УДК 547.831.3

## СИНТЕЗ И АНТИОКИСЛИТЕЛЬНЫЕ СВОЙСТВА НОВЫХ ПОЛИЦИКЛОВ С ТЕТРАГИДРОХИНОЛИНОВЫМ И ХРОМАНОВЫМ ФРАГМЕНТАМИ

# © 2022 г. Р. Г. Савченко<sup>*a*</sup>, \*, Р. М. Лиманцева<sup>*a*</sup>, И. В. Сафарова<sup>*b*</sup>, Г. М. Шарипова<sup>*b*</sup>, Е. С. Мещерякова<sup>*a*</sup>, А. Г. Толстиков<sup>*a*</sup>, В. Н. Одиноков<sup>*a*</sup>

 <sup>а</sup> Институт нефтехимии и катализа РАН – обособленное структурное подразделение ФГБНУ «Уфимского федерального исследовательского центра РАН», Россия, 450075 Уфа, просп. Октября, 141
<sup>b</sup> ФГБОУ ВО «Башкирский государственный университет», Россия, 450076 Уфа, ул. 3. Валиди, 32 \*e-mail: ecdysona@gmail.com

> Поступила в редакцию 19.08.2021г. После доработки 10.09.2021 г. Принята к публикации 18.09.2021 г.

Трехкомпонентной кислотно-катализируемой циклоконденсацией ариламинов с циклопентадиеном и 6-бензилокси/гидрокси-(2,5,7,8-тетраметилхроман-2-ил)-ацетальдегидом синтезированы новые циклоаддукты, структура которых содержит фрагменты хроман-2-ила и тетрагидрохинолина, аннелированного с циклопентен/циклопентановым кольцом. Антиокислительная активность синтезированных соединений изучена на кинетической модели инициированного окисления 1,4-диоксана.

Ключевые слова: тетрагидрохинолин, реакции Поварова, трехкомпонентная циклоконденсация, циклопентадиен, хроман-2-ил, антиокислительная активность

DOI: 10.31857/S0514749222020100

#### введение

Тетрагидрохинолины и их производные являются незаменимыми структурными фрагментами природных соединений [1], а также перспективными фармакофорами для лекарственных средств, благодаря широкому спектру биологически-активных свойств: анти-ВИЧ, антибактериальное, противогрибковое, противомалярийное, противоопухолевое и сердечно-сосудистые эффекты [2-4]. Принимая во внимание важность тетрагидрохинолинового фрагмента для органической и медицинской химии были разработаны различные подходы формирования такого рода структур [5]. Широко используемым и синтетически удобным подходом для синтеза замещенных тетрагидрохинолинов является трехкомпонентная модификация реакции Поварова [6] заключающаяся в кислотно-катализируемой циклоконденсации ароматического амина, альдегида и электронообогащенного олефина. Использование фармакозначимых компонентов в реакции позволяет синтезировать гибридные молекулы с заданным биологически-активным потенциалом [7].

Интересной биологической активностью обладают короткоцепочечные эндогенные метаболиты  $\alpha$ -токоферола – производные 3,4-дигидро-2*H*-бензопиран-2-ил-алкановых кислот [8], используемые в синтезе ионных производных для лечения болезней, вызванных процессами окислительного стресса организма: стенокардии, ишемии и инфаркта миокарда [9]. Введение (*R*,*S*)-6-гидрокси-(2,5,7,8-тетраметилхроман-2-ил)-ацетальдегида [10] в качестве альдегидной компоненты в кислотно-катализируемую циклоконденсацию с ароматическим амином и циклопентадиеном дает возможность в одну синтетическую стадию стереоселективно синтезировать гибридные азотсодержащие полициклические молекулы с хромановым фрагментом.

В этой связи мы реализовали эффективный стереоселективный однореакторный подход в трехкомпонентной циклоконденсации ароматического амина, 2*H*-бензопиран-2-ацетальдегида и циклопентадиена (ЦПД) для синтеза новых гибридных соединений, содержащих фрагменты 3,4-дигидро-2*H*-бензопирана и тетрагидрохинолина и изучили их антиокислительные свойства на модельной реакции инициированного азоизобутиронитрилом (АИБН) окисления 1,4- диоксана.

