УДК 547.46.052

СИНТЕЗ И ОПТИЧЕСКИЕ СВОЙСТВА ПРОИЗВОДНЫХ ЭТИЛ-2-ЦИАНО-2-[3,4-ДИЦИАНОПИРИДИН-2(1*H*)-ИЛИДЕН]АЦЕТАТА

© 2021 г. С. С. Чунихин*, О. В. Ершов

ФГБОУ ВО «Чувашский государственный университет им. И.Н. Ульянова», Россия, 428015 Чебоксары, Московский просп., 15 *e-mail: chunikhinss@mail.ru

> Поступила в редакцию 15.03.2021 г. После доработки 25.03.2021 г. Принята к публикации 27.03.2021 г.

Производные этил-2-циано-2-[3,4-дицианопиридин-2(1*H*)-илиден]ацетата были получены в результате взаимодействия 2-хлорпиридин-3,4-дикарбонитрилов с этилцианоацетатом. Исследование флуоресценции показало, что максимум твердофазной эмиссии располагается в диапазоне 619–641 нм, максимумы испускания в зависимости от растворителя находятся в интервале 392–486 нм.

Ключевые слова: нитрилы, полицианосоединения, пиридин, флуоресценция

DOI: 10.31857/S0514749221070119

ВВЕДЕНИЕ

Сопряженные полицианосодержащие молекулы – весьма распространены и применяются для создания донорно-акцепторных хромофоров. В настоящее время подобные структуры активно используются в качестве сенсибилизаторов в ячейках Гретцеля [1], нелинейно-оптических материалов [2, 3], эффективных хемосенсоров [4, 5]. Одним из перспективных полицианосодержащих структурных элементов выступает трицианобутадиеновый фрагмент. Простота синтеза молекул с таким фрагментом позволила получить хромофоры как линейного [6, 7], так и циклического строения [8-13]. Среди них наиболее полезные, с прикладной точки зрения, - азотсодержащие гетероциклы- трицианопирролы [8-10] и трицианопиридины (ТСРу) [11–13]. Ранее нами были исследованы оптические свойства серии хромофоров, относящихся к классу ТСРу, содержащих дополнительную цианогруппу в положении 4 гетероцикла (4-CN-TCPy) [14]. Эти структуры проявили значительный сольватохромизм, твёрдофазную флуоресценцию в красной и ближней ИК области [14], а также хемосенсорную активность в отношении ряда газообразных аминов [15].

Наряду с цианогруппой, акцепторным эффектом также обладают карбонилсодержащие заместители, к примеру, сложноэфирный. Синтез никотинонитрильных производных цианоуксуного эфира включает два основных подхода. Первый метод основан на реакциях гетероциклизации с участием 2-(этоксикарбонил)-3-аминопентендинитрила [16–18]. Второй подход основан на замещении галогена в производных 2-бромникотинонитрила [19, 20], но представлен единичными результатами. Исследования [16–20] носили лишь синтетический характер и не рассматривали соединения в качестве D- π -A хромофоров с полезными оптическими свойствами.

Цель настоящего исследование – синтез и изучение оптических свойств ранее неизвестных производных этил-2-циано-2-[3,4-дицианопиридин-2(1*H*)-илиден]ацетата.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез производных этил-2-циано-2-[3,4-дицианопиридин-2(1*H*)-илиден]ацетата **2а–е** на основе Схема 1

хлорпиридинов **1а–е** (схема 1). Поиск оптимальных условий реакции показал, что взаимодействие между 2-хлорпиридин-3,4-дикарбонитрилами **1** [21, 22] и этилцианоацетатом проходит в среде ДМФА в присутствии карбоната цезия с образованием целевых соединений **2а–е** с выходом 72–83%.

