³C} HMBC.

Ключевые слова: бетулин, аллобетулин, урсановые тритерпеноиды

DOI: 10.31857/S0514749221060148

Один из наиболее доступных производных лупанового тритерпеноида бетулина – аллобетулин 1 [1], относящийся к группе тритерпеноидов ряда германикана – достаточно редкому классу природных соединений [2]. Среди тритерпеноидов с 19β,28-эпокси-18α-олеанановым остовом выявлены соединения с противоязвенной и противовоспалительной [3], противовирусной [4–6], цитотоксической [7], иммунорегуляторной [8] и другими видами биологической активности. В результате раскрытия тетрагидрофуранового кольца аллобетулина синтезированы тритерпеноиды ряда олеан-18(19)-ена и 20(21)-урсена, такие как морадиол и гетеробетулин [9-12]. Из бетулина получены α,β-непредельные метилкетоны 18αH,19βH-урсанового типа с последующей гетероциклизацией до пиразолинов [13]. Нами показано, что в среде HClO₄-Ac₂O 3-ацетокси- или 3-оксоаллобетулин превращаются в 3β-ацетокси-21β-ацетил-20β,28эпокси-18α,19βН-урсан (2) [12] и 3,28-диацетокси-21-ацетил-2(3),20(21)-18α,19βН-урсандиен [14], обладающие противовирусной активнос-тью.

В литературе нам удалось найти несколько примеров по превращению тритерпеноидов с ацетильной группой в структуре до этилиденовой через стадию восстановления с последующей дегидратацией [15–17]. Соединение **2** содержит в своей структуре ацетильную группу в положении С²¹, в настоящей работе проведена модификация этого тритерпеноида с образованием производного с этилиденовым фрагментом.

Взаимодействием 3β-ацетокси-21β-ацетил-20β,28-эпокси-18α,19βН-урсана (2) с алюмогидридом лития при кипячении в ТГФ мы планировали получить 3,31-дигидрокси-производное, однако продуктом реакции стало соединение 3 с этилиденовым фрагментом (выход 73%) (схема 1). Его образование может быть объяснено кислотно-катализируемой дегидратацией восстановленного ацетильного фрагмента, образующегося в ре-

896

Реагенты и условия: *i*, HClO₄, Ac₂O, 140°C, 5 ч; *ii*, LiAlH₄, TΓΦ, Δ, 4 ч, 10% HCl; *iii*, AcCl, CH₃CN, Δ, 5 ч.

зультате обработки реакционной массы 10%-ным раствором HCl. TCX-анализ реакционной массы указывал на наличие одного продукта реакции, хотя ожидаемо образование изомерных алкенов. Известно, что *транс*-алкены более стабильны, чем *цис*-изомеры, и обычно выступают основным образующимся продуктом [18]. Соединение **3** под действием хлористого ацетила в ацетонитриле превратили в производное **4** с пятичленным циклом A, аналогичные превращения под действием кислотных катализаторов описаны ранее [19–21].

Структуры соединений **3** и **4** установлены с использованием двумерных корреляционных методик {¹H, ¹H} COSY, {¹H, ¹H} NOESY, {¹H, ¹³C} HSQC и {¹H, ¹³C} HMBC. В спектре ЯМР ¹³C соединения **3** наблюдаются сигналы двойной связи: СН-группа при δ_C 117.04 м.д. и четвертичный углерод при δ_C 137.99 м.д., а также сигнал метильной группы при двойной связи при δ_C 12.67 м.д. Положение и ориентация этилиденового фрагмента относительно цикла Е были локализованы на основании HMBC, COSY и NOESY корреляций (рис. 1). В HMBC спектре с четвертичным сигналом при δ_C 137.99 м.д. коррелируют протоны

метильных групп в положении C^{30} и C^{32} (δ_H 1.16 и 1.57 м.д.), а также метиновый протон H¹⁹ (б_н 1.50 м.д.) и метиленовый протон H_{β}^{22} (δ_{H} 2.07 м.д.). Наблюдаемая квартет-триплетная мультиплетность сигнала протона двойной связи при $\delta_{\rm H}$ 5.35 м.д. обусловлена спин-спиновым взаимодействием с метильной группой (б_н 1.57 м.д.) с характерной величиной ³Ј 6.7 Гц и дальним взаимодействием с протонами H_{a}^{22} и H_{B}^{22} (⁴*J* 2.9 Гц). В спектре NOESY наблюдаются кросс-пики между протоном двойной связи Н³¹ и метильными протонами H^{30} (δ_H 5.35 и 1.16 м.д. соответственно), а также между протонами метильной группы при двойной связи H^{32} (δ_H 1.57 м.д.) и метиленовыми протонами в положении Н²² (б_Н 2.07 и 1.88 м.д.), что однозначно указывает на транс-конфигурацию двойной связи.