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для синтеза производных тетрагидро-3*H*-циклопента[*c*]хинолинов с фармакозначимым заместителем нами использована трехкомпонентная циклоконденсация, в которой в качестве альдегидной компоненты был впервые задействован хроманилуксусный альдегид **4** [10]. Так, катализируемая трифторуксусной кислотой циклоконденсация 4-фторанилина **1** с эквимолярным количеством (6бензилокси-2,5,7,8-тетраметилхроман-2-ил) ацетальдегида **4** и трехкратным мольным избытком ЦПД, приводила к образованию 4-[(6-бензилокси-(2,5,7,8-тетраметилхроман)-2-ил]-метил-8-фтор-3а,4,5,9b-тетрагидро-3*H*-циклопента[*c*]хинолина **6** (схема 1).

Соединение **6** представляет собой  $3aR^*$ ,  $4R^*$ ,  $9bS^*$  и  $3aR^*$ ,  $4S^*$ ,  $9bS^*$  (или 4RS) диастереомерную смесь (1.5:1), из которой методом колоночной хроматографии был выделен индивидуальный 4R-диастереомер **6** (РСА). Величины КССВ вицинальных протонов при хиральных атомах углерода С(3а), С(4) и С(9b),равные [ $J_{(3a,4)}$  2.5,  $J_{(3a,9b)}$  9.0 Гц] свидетельствуют об их взаимной *цис*-ориентации, что согласуется с эндо,цис-направленностью реакции Поварова [11, 12]. Данные РСА для **6** однозначно подтверждают его структуру ( $3aR^*, 4R^*, 9bS^*$ )-4-[(6-бензилокси-2,5,7,8-тетраметилхроман-2-ил)метил]-8-фтор-3a,4,5,9b-тетрагидро-3H-циклопента[c]хинолина (рис. 1).

Азотсодержащие полициклические производные на основе трициклических дитерпеноидов и

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022

аминохинолинов, как биологически активные субстанции, являются предметом постоянного внимания исследователей [13–15].

Использование 5-аминохинолина 2 в циклоконденсации с альдегидом 4 и циклопентадиеном приводило к количественному образованию циклоаддукта 7. Согласно гомо- и гетерокорреляционным методам ЯМР <sup>1</sup>Н и <sup>13</sup>С образование 4-хроманил-1,7-тетрагидрофенантролиновой структуры 7 происходит в виде практически эквимолярной 4R/S-диастереомерной смеси (схема 1).

При вовлечении в трехкомпонентную конденсацию с хромановым альдегидом 4 и циклопентадиеном дитерпенового амина 3 [16] происходило образование преимущественного эндо,цис-аддукта 8 (схема 1). С помощью гомо- и гетерокорреляционных методик 1D и 2D ЯМР <sup>1</sup>Н и <sup>13</sup>С (АРТ, HSQC, HMBC, COSY, NOESY) было установлено, что продукт реакции 8 обогащен изомером с аксиальным протоном  $\alpha$ -H<sup>4</sup>, что соответствует *R*-конфигурации хирального атома С<sup>4</sup>. Соотношение 4*R*- и 4*S*-диастереомеров (3:1) определялось из относительной интенсивности сигналов протонов H<sup>1</sup> в спектре ЯМР <sup>1</sup>Н соединения 8 [5.16 (4*R*-изомер), 5.43 (4*S*-изомер) м.д.] или H<sup>2</sup> [5.73 (4*R*-изомер), 5.85 (4*S*-изомер) м.д.].

При удалении бензильной защиты в соединениях **6–8** путем каталитического гидрогенолиза происходило также восстановление эндоциклической двойной связи с образованием циклопентан-аннелированных тетрагидрохинолинов **9–11** (схема 1).