Структура синтезированных соединений **2а**-е подтверждена методами ИК, ЯМР ¹Н спектроскопии и масс-спектрометрии. Интересная особенность полученных пиридинов **2** заключается в обнаруженной таутомерии в растворах (схема 2). Так, для соединения **2а** спектры ЯМР ¹Н были сняты в нескольких растворителях. Обнаружено, что в ДМСО- d_6 соотношение таутомеров **2а** к **2а'** составляет 3:1, в хлороформе-d – приблизительно 2:1, а в трифторуксусной кислоте-d и пиридине- d_5 присутствует только одна форма.

Полученные соединения 2 представляют собой кристаллические вещества красного цвета, которые флуоресцируют как в твёрдой фазе, так и в органических растворителях. Сольватохромные свойства были изучены на примере соединения 2d (см. таблицу, рис. 1). Выявлено, что в апротонных растворителях при увеличении полярности

происходит батохромный сдвиг полосы поглощения, расположенной в УФ области. Этот факт даёт основания отнести эту полосу поглощения к π - π * электронному переходу. В то же время длинноволновая полоса поглощения при увеличении полярности растворителя смещается гипсохромно, что позволяет отнести её к внутримолекулярному электронному переходу. Замена растворителя позволяет смещать УФ полосу поглощения на 31 нм (от 331 до 362 нм), а длинноволновую полосу – на 37 нм (от 480 до 517 нм).

Максимум испускания флуоресценции варьируется в зависимости от растворителя в широком интервале 392–486 нм (рис. 2). Наибольший батохромный сдвиг 486 нм наблюдается для неполярного дихлорметана. Также в длинноволновую область сдвигают максимум эмиссии растворители основного характера (пиридин, ДМФА, ДМСО).

Исследование структурного обрамления соединений **2а–е** показало, что заместители в положениях 5 и 6 пиридинового цикла оказывают незначительное влияние на спектры поглощения (см. таблицу). Большинство соединений характеризуется двумя выраженными максимумами при 331–346 и

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 7 2021

Соединение	Растворитель	λ _{abs} , нм	ε, М ^{−1} см ^{−1}	Жидкофазная флуоресценция		Твердофазная флуоресценция	
				λ_{em} , нм ^а	Интенсивность, у.е.	λ _{em} , нм ^b	Интенсивность, у.е.
2 a	ΤΓΦ	338 494	23865 3060	436	43	619	163
2b	ΤΓΦ	336 498	35455 5896	421	68	641	33
2c	ΤΓΦ	336 510	35663 4071	389	401	626	632
2d	ΤΓΦ	331 511	27903 3499	392	204	634	
	EtOH	342 481	27024 3243	408	875		153
	ДМФА	358 491	43992 3392	486	42		
	ДМСО	356 480	46260 4209	436	42		
	Пиридин	362 480	49519 3509	454	78		
	НСООН	335 493	43315 7417	454	56		
	MeCN	338 503	40221 6155	401	147		
	CH ₂ Cl ₂	343 517	34135 5611	392	140		
2e	ΤΓΦ	346 515	23359 3901	449	387	634	183

Оптические свойства соединений 2а-е

494–515 нм в ТГФ. Введение ароматического заместителя приводит к батохромному смещению длинноволновой полосы на 15–20 нм.

Область испускания соединений **2а**-е в ТГФ варьируется в интервале от 389 до 449 нм, что соответствует фиолетовой и синей фотолюминесценции. Обнаружено, что арильный заместитель приводит к значительному усилению интенсивности флуоресценции. Твёрдофазная эмиссия соединений **2а**-е находится в красной области и характеризуется максимумами испускания в пределах 619–641 нм (см. таблицу).