Перестройка шестичленного цикла А в пятичленный с изопропильным заместителем в положении С³ подтверждена данными ЯМР ¹³С: две метиленовые группы при $\delta_{\rm C}$ 26.52 (C¹), 27.60 (C²) м.д., метиновая группа с $\delta_{\rm C}$ 59.22 (C³) м.д., два четвертичных углерода с $\delta_{\rm C}$ 42.82 (C⁵), 141.85 (C²) м.д. и сигналы изопропильной группы при $\delta_{\rm C}$ 29.87

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021

Рис. 1. Значимые HMBC, COSY и NOESY корреляции соединения **3**

(C⁴), 22.94 (C²³) и 23.13 (C²⁴) м.д., для которых наблюдаются взаимодействия в спектрах HMBC и COSY (рис. 2). Локализация двойной связи в положении C⁹, C¹⁰ проведена на основании HMBC кросс-пиков H⁶_{eq} ($\delta_{\rm H}$ 1.78 м.д.) и H²⁵ ($\delta_{\rm H}$ 0.82 м.д.) с четвертичным сигналом двойной связи при $\delta_{\rm C}$ 141.85 м.д., а также H¹_{ax} ($\delta_{\rm H}$ 1.96 м.д.) и H²⁶ ($\delta_{\rm H}$ 1.11 м.д.) с сигналом C⁹ при $\delta_{\rm C}$ 131.24 м.д. β-Положение изопропильной группы установлено на основании NOESY кросс-пика H⁴ ($\delta_{\rm H}$ 1.58 м.д.) с метильной группой H²⁵ ($\delta_{\rm H}$ 0.82 м.д.), которая в свою очередь взаимодействует в спектре NOESY с метильной группой H²⁶ ($\delta_{\rm H}$ 1.11 м.д.).

3β-Гидрокси-21-*транс*-этилиден-20β,28эпокси-18а,19ВН-урсан (3). К раствору 0.53 г (1 ммоль) соединения 2 в 30 мл абсолютизированного ТГФ добавляли 0.11 г (3 ммоль) LiAlH₄ и кипятили с обратным холодильником 4 ч, затем добавляли 100 мл H₂O и 10 мл HCl (10%). Продукт реакции экстрагировали CHCl₃ (3×15 мл), органический слой промывали H₂O (3×100 мл), сушили над CaCl₂, растворитель упаривали в вакууме и хроматографировали на колонке с Al₂O₃ (элюент петролейный эфир-этилацетат, 10:0→5:1). Выход 0.34 г (73%), R_f 0.54, т.пл. 179–180°С, $[\alpha]_D^{20}$ +19° (c 0.025, CHCl₃). Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.70 д.д (1H, H⁵, ³*J*_{5-6ax} 12.6, ³*J*_{5-6eq} 2.4 Гц), 0.72 д (3H, H²⁹, ${}^{3}J_{29-19}$ 6.9 Гц), 0.77 с (3H, H²⁴), 0.77 д.д.д (1H, H¹⁸, ${}^{3}J_{18-13}$ 10.9, ${}^{3}J_{18-19}$ 6.1, ${}^{4}J_{18-28A}$ 1.5 Γμ), 0.85 c (3H, H²⁵), 0.91 c (3H, H²⁷), 0.95 м (1H, H¹_{ax}), 0.97 c (3H, H²³), 0.99 c (3H, H²⁶), 1.03 д.д.д (1Н, H¹⁵_{eq}, ²J 13.7, ³J_{15eq-16ax} 4.5,