Оптимизировать синтез гибридных молекул, сочетающих в своей структуре хроманильный и тетрагидрохинолиновый фрагменты, удалось при реализации трехкомпонентной кислотно-катализируемой циклоконденсации 6-гидрокси-(2,5,7,8-тетраметилхроман-2-ил)-ацетальдегида с аминами **1**, **2** и циклопентадиеном, Надо отметить, что разработанные условия проведения трехкомпонетной циклоконденсации при катализе CF<sub>3</sub>CO<sub>2</sub>H оказались толерантны для альдегида **5**, имеющего свободную гидроксильную группу 4*H*-пиранового кольца и приводили к образованию циклопентен-аннелированных гибридных молекул **12**, **13** (схема 1). Их структуры, согласно ЯМР <sup>1</sup>H и <sup>13</sup>С



Cxema 1

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022

представляют собой 4*R*/*S*-диастереомерные смеси. Брутто-составы синтезированных циклоаддуктов **6–13** подтверждены регистрацией молекулярного иона в масс-спектрах высокого разрешения.

Анализ антиокислительной активности синтезированных соединений 9, 11–13 проводился на основании данных кинетических экспериментов жидкофазного окисления 1,4-диоксана (инициатор окисления АИБН) [17]. Для отслеживания влияния С2-хроманильного фрагмента на антиоксидантную активность гибридной молекулы в модельном эксперименте окисления 1,4-диоксана в качестве ингибитора был изучен 6-гидрокси-2,5,7,8-тетраметил-2-хроманил ацетальдегид 5.

Так, в условиях эксперимента (348 K,  $V_i = 1 \times 10^{-7}$  моль л<sup>-1</sup> с<sup>-1</sup>) процесс окисления протекает по радикально-цепному механизму с квадратичным обрывом цепи [18]. Добавление к окисляемому субстрату соединений **5**, **9**, **11–13** приводило к появлению периодов индукции на графике кинетических кривых поглощении кислорода (рис. 2), что свидетельствовало об антиокислительном действии тестируемых соединений. Появление периодов индукции, когда поглощение кислорода не наблюдается ( $\Delta O_2 = 0$ ) даже при минорных концентрациях вводимых добавок антиоксидантов, указывает на обрыв цепи окисления преимущественно на пероксильных радикалах субстрата окисления и дает основание отнести ис-



Рис. 2. Кинетические кривые поглощения кислорода при окислении 1,4-диоксана в отсутствие и присутствии добавок 9, 11–13 =  $3.13 \times 10^{-6}$  M, 5 =  $6.3 \times 10^{-7}$  M; T = 348 K,  $V_i = 1 \times 10^{-7}$  M/c

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022



**Рис. 1.** Структура (3а*R*\*,4*R*\*,9b*S*\*)-4-[(6-бензилокси-2,5,7,8-тетраметилхроман-2-ил)-метил]-8-фтор-3а,4,-5,9b-тетрагидро-3*H*-циклопента[*c*]хинолина **6** в кристалле

следуемые вещества к сильным антиоксидантам [19].

С участием наиболее активного в исследуемом ряду соединения 13 была исследована зависимость окисления модельного субстрата от концентрации вводимого ингибитора 13. Так, на рис. 3 приведены типичные кинетические кривые поглощения кислорода в присутствии добавок соединения 13 при разных его начальных концентрациях.

На основании результатов кинетических экспериментов были рассчитаны константы скорости стадии обрыва цепи для всех тестируемых соеди-



Рис. 3. Типичные кинетические кривые поглощения кислорода при окислении 1,4-диоксана в отсутствие и присутствии соединения 13:  $0.44 \times 10^{-6}$  M (*1*),  $0.94 \times 10^{-6}$  M (*2*),  $1.56 \times 10^{-6}$  M (*3*),  $2.50 \times 10^{-6}$  M (*4*),  $3.13 \times 10^{-6}$  M (*5*); T = 348 K,  $V_i = 1 \times 10^{-7}$  M/c