Для донорно-акцепторных систем, обладающих чёткой конфигурацией сопряжённых связей, как правило, не характерен столь мощный батохромный сдвиг твёрдофазного испускания, по сравнению с жидкофазным. По-видимому, это связано с тем, что в твёрдом состоянии для соединений **2** характерна таутомерная форма с экзоциклической двойной связью, вовлекающая в сопряжение цианогруппу и сложноэфирный фрагмент. А в растворе присутствует форма **2'** с эндоциклической двойной связью. В таком виде степень сопряжения молекулы понижается, что должно приводить к гипсохромному сдвигу флуоресценции, по сравнению с таутомерной формой **2**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на Фурьеспектрометре ФСМ-1202 (Россия) в тонком слое ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 7 2021

Рис. 1. Спектры поглощения соединения **2d** в различных растворителях: *l* – ДМФА; *2* – ДМСО; *3* – пиридин; *4* – ацетонитрил; *5* – ТГФ; *6* – дихлорметан (*C* = 10⁻⁵ моль/л)

(суспензия в вазелиновом масле). Спектры ЯМР ¹Н зарегистрированы на спектрометре Bruker DRX-500, внутренний стандарт ТМС. Масс-спектры записаны на приборе Finnigan MATINCOS-50 (ионизация ЭУ, 70 эВ) (США). Элементный анализ выполнен на CHN-анализаторе Thermo Flash 1112. Спектры поглощения сняты на приоре Cary 60. Спектры флуоресценции сняты на приборе Cary Eclipse (США). Температуры плавления определены на автоматическом приборе OptiMelt MPA100

Рис. 2. Нормализованные спектры флуоресценции соединения **2d** в различных растворителях: *1* – этанол; *2* – ДМФА; *3* – ДМСО; *4* – пиридин; *5* – муравьиная кислота; *6* – ацетонитрил; *7* – ТГФ; *8* – дихлорметан (*C* = 10⁻⁵ моль/л, длина волны возбуждения 350 нм)

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 7 2021

(США). Контроль за ходом реакций и чистотой синтезированных соединений осуществлён методом TCX на пластинах Sorbfil ПТСХ-АФ-А-УФ, элюент EtOAc, проявление УФ облучением, парами иода и термическим разложением.

Этил-2-[5,6-диметил-3,4-дицианопиридин-2(1H)-илиден]-2-цианоацетат (2a). Смесь 0.766 г (4 ммоль) 2-хлор-5,6-диметилпиридин-3,4-дикарбонитрила (1а), 0.452 г (4.5 ммоль) цианоуксусного эфира и 1.467 г (4.5 ммоль) карбоната цезия перемешивали при 60°С в 8 мл ДМФА в течение 24 ч. После окончания реакции (ТСХ) реакционную массу охлаждали, выливали в 50 мл дистиллированной воды, добавляли по каплям конц. HCl до рН 3.0-4.0. Выпавший осадок отфильтровывали, промывали водой и изопропиловым спиртом, после чего сушили в вакуумном эксикаторе. Красные кристаллы. Выход 0.944 г (88%), т.пл. 174–175°С (разл.). ИК спектр (КВг), v, см⁻¹: 3240–3115 (NH), 2217, 2200 (C=N), 1731 (C=O), 1630 (C=C). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м.д.: 1.24–1.28 м (3H + 3H', CH₂CH₂), 2.32 c (3H, CH₃), 2.54 c (3H', CH₃), 2.59 c (3H, CH₃), 2.61 с (3H', CH₃), 4.20–4.26 м (2H + 2H', CH₂), 6.21 с (1Н', CH), 14.82 уш.с (1Н, NH). Спектр ЯМР ¹Н (CDCl₃), б, м.д.: 1.34–1.39 м (3H + 3H', CH₂C<u>H₃</u>), 2.40 c (3H, CH₃), 2.58 c (3H, CH₃), 2.62 c (3H', CH₃), 2.72 с (3H', CH₃), 4.28–4.38 м (2H + 2H', CH₂), 5.30 с (1H', CH), 15.61 уш.с (1H, NH). Спектр ЯМР ¹Н (пиридин-*d*₅), δ, м.д.: 1.08 т (3H, CH₂C<u>H₃</u>, J 7.1 Гц), 2.01 с (3H, CH₃), 2.27 с (3H, CH₃), 4.19 к (2H, CH₂, *J* 7.1 Гц). Спектр ЯМР ¹Н (CF₃COOD), δ, м.д.: 1.85–1.93 м (3H, CH₂C<u>H₃</u>), 2.98 с (3H, CH₃), 3.14-3.21 м (3Н, СН₃), 4.84-4.88 м (2Н, СН₂). Масс-спектр, *m/z* (*I*_{отн}, %): 268 (86) [*M*]⁺. Найдено, %: C 62.63; H 4.49; N 20.86; O 11.92. C₁₄H₁₂N₄O₂. Вычислено, %: C 62.68; H 4.51; N 20.88; O 11.93.