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021

Рис. 2. Значимые HMBC, COSY и NOESY корреляции соединения **4**

³ $J_{15eq-16eq}$ 2.7 Γμ), 1.00–1.08 м (1H, H¹²_{ax}), 1.16 c (3H, H³⁰), 1.16 д.д.д (1H, H¹⁶_{eq}, ²J 13.9, ³ $J_{16eq-15ax}$ 4.1, ³ $J_{16eq-15eq}$ 2.7 Γμ), 1.27 к.д (1H, H¹¹_{ax}, ²J 12.2, ³ $J_{11ax-12ax}$ 12.2, ³ J_{11ax-9} 12.2, ³ $J_{11ax-12eq}$ 4.3 Γμ), 1.34 д.д (1H, H⁹, ${}^{3}J_{9-11ax}$ 12.6, ${}^{3}J_{9-11eq}$ 2.4 Гц), 1.35–1.39 м (1H, H⁷_{eq}), 1.35–1.43 м (1H, H⁷¹_{ax}), 1.35–1.43 м (1H, H_{ax}^{6}), 1.41 д.д.д (1H, H_{ax}^{16} , ²J 13.9, ³J_{16ax-15ax} 13.9, ³J_{16ах-15ед} 4.4 Гц), 1.47–1.53 м (1Н, Н¹⁹), 1.48–1.54 м (1H, H¹⁵_{ax}), 1.51–1.55 м (1H, H⁶_{eq}), 1.54–1.58 м (1H, H¹¹_{eq}), 1.57 д (3H, H³², ³J₃₂₋₃₁ 6.7 Гц), 1.58 к.д (1H, H_{ax}^2 , ²J 11.5, ³J_{2ax-3} 11.5, ³J_{2ax-1ax} 11.5, ³J_{2ax-1eq} 4.5 Гц), 1.64 м (1H, H_{eq}^2), 1.68 т.д (1H, H^{13} , ³J₁₃₋₁₈ 11.7, ${}^{3}J_{13-12ax}$ 11.7, ${}^{3}J_{13-12eq}$ 3.4 Гц), 1.72 м (1H, H¹_{eq}), 1.71–1.75 м (1H, H²_{eq}), 1.88 д.т (1H, H²²_a, ${}^{2}J$ 16.8, ³*J*_{22α-28B} 2.9, ⁴*J*_{22α-31} 2.9 Гц), 2.07 д.д (1H, H²²_β, ²*J* 16.8, ⁴*J*_{22β-31} 2.9 Гц), 3.20 д.д (1Н, Н³, ³*J*_{3-2ах} 11.5, ${}^{3}J_{3-2eq}$ 4.9 Γ u), 3.24 д.д (1H, H_A²⁸, ${}^{2}J$ 8.5, ${}^{4}J_{28A-18}$ 1.5 Γ u), 4.21 д.д (1H, H_B²⁸, ${}^{2}J$ 8.5, ${}^{4}J_{28B-22a}$ 2.9 Γ u), 5.35 к.т (1H, H³¹, ${}^{3}J_{31-32}$ 6.7, ${}^{4}J_{31-22\alpha}$ 2.9, ${}^{4}J_{31-22\beta}$ 2.9 Гц). Спектр ЯМР¹³С (CDCl₃), δ, м.д.: 12.67 (C^{32}) , 14.31 (C^{27}) , 15.38 (C^{24}) , 15.77 (C^{26}) , 16.38 (C^{25}) , 18.26 (C^{6}) , 20.06 (C^{29}) , 20.75 (C^{3}) , 21.29 (C^{11}) , 25.72 (C¹²), 26.59 (C¹⁵), 27.42 (C²), 27.99 (C²³), 29.90 (C^{16}) , 33.00 (C^{17}) , 33.96 (C^{7}) , 37.20 (C^{10}) , 38.86 (C^{1}) , 38.88 (C⁴), 39.80 (C¹³), 40.73 (C⁸), 40.96 (C²²), 41.38 $(C^{14}), 42.99 (C^{19}), 46.48 (C^{18}), 50.80 (C^{9}), 55.45$ (C^5) , 68.89 (C^{28}) , 74.95 (C^{20}) , 78.97 (C^3) , 117.04 (C³¹), 137.99 (C²¹). Найдено, %: С 82.00; Н 11.17. Масс-спектр, *m/z* (*I*_{отн}, %): 469.4 [*M*]⁺. С₃₂H₅₂O₂. Вычислено, %: С 81.99; Н 11.18. М 468.75.