| , 11    | 1 1                       | ,                               | , ,                                                       |
|---------|---------------------------|---------------------------------|-----------------------------------------------------------|
| InH     | [InH]×10 <sup>6</sup> , M | <i>V</i> ×10 <sup>6</sup> , M/c | $fk_{\rm In} \times 10^{-5},  {\rm M}^{-1}  {\rm c}^{-1}$ |
| 5       | 0                         | 2.40                            | 1.5±0.2                                                   |
|         | 0.06                      | 2.25                            |                                                           |
|         | 0.13                      | 2.16                            |                                                           |
|         | 0.25                      | 1.97                            |                                                           |
|         | 0.63                      | 1.72                            |                                                           |
| 9       | 0                         | 2.40                            | 1.1±0.2                                                   |
|         | 0.44                      | 2.29                            |                                                           |
|         | 1.25                      | 1.94                            |                                                           |
|         | 1.88                      | 1.82                            |                                                           |
|         | 2.50                      | 1.33                            |                                                           |
|         | 3.13                      | 0.54                            |                                                           |
| 11      | 0                         | 2.38                            | 1.6±0.2                                                   |
|         | 0.44                      | 1.86                            |                                                           |
|         | 1.25                      | 1.66                            |                                                           |
|         | 2.50                      | 1.20                            |                                                           |
|         | 3.13                      | 1.13                            |                                                           |
| 12      | 0                         | 2.38                            | 1.5±0.2                                                   |
|         | 0.44                      | 1.95                            |                                                           |
|         | 0.63                      | 1.88                            |                                                           |
|         | 1.88                      | 1.53                            |                                                           |
|         | 3.13                      | 1.43                            |                                                           |
| 13      | 0                         | 2.39                            | 2.6±0.4                                                   |
|         | 0.44                      | 2.04                            |                                                           |
|         | 0.94                      | 1.53                            |                                                           |
|         | 1.56                      | 1.30                            |                                                           |
|         | 2.50                      | 0.89                            |                                                           |
|         | 3.13                      | 0.74                            |                                                           |
| Тролокс | _                         | _                               | 4.0±0.5                                                   |

Таблица 1. Эффективные константы скорости ингибирования 1,4-диоксана для соединений 5, 9, 11–13

нений в сравнении с данными для известных антиоксидантов витамина Е и 6-гидрокси-2,5,7,8-тетраметил-3,4-дигидро-2*H*-хроман-2-карбоновой кислоты (Тролокс) [20]. Близкие значения эффективных констант ингибирования для соединений 5, 9, 11–12 (табл. 1) свидетельствуют о преобладающем влиянии хроманильного фрагмента на активность гибридных молекул 9, 11, 12, тогда как для соединения 13, сочетающего в своей структуре фрагменты тетрагидроциклопента-1,7-фенан-ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022 тролина и C2-хроманила, антиокислительная активность сопоставима с активностью тролокса.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С регистрировали на спектрометрах «Bruker Avance-500», рабочие частоты – 500.17 (<sup>1</sup>Н) и 125.77 (<sup>13</sup>С) МГц, растворитель – CDCl<sub>2</sub>, внутренний стандарт – Ме<sub>4</sub>Si. Гомои гетероядерные методики COSY, HSQC, HMBC соответствовали стандартным методикам фирмы «Bruker». Масс-спектры записывали на спектрометре «Bruker-Autoflex III» в режиме MALDI ТОF с регистрацией положительных ионов и использованием в качестве матрицы α-циано-4-гилроксикоричной кислоты (НССА). Масс-спектры высокого разрешения (HRMS) измеряли на приборе («MaXis impact», Bruker) с использованием масс-анализатора (TOF) с ионизацией электрораспылением (ESI). Температуры плавления определяли на малогабаритном нагревательном столе типа «Boetius». Элементный анализ проводили на CHNS-О-анализаторе «Carlo Erba EA-1108». В колоночной хроматографии применяли силикагель марки «КСКГ», 100/200. Для контроля методом TCX использовали пластины с SiO<sub>2</sub> («Silufol»), проявитель – раствор ванилина в этиловом спирте, подкисленный серной кислотой. Кристаллы соединения 6, закрепленные на стекловолокне, исследовали на автоматическом четырехкружном дифрактометре Agilent Xcalibur (Gemini, Eos) (графитовый монохроматор, МоК<sub>α</sub>-излучение, λ 0.71073 Å, режим ω-сканирования, 20<sub>max</sub> 62°) при температуре окружающей среды (293-298 К). Собранные данные обрабатывались с помощью программы CrysAlisPro [21]. Определение структур проводилось с помощью программы OLEX2 [22]. Структуры расшифрованы прямыми методами и уточнены полноматричным методом наименьших квадратов в анизотропном приближении для неводородных атомов. Все атомы водорода генерируются с использованием правильной команды HFIX. Структура соединения 6 была решена с помощью программы ShelXS [23] с использованием прямых методов и уточнена с помощью пакета ShelXL [24] с использованием минимизации наименьших квадратов. Основные кристаллографические данные и детали рентгеновских экспериментов для соединений 6 представлены