Соединения 2b-е получали аналогично.

Этил-2-циано-2-[3,4-дициано-5,6,7,8-тетрагидрохинолин-2(1*H*)-илиден]ацетат (2b). Получен из 0.75 г (3.44 ммоль) соединения 1b. Красные кристаллы. Выход 0.842 г (83%), т.пл. 178–179°С (разл.). ИК спектр (КВг), v, см⁻¹: 3230–3110 (NH), 2210, 2196 (С=N), 1727 (С=О), 1621 (С=С). Спектр ЯМР ¹H (ДМСО-*d*₆), δ, м.д.: 1.24–1.28 м (3H + 3H', СН₂С<u>Н</u>₃), 1.72–1.90 м (4H + 4H', 2CH₂), 2.68–2.75 м (2H + 2H', CH₂), 2.90–2.99 м (2H + 2H', CH₂), 4.20–4.26 м (2H + 2H', С<u>H</u>₂CH₃), 6.23 с (1H', CH). Масс-спектр, *m/z* (*I*_{отн}, %): 294 (30) [*M*]⁺. Найдено, %: С 65.33; Н 4.82; N 19.01; О 10.89. С₁₆Н₁₄N₄O₂. Вычислено, %: С 65.30; Н 4.79; N 19.04; О 10.87.

Этил-2-[6-фенил-3,4-дицианопиридин-2(1*H*)-илиден]-2-цианоацетат (2с). Получен из 0.75 г (3.13 ммоль) соединения 1с. Красные кристаллы. Выход 0.713 г (72%), т.пл. 211–212°С (разл.). ИК спектр (КВг), v, см⁻¹: 3242–3110 (NH), 2215, 2205 (С \equiv N), 1729 (С \equiv O), 1625 (С \equiv C). Спектр ЯМР ¹H (CDCl₃), δ , м.д.: 1.39 т (3H + 3H', CH₂CH₃, *J* 6.6 Гц), 4.36 к (2H + 2H', CH₂CH₃, *J* 7.1 Гц), 5.41 с (1H', CH), 7.03 с (1H, CH_{Pyr}), 7.55–7.60 м (2H', Ph), 7.65–7.74 м (5H + 1H', Ph), 8.13–8.15 м (2H', Ph), 8.16 с (1H, CH_{Pyr}), 15.90 уш.с (1H, NH). Массспектр, *m/z* (I_{0TH} , %): 268 (62) [*M*]⁺. Найдено, %: С 68.31; H 3.86; N 17.69; O 10.09. C₁₈H₁₂N₄O₂. Вычислено, %: C 68.35; H 3.82; N 17.71; O 10.12.

Этил-2-[5-метил-6-фенил-3,4-дицианопиридин-2(1*H*)-илиден]-2-цианоацетат (2d). Получен из 0.75 г (2.95 ммоль) соединения 1d. Красные кристаллы. Выход 0.781 г (80%), т.пл. 205–206°С (разл.). ИК спектр (КВг), v, см⁻¹: 3231–3115 (NH), 2212, 2195 (С=N), 1737 (С=О), 1621 (С=С). Спектр ЯМР ¹H (ДМСО-*d*₆), δ, м.д.: 1.20–1.25 м (3H + 3H', CH₂CH₃), 2.38 с (3H, CH₃), 2.54 с (3H', CH₃), 4.11–4.35 м (2H + 2H', C<u>H</u>₂CH₃), 6.33 с (1H', CH), 7.57–7.81 м (5H + 5H', Ph), 15.01 уш.с (1H, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 330 (66) [*M*]⁺. Найдено, %: С 69.11; H 4.26; N 16.99; О 9.65. С₁₉H₁₄N₄O₂. Вычислено, %: С 69.08; H 4.27. N 16.96; О 9.69.