α-нео-5β-Метил-25-нор-9-ен-21-*транс*-этилиден-20β,28-эпокси-18α,19βH-урсан (4). К раствору 0.47 г (1 ммоль) соединения 3 в 15 мл осушенного CH₃CN прикапывали 1 мл свежеперегнанного AcCl и кипятили с обратным холодильником 5 ч. Смесь выливали в 100 мл холодной воды, выпавший осадок отфильтровывали, промывали водой до нейтральной реакции, сушили на воздухе, кристаллизовали из гексана. Выход 0.31 г (68%), R_f 0.76, т.пл. 107–108°С, [а]_D²⁰ +88° (с 0.025, CHCl₃). Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 0.73 д (3H, H²⁹, ${}^{3}J_{29-19}$ 6.9 Гц), 0.80 с (3H, H²⁷), 0.82 с (3H, H²⁵), 0.82 д.д.д (1Н, Н¹⁸, ³*J*₁₈₋₁₃ 10.9, ³*J*₁₈₋₁₉ 6.1, ⁴*J*_{18-28A} 1.5 Гц), 0.91 д (3H, H²⁴, ³J₂₄₋₄ 6.8 Гц), 0.95 д (3H, H²³, ³*J*₂₃₋₄ 6.8 Гц), 0.97–1.07 м (1H, H¹²_{ax}), 1.04–1.07 м (1H, H³), 1.11 с (3H, H²⁶), 1.17 с (3H, H³⁰), 1.19 с (1H, H¹⁶_{ea}), 1.26–1.29 м (1H, H⁶_{ax}), 1.30–1.34 м (1H, H¹⁵_{eq}), 1.31–1.35 м (1Н, H⁷_{eq}), 1.35–1.39 м (1Н, H²_A), 1.39–1.45 м (1Н, Н¹⁶_{ах}), 1.41–1.47 м (1Н, Н¹⁵_{ах}), 1.53– 1.58 м (1H, H¹⁹), 1.58 д (3H, H³², ³J₃₂₋₃₁ 6.7 Гц), 1.56–1.60 м (1H, H⁴), 1.63–1.67 м (1H, H¹²_{eq}), 1.76– 1.80 м (1H, H⁶_{eq}), 1.84 д.д.д (1H, H¹³, ³J₁₃₋₁₈ 11.9, ${}^{3}J_{13-12ax}$ 11.4, ${}^{3}J_{13-12eq}$ 3.4 Гц), 1.84–1.88 м (1H, H_B²), 1.87–1.93 м (1H, H_{α}^{22}), 1.90–1.94 м (1H, H_{ax}^{7}), 1.94– 1.98 м (1Н, Н¹¹_{ах}), 2.09 д.д (1Н, Н²²_β, ²*J* 16.7, ⁴*J*_{22β-31} 2.6 Гц), 2.20–2.24 м (1H, H_A⁻¹), 2.25–2.29 м (1H, H_B⁻¹), 2.31–2.35 м (1Н, Н¹¹_{eq}), 3.26 д.д (1Н, Н²⁸_A, ²J 8.5, ⁴*J*_{28A-18} 1.5 Гц), 4.26 д.д (1Н, Н_B²⁸, ²*J* 8.5, ⁴*J*_{28B-22α} 2.9 Гц), 5.37 к.т (1Н, Н³¹, ³J₃₁₋₃₂ 6.7, ⁴J_{31-22α} 3.8, ⁴*J*₃₁₋₂₂₆ 2.6 Гц). Спектр ЯМР ¹³С (CDCl₃), δ, м.д.: $12.73 (C^{32}), 16.39 (C^{27}), 18.01 (C^{25}), 20.09 (C^{29}),$ 20.82 (C^{30}), 22.94 (C^{23}), 23.13 (C^{24}), 25.61 (C^{12}), 25.68 (C^{26}), 26.46 (C^{11}), 26.52 (C^{1}), 27.32 (C^{15}), 27.60 (C²), 29.50 (C⁷), 29.87 (C⁴), 30.02 (C¹⁶), 33.17 (C^{17}) , 37.38 (C^{6}) , 40.49 (C^{8}) , 40.98 (C^{22}) , 41.25 (C^{13}) , 41.68 (C¹⁴), 42.82 (C⁵), 43.02 (C¹⁹), 46.38 (C¹⁸), 59.22 (C^3), 68.97 (C^{28}), 75.02 (C^{20}), 117.10 (C^{31}), 131.24 (С9), 138.08 (С21), 141.85 (С10). Найдено, %: С 85.27; Н 11.18. Масс-спектр, *m/z* (*I*_{отн}, %): 451.3 [*M*]⁺. С₃₂Н₅₀О. Вычислено, %: С 85.30; Н 11.21. *М* 450.74.