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022

в табл. 2 и в сопроводительных данных. Рмунок выполнен с использованием программы Mercury [25]. Кристаллографические данные по соединениям представлены в Кембриджском центре структурных данных под номерами дополнительных материалов ССDС 2095493 (6). Копии данных могут быть получены бесплатно при подаче заявки в ССDС, 12 Union Road, Кембридж СВ2 1EZ, Великобритания. Электронная почта: deposit@ccdc.cam.ac.uk.

Антиокислительная активность соединений (AOA) 5, 9, 11-13 изучали на примере модельной реакции инициированного окисления 1,4-диоксана при 348 К. В качестве инициатора окислительного процесса использовали азоизобутиронитрил (АИБН). Опыты проводили в термостатируемом стеклянном реакторе, куда загружали растворы иниициатора и тестируемого соединения в 1,4-диоксане. Кинетические кривые поглощения кислорода регистрировали с помощью универсальной манометрической дифференциальной установки, устройство которой подробно описано в работе [17]. Эффективность ингибирующего действия исследуемых соединений оценивали по скорости поглощения кислорода на начальном участке кинетической кривой.

АОА исследуемых веществ характеризовали эффективной константой скорости ингибирования  $fk_{\text{In}}$ , где f – радикалоемкость антиоксиданта, равная числу радикальных интермедиатов [20].

Общая методика синтеза тетрагидро-3*H*-циклопента[*c*]хинолинов 6 и 12. К раствору 4-фторанилина 1 (0.03 мл, 0.3 ммоль) в 10 мл сухого CF<sub>3</sub>CH<sub>2</sub>OH (Ar, ~ 25°C) прибавили последовательно 0.02 мл (0.3 ммоль) CF<sub>3</sub>COOH, 0.05 мл (0.6 ммоль) свежеперегнанного ЦПД и 0.3 ммоль соответствующего альдегида 4 или 5. Реакционную смесь перемешивали при комнатной температуре до исчезновения амина (0.5 ч, контроль TCX, элюент – *н*-гексан–этилацетат 3:1). Растворитель отогнали, к остатку добавили насыщенный раствор NaHSO<sub>3</sub>–NaHCO<sub>3</sub> до нейтральной реакции (~ 5 мл) и экстрагировали этилацетатом (3×10 мл). Органический слой упарили, остаток хроматографировали (SiO<sub>2</sub>, *н*-гексан–этилацетат, 3:1).

4-{[(6-Бензилокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-8-фтор-3а,4,5,9b-тетрагид-

Таблица 2. Кристаллографические данные и параметры уточнения структуры соединения 6