Этил-2-[5-метил-6-(4-метоксифенил)-3,4дицианопиридин-2(1*H*)-илиден]-2-цианоацетат (2е). Получен из 0.75 г (2.64 ммоль) соединения 1е. Выход 0.714 г (75%), т.пл. 168–169°С (разл.). Красные кристаллы. ИК спектр (КВг), v, см⁻¹: 3225–3110 (NH), 2214, 2210 (С=N), 1728 (С=О), 1622 (С=С). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м.д.: 1.23 т (3H + 3H', CH₂CH₃, *J* 7.1 Гц), 2.39 с (3H, CH₃), 2.54 с (3H', CH₃), 3.87 с (3H + 3H', OCH₃), 4.15–4.25 м (2H + 2H', CH₂), 6.30 с (1H', CH), 7.10–7.25 м (2H + 2H', C₆H₄), 7.66–7.71 м (2H + 2H', C₆H₄), 15.2 уш.с (1H, NH). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 360 (98) [*M*]⁺. Найдено, %: С 66.62; H 4.52; N 15.52; O 13.35. C₂₀H₁₆N₄O₃. Вычислено, %: C 66.66; H 4.48; N 15.55; O 13.32.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 57 № 7 2021

выводы

Разработан способ получения этил-2-циано-2-[3,4-дицианопиридин-2(1*H*)-илиден]ацетатов **2а-е** на основе 2-хлорпиридин-3,4-дикарбонитрила. Найдено, что в растворе ТГФ максимумы эмиссии находятся в диапазоне 389–449 нм, твердотельная флуоресценция – в интервале 619– 641 нм.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено в рамках государственного задания Минобрнауки России, проект № 0849-2020-0003.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Guowei D., Heyan H., Peng S., Huajun X., Jialei L., Shuhui B., Xinhou L., Zhen Z., Ling Q. *Polymer*. 2013, 54, 6349–6356. doi 10.1016/j.polymer.2013.09.042
- Liang W., Shuhui B., Jialei L., Zhen Z., Xinhou L., Polym. Sci. Ser. B. 2012, 54, 297–305. doi 10.1134/ S1560090412050041
- Halter M., Liao Y., Plocinik R.M., Coffey D.C., Bhattacharjee S., Mazur U., Simpson G.J., Robinson B.H., Keller S.L. *Chem. Mater.* 2008, 20, 1778–1787. doi 10.1021/cm702267z
- Yongkang Z., Yanfang W., Na Y., Yi L. *Heterocycl.* Commun. 2018, 24, 67–69. doi 10.1515/hc-2017-0264
- Yanfang W., Na Y., Yi L. Spectrochim. Acta A. 2018, 194, 45–49. doi 10.1016/j.saa.2018.01.017
- Parthasarathy V., Pandey R., Das P.K., Castet F., Blanchard-Desce M. *ChemPhysChem.* 2018, *19*, 187– 197. doi 10.1002/cphc.201701143
- Tverdokhleb N.M., Khoroshilov G.E., Dotsenko V.V. *Tetrahedron Lett.* 2014, 55, 6593–6595. doi 10.1016/ j.tetlet.2014.10.046
- Liu J., Hou W., Feng S., Qiu L., Liu X., Zhen Z. J. Phys. Org. Chem. 2011, 24, 439–444. doi 10.1002/poc.1772
- Cho M.J., Lim J.H., Hong C.S, Kim J.H., Lee H.S., Choi D.H. *Dyes Pigm.* 2008, 79, 193–199. doi 10.1016/j.dyepig.2008.02.005
- 10. Liu J., Liu X., Zhen Z. *Electr. Mater. Lett.* **2012**, *8*, 451–455. doi 10.1007/s13391-012-2004-3