Температуру плавления синтезированных соединений определяли на микростолике «Boetius». Оптическое поглощение измеряли на поляриметре «Perkin-Elmer 241 MC» (Германия) в трубке длиной 1 дм. ТСХ-анализ проводили на пластинках Сорбфил (ЗАО Сорбполимер, Россия), используя систему растворителей хлороформ—этилацетат, 40:1. Вещества обнаруживали 10%-ным раствором серной кислоты с последующим нагреванием при 100–120°С в течение 2–3 мин. Элементный анализ осуществляли на CHNS-анализаторе ЕигиEA-3000, основной стандарт ацетанилид. Масс-спектры соединений снимали на приборе Thermo Finnigan MAT 95 XP. Спектры ЯМР ¹Н и ¹³С зарегистрированы на импульсном спектрометре «Bruker» Avance III с рабочей частотой 500.13 (¹H) и 125.47 (¹³C) МГц с использованием 5 мм датчика с Z-градиентом РАВВО при постоянной температуре образца 298 К. Химические сдвиги в спектрах ЯМР ¹H и ¹³С приведены в м.д. отно-сительно сигнала внутреннего стандарта тетраметилсилана (TMC).

выводы

Из аллобетулина через стадию его превращения в 3β-ацетокси-21β-ацетил-20β,28-эпокси-18α,19βH-урсан с последующей кислотно-катализируемой дегидратацией продукта восстановления ацетильного фрагмента синтезировали тритерпеноид с *транс*-этилиденовым заместителем в цикле Е, который далее превратили в производное с пятичленным циклом А.

БЛАГОДАРНОСТИ

ЯМР, масс-спектры записаны на оборудовании ЦКП «Химия» УфИХ УФИЦ РАН и РЦКП «Агидель» УфИЦ РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках проекта РФФИ (№ 19-33-60083) и темы Госзадания (№ АААА-А20-120012090029-0).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Толстиков Г.А., Флехтер О.Б., Шульц Э.Э., Балтина Л.А., Толстиков А.Г. Хим. в интересах устойч. развития. 2005, 1, 1–30.
- Dehaen W., Mashentseva A. A., Seitembetov T.S. Molecules. 2011, 16, 2443–2466. doi 10.3390/ molecules16032443
- Флехтер О.Б., Медведева Н.И., Карачурина Л.Т., Балтина Л.А., Галин Ф.З., Зарудий Ф.С., Толстиков Г.А. *Хим.-фарм. ж.* 2005, *39*, 401–404. [Flekhter O.B., Medvedeva N.I., Karachurina L.T., Baltina L.A., Galin F.Z., Zarudii F.S., Tolstikov G.A. *Pharm.*

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 6 2021

Chem. J. **2005**, *39*, 401–404.] doi 10.30906/0023-1134-2005-39-8-9-12

- Бореко Е.И., Павлова Н.И., Савинова О.В., Флехтер О.Б., Нигматуллина Л.Р., Балтина Л.А., Галин Ф.З., Толстиков Г.А. Пат. 7809 (2005). Респ. Беларусь.
- Галайко Н.В., Толмачева И.А., Гришко В.В., Волкова Л.В., Перевозчикова Е.Н., Пестерева С.А. *Биоорг. Хим.* 2010, *36*, 556–562. [Galayko N.V., Tolmacheva I.A., Grishko V.V., Volkova L.V., Perevozchikova E.N., Pestereva S.A. *Russ J. Bioorg. Chem.* 2010, *36*, 516–521.] doi 10.1134/S1068162010040114
- Khusnutdinova E.F., Kazakova O.B., Lobov A.N., Kukovinets O.S., Suponitsky K.Yu., Meyers C.B., Prichard M.N. Org. Biomol. Chem. 2019, 17, 585–597. doi 10.1039/C8OB02624F
- Хуснутдинова Э.Ф., Смирнова И.Е., Казакова О.Б. *XПС*. **2020**, *56*, 465–471. [Khusnutdinova E.F., Smirnova I.E., Kazakova O.B. *Chem. Nat. Compd.* **2020**, *56*, 465–471.] doi 10.1007/s10600-020-03064-5
- Gein S.V., Grishko V.V., Baeva T.A., Tolmacheva I.A. *Int. J. Pharmacol.* 2013, *9*, 74–79. doi 10.3923/ ijp.2013.74.79
- Klinot J., Vystrčil A. Collect. Czech. Chem. Commun. 1964, 29, 516–530.
- Казакова О.Б., Хуснутдинова Э.Ф., Толстиков Г.А., Супоницкий К.Ю. Биоорг. Хим. 2010, 36, 552–555. [Kazakova O.B., Khusnutdinova E.F., Tolstikov G.A., Suponitsky K.Yu. Russ. J. Bioorg. Chem. 2010, 36, 512–515.] doi 10.1134/S1068162010040102
- Kazakova O.B., Giniyatullina G.V., Yamansarov E.Y., Tolstikov G.A. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4088–4090. doi 10.1016/j.bmcl.2010.05.083