| Элементный состав                                                        | C <sub>33</sub> H <sub>36</sub> FNO <sub>2</sub>       |  |
|--------------------------------------------------------------------------|--------------------------------------------------------|--|
| Молекулярная масса                                                       | 497.63                                                 |  |
| Сингония                                                                 | моноклинная                                            |  |
| Пространственная группа                                                  | P2 <sub>1</sub> /c                                     |  |
| <i>a</i> , Å                                                             | 14.5208(13)                                            |  |
| b, Å                                                                     | 11.3634(8)                                             |  |
| <i>c</i> , Å                                                             | 17.599(2)                                              |  |
| α, град                                                                  | 90                                                     |  |
| β, град                                                                  | 111.560(12)                                            |  |
| ү, град                                                                  | 90                                                     |  |
| <i>V</i> , Å <sup>3</sup>                                                | 2700.7(5)                                              |  |
| Ζ                                                                        | 4                                                      |  |
| $ρ_{\rm выч},  \Gamma/c {\rm m}^3$                                       | 1.224                                                  |  |
| μ, мм <sup>-1</sup>                                                      | 0.080                                                  |  |
| F(000)                                                                   | 1064.0                                                 |  |
| Излучение                                                                | Mo $K_{\alpha}$ (λ 0.71073)                            |  |
| Интервал 20, град                                                        | 4.364 до 58.278                                        |  |
| Интервал измерения индексов                                              | $-19 \le h \le 17, -15 \le k \le 13, -14 \le l \le 23$ |  |
| Измеренных отражений                                                     | 13021                                                  |  |
| Независимых отражений                                                    | 6026 (R <sub>int</sub> 0.0535)                         |  |
| Данные/ограничения/параметры                                             | 6026/0/342                                             |  |
| GOF по $F^2$                                                             | 1.096                                                  |  |
| $R$ -факторы для [ $I \ge 2\sigma(I)$ ]                                  | $R_1 0.0950, wR_2 0.2072$                              |  |
| <i>R</i> -факторы по всем отражениям                                     | $R_1 0.1653$ , w $R_2 0.2517$                          |  |
| $\Delta \rho_{\text{макс}}; \Delta \rho_{\text{мин}}, e \text{\AA}^{-3}$ | 0.22/-0.20                                             |  |

**ро-3***H***-циклопента[***с***]хинолин (6).** Выход 100 мг (67%), т.пл. 130–132°С. Спектр ЯМР <sup>1</sup>H (CDCl<sub>3</sub>), δ, м.д.: 1.31 с (3H, H<sup>11</sup>), 1.70–1.74 и 2.10–2.14 м (2H, H<sup>1</sup>), 1.77–1.81 и 2.14–2.17 м (2H, H<sup>3</sup>), 2.21, 2.25, 2.29 с (9H, H<sup>12</sup>', H<sup>13</sup>', H<sup>14</sup>'), 2.31–2.33 и 2.67–2.69 м (2H, H<sup>3</sup>), 2.70–2.72 м (2H, H<sup>4</sup>'), 2.78 д.д (1H, H<sup>3a</sup>, *J* 9.0, 2.5 Гц), 3.70 д (1H, H<sup>4</sup>, *J* 9.0 Гц), 4.00 д (1H, H<sup>9b</sup>, *J* 9.0 Гц), 4.74 с (2H, OCH<sub>2</sub>), 5.77 с (1H, H<sup>1</sup>), 5.79 уш.с (1H, H<sup>2</sup>), 6.42–6.44 м (1H, H<sup>6</sup>), 6.62–6.666 м (1H, H<sup>9</sup>), 6.72 д.д (1H, H<sup>7</sup>, *J* 9.0, 2.5 Гц), 7.37, 7.40, 7.44, 7.54

с (5H<sub>аром</sub>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>),  $\delta$ , м.д.: 12.05, 12.36, 12.96 (C<sup>12'</sup>, C<sup>13'</sup>, C<sup>14'</sup>), 20.81 (C<sup>4'</sup>), 24.64 (C<sup>11'</sup>), 29.60 (C<sup>1'</sup>), 31.41 (C<sup>3</sup>), 44.36 (C<sup>3a</sup>), 45.62 (C<sup>3'</sup>), 46.83 (C<sup>9b</sup>), 49.86 (C<sup>4</sup>), 74.80 (OCH<sub>2</sub>), 75.79 (C<sup>2'</sup>), 112.18 (C<sup>9a</sup>), 112.68 (C<sup>9</sup>), 114.79 (C<sup>7</sup>), 116.13 (C<sup>6</sup>), 117.45 (C<sup>10'</sup>), 122.79 (C<sup>9'</sup>), 126.44 (C<sup>8'</sup>), 127.75, 127.88, 128.35, 128.51 (Bn), 130.69 (C<sup>1</sup>), 133.88 (C<sup>2</sup>), 137.87 (C<sup>7'</sup>), 141.94 (C<sup>5a</sup>), 147.40 (C<sup>5'</sup>), 148.70 (C<sup>6'</sup>), 156.00 д (C<sup>8</sup>F, *J* 234.0 Гц). Масс-спектр (MALDI/TOF), *m/z*: 497.26 [*M*]<sup>+</sup>. Найдено, %: С 79.77; Н 7.25; F

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022

3.85; N 2.80; O 6.33. C<sub>33</sub>H<sub>36</sub>FNO<sub>2</sub>. Вычислено, %: C 79.65; H 7.29; F 3.82; N 2.81; O 6.43. *М*<sub>выч</sub> 497.65.