- Bardasov I.N., Alekseeva A.U., Chunikhin S.S., Tafeenko V.A., Ershov O.V. *Tetrahedron Lett.* 2017, 58, 3919–3923. doi 10.1016/j.tetlet.2017.08.076
- Барадсов И.Н., Алексеева А.Ю., Чунихин С.С., Ершов О.В. *ЖОрХ*. 2018, 54, 1152–1155. [Bardasov I.N., Alekseeva A.Yu., Chunikhin S.S., Ershov O.V. *Russ. J. Org. Chem.* 2018, 54, 1161–1165.] doi 10.1134/ S1070428018080079
- Bardasov I.N., Alekseeva A.U., Chunikhin S.S., Shishlikova M.A., Ershov O.V. *Tetrahedron Lett.* 2019, 60, 1170–1173. doi 10.1016/j.tetlet.2019.03.054
- Chunikhin S.S, Ershov O.V., Ievlev M.Yu., Belikov M.Yu., Tafeenko V.A. *Dyes Pigm.* 2018, *156*, 357– 368. doi 10.1016/j.dyepig.2018.04.024
- Ershov O.V., Chunikhin S.S., Ievlev M.Yu., Belikov M.Yu., Tafeenko V.A. *CrystEngComm.* 2019, *21*, 5500–5507. doi 10.1039/c9ce01089k
- Sadek K.U., Fahmy S.M., Mohareb R.M., Elnagdl M.H. J. Chem. Eng. Data. 1984, 29, 101–103. doi 10.1021/ je00035a033
- 17. Koitz G., Thlerrichter B., Junek H. *Heterocycles*. **1983**, *20*, 2405–2409.
- Fahmy S.M., Abd Allah S.O., Mohareb R.M. *Synthesis*. 1984, *11*, 976–978.
- Beugelmans R., Bois-Choussy M., Boudet B. *Tetrahedron.* 1982, *38*, 3479–3483. doi 10.1016/0040-4020(82)85032-1
- 20. Ducker J.W., Gunter M.J. Aust. J. Chem. **1973**, 26, 2567–2569. doi 10.1071/CH9732567
- Липин К.В., Максимова В.Н., Ершов О.В., Еремкин А.В., Каюков Я.С., Насакин О.Е. *ЖОрХ*.
 2010, 46, 623–624. [Lipin K.V., Maksimova V.N., Ershov O.V., Eremkin A.V., Kayukov Ya.S., Nasakin O.E. *Russ. J. Org. Chem.* 2010, 46, 617–618.] doi 10.1134/S107042801004038X
- Ершов О.В., Липин К.В., Максимова В.Н., Еремкин А.В., Каюков Я.С., Насакин О.Е. *ЖОрХ*. 2009, 45, 484–485. [Ershov O.V., Lipin K.V., Maksimova V.N., Eremkin A.V., Kayukov Ya.S., Nasakin O.E. *Russ. J. Org. Chem.* 2009, 45, 475–476.] doi 10.1134/ S1070428009030269

ЧУНИХИН, ЕРШОВ

Synthesis and Optical Properties of Ethyl-2-cyano-2-[3,4-dicyanopyridin-2(1*H*)-ylidene]acetate Derivatives

S. S. Chunikhin* and O. V. Ershov

I.N. Ul'yanov Chuvash State University, Moskovskii prosp., 15, Cheboksary, 428015 Russia *e-mail: chunikhinss@mail.ru

Received March 15, 2021; revised March 25, 2021; accepted March 27, 2021

Ethyl 2-cyano-2-[3,4-dicyanopyridin-2(1*H*)-ylidene]acetate derivatives were obtained by reacting 2-chloropyridine-3,4-dicarbonitriles with ethyl cyanoacetate. The study of fluorescence showed that the maximum of solid-phase emission is in the range of 619–641 nm, the emission maxima, depending on the solvent, are in the range 392–486 nm.

Keywords: nitriles, polycyano compounds, pyridine, fluorescence