- Khusnutdinova E.F., Medvedeva N.I., Kazakov D.V., Kukovinets O.S., Lobov A.N., Suponitsky K.Y., Kazakova O.B. *Tetrahedron Lett.* 2016, *57*, 148–151. doi 10.1016/j.tetlet.2015.11.086
- Nazarov M.A., Tolmacheva I.A., Grishko V.V. Arkivoc. 2019, vi, 267–276. doi 10.24820/ark.5550190.p011.035
- Babaev M., Khusnutdinova E., Lobov A., Galimova Z., Petrova A., Rybalova T., Nguyen H.T.T., Meyers C., Prichard M., Kazakova O. *Nat. Prod. Res.* 2020, 1–11. doi 10.1080/14786419.2020.1855159
- Klinot J., Hovorkova N., Vystrcil A. Collect. Czech. Chem. Commun. 1970, 35, 1105–1119. doi 10.1002/ chin.197025170
- Klinotova E., Hovorkova N., Klinot J., Vystrčil A. Collect. Czech. Chem. Commun. 1973, 38, 1179–1189. doi 10.1135/cccc19731179
- Wang M., Li H., Liu W., Cao H., Hu X., Gao X., Xu F., Li Z., Hua H., Li D. *Eur. J. Med. Chem.* 2020, *189*, 112087. doi 10.1016/j.ejmech.2020.112087
- Рэмсден Е.Н. *Начала современной химии*. Ред.
 В.И. Барановский, А.А. Белюстин, А.И. Ефимов,
 А.А. Потехин. Л.: Химия, **1985**, 645–648.
- Li T. S., Wang J. X., Zheng X. J. J. Chem. Soc., Perkin Trans. 1. 1998, 23, 3957–3966. doi 10.1039/A806735J
- Pakulski Z., Cmoch P., Korda A., Luboradzki R., Gwardiak K., Karczewski R. J. Org. Chem. 2021, 86, 1084–1095. doi 10.1021/acs.joc.0c02560
- Kazakova O.B., Khusnutdinova E.F., Lobov A.N., Medvedeva N.I., Spirikhin L.V. *Chem. Nat. Compd.* 2011, 47, 579. doi 10.1007/s10600-011-9999-9

ГАЛИМОВА и др.

Synthesis of Triterpenoid with an Ethylidene Fragment in the E Cycle from Allobetulin

Z. I. Galimova, M. S. Babaev, A. N. Lobov, and O. B. Kazakova*

Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Science, prosp. Oktyabrya, 71, Ufa, 450054 Russia *e-mail: obf@anrb.ru

Received February 18, 2021; revised March 11, 2021; accepted March 14, 2021

On the basis of 3β-acetoxy-21β-acetyl-20β,28-epoxy-18 α ,19βH-ursan, synthesized from allobetulin, with further acid-catalyzed dehydration of the reduction product's acetyl group, a new derivative with a *trans*-ethylidene fragment in the E cycle was obtained, its structure was established on the basis of two-dimensional NMR techniques (¹H–¹H COSY, ¹H–¹H NOESY, ¹H–¹³C HSQC, ¹H–¹³C HMBC).

Keywords: betulin, allobetulin, ursane type triterpenoids