4-{[(6-Гидрокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-8-фтор-За,4,5,9b-тетрагидро-**ЗН-циклопента[с]хинолин (12).** Выход 101 мг (63%), т.пл. 78–80°C. Спектр ЯМР <sup>1</sup>H (CDCl<sub>3</sub>), δ, м.д.: 1.28 и 1.34 с (3Н, Н<sup>11</sup>), 1.64–2.10 м (2Н, Н<sup>3</sup>), 1.68–1.72 и 2.10–2.14 м (2Н, Н<sup>1</sup>), 2.16, 2.23, 2.25 с (9Н, Н<sup>12'</sup>, Н<sup>13'</sup>, Н<sup>14'</sup>), 2.28–2.30 и 2.62–2.66 м (2Н, Н<sup>3</sup>), 2.69–2.72 м (2Н, Н<sup>4</sup>), 2.75–2.78 м (1Н, Н<sup>3</sup>а), 3.70 и 3.83 д (1Н, Н<sup>4</sup>, Ј 9.0, 10.0 Гц), 3.98 и 4.01 д (1H, H<sup>9b</sup>, J 9.0 Гц), 5.72–5.74 м (1H, H<sup>1</sup>), 5.76–5.80 м (1H, H<sup>2</sup>), 6.40–6.88 м (3H, H<sup>6</sup>, H<sup>7</sup>, H<sup>9</sup>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), б, м.д.: 11.32, 12.29, 12.33 и 12.91 (С<sup>12'</sup>, С<sup>13'</sup>, С<sup>14'</sup>), 20.87 и 20.51 (С<sup>4'</sup>), 22.23 и 24.45 (С<sup>11</sup>), 29.71 (С<sup>1</sup>), 31.43 и 31.45 (С<sup>3</sup>), 44.33 (С<sup>3</sup>а), 44.06 и 45.52(C<sup>3'</sup>), 46.86 и 46.90 (C<sup>9b</sup>), 49.92 и 50.26 (C<sup>4</sup>), 75.33 и 75.51 (C<sup>2</sup>), 112.70 и 112.87 (C<sup>9</sup>), 114.80 и 114.97 (С<sup>7</sup>), 115.70 и 115.76 (С<sup>6</sup>), 117.15 (С<sup>9</sup>), 118.81 и 118.95 (С<sup>5</sup>), 121.31 (С<sup>8</sup>), 121.98 и 122.44  $(C^{7'})$ , 127.24  $(C^{9a})$ , 130.70  $(C^{1})$ , 133.84  $(C^{2})$ , 142.14 (С<sup>5а</sup>), 144.98 и 145.14 (С<sup>6</sup>), 145.14 (С<sup>10</sup>), 156.05 д (C<sup>8</sup>F, J 234.0 Гц). Масс-спектр (HRMS), *m/z*: 430.2178 [*M* + Na]<sup>+</sup>. Найдено, %: С 76.70; Н 7.39; F 4.68; N 3.48; O 7.75. С<sub>26</sub>Н<sub>30</sub>FNO<sub>2</sub>. Вычислено, %: С 76.63; Н 7.42; F 4.66; N 3.44; О 7.85. *М*<sub>выч</sub> 407.53.

Общая методика синтеза тетрагидро-3*H*-циклопента[*c*]-1,7-фенантролинов 7 и 13. К раствору 5-аминохинолина 2 (57 мг, 0.4 ммоль) в 10 мл сухого CF<sub>3</sub>CH<sub>2</sub>OH (Ar, ~ 25°C) прибавили последовательно 0.05 мл (0.6 ммоль) CF<sub>3</sub>COOH, 0.07 мл (0.8 ммоль) свежеперегнанного ЦПД и 0.4 ммоль соответствующего альдегида 4 или 5. Реакционную смесь перемешивали при комнатной температуре до исчезновения амина (0.5 ч, контроль TCX, элюент – *н*-гексан–этилацетат 3:1). Растворитель отогнали, к остатку добавили насыщенный раствор NaHSO<sub>3</sub>–NaHCO<sub>3</sub> до нейтральной реакции (~ 5 мл) и экстрагировали этилацетатом (3×10 мл). Органический слой упарили, остаток хроматографировали (SiO<sub>2</sub>, *н*-гексан–этилацетат, 3:1).

**4-{[(6-Бензилокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-3а,4,5,11b-тетрагидро-3***H***-циклопента[***c***]-1,7-фенантролин (7). Выход 172 мг (82%), т.пл. 72–74°С. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), δ, м.д.: 1.37 и 1.46 с (3H, H<sup>11'</sup>), 1.90–1.94 м** 

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022

(2H, H<sup>4</sup>), 2.01 и 2.27 с (3H, H<sup>14</sup>), 2.20 с (3H, H<sup>13</sup>), 2.31 и 2.35 с (3Н, Н<sup>12'</sup>), 2.70–2.74 м (2Н, Н<sup>3'</sup>), 2.72– 2.76 м (2Н, Н<sup>3</sup>), 2.91–2.95 м (3Н, Н<sup>11b</sup>, Н<sup>1'</sup>), 3.93– 3.96 и 4.02–4.06 м (1Н, Н<sup>4</sup>), 4.22–4.26 м (1Н, Н<sup>3</sup>а), 4.74 д (2H, OCH<sub>2</sub>, J 3.0 Гц), 4.78 с (2H, OCH<sub>2</sub>), 5.73 и 5.76 уш.с (1Н, Н<sup>2</sup>), 5.94 уш.с (1Н, Н<sup>1</sup>), 7.12–7.16 и 7.22–7.26 м (1Н, Н<sup>10</sup>), 7.17–7.20 м (1Н, Н<sup>7</sup>), 7.38– 7.56 м (5H, Bn), 7.38–7.42 м (1H, H<sup>11</sup>), 7.76–7.79 и 7.91–7.95 м (1Н, Н<sup>6</sup>), 8.76 и 8.81 д (1Н, Н<sup>8</sup>, *J* 3.0, 3.5 Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), δ, м.д.: 12.01 и 12.15 (С<sup>13'</sup>), 12.50 и 12.70 (С<sup>14'</sup>), 13.04 и 13.08 (C<sup>12'</sup>), 20.56 и 20.78 (C<sup>3'</sup>), 24.20 и 24.74 (C<sup>11'</sup>), 31.35 и 31.43 (C<sup>3</sup>), 33.46 (C<sup>4</sup>), 44.93 (C<sup>1</sup>), 45.24 (C<sup>11b</sup>), 46.84 и 46.99 (С<sup>3a</sup>), 49.66 и 49.85 (С<sup>4</sup>), 74.78 и 74.86 (ОСН<sub>2</sub>), 75.30 и 76.03 (С<sup>2</sup>), 117.85 и 118.05 (С<sup>9</sup>), 118.24 и 118.36 (С<sup>5b</sup>), 119.05 (С<sup>7</sup>), 119.17 (C<sup>11a</sup>), 120.25 (C<sup>10</sup>), 120.28 (C<sup>8</sup>), 122.62 (C<sup>5'</sup>), 126.58, 126.72, 127.75, 127.76, 127.89, 127.94, 128.51, 128.56, 128.66, 128.72 (Bn), 126.77 (C<sup>6'</sup>), 130.58 и 130.60 (С<sup>2</sup>), 131.19 (С<sup>11</sup>), 134.23 и 134.30 (C<sup>1</sup>), 134.25 (C<sup>7</sup>), 137.91 (Bn), 140.30 (C<sup>9a</sup>), 147.22 (C<sup>10</sup>), 147.32 (С<sup>5а</sup>), 149.13 и 149.22 (С<sup>8</sup>). Массспектр (HRMS), *m/z*: 531.3016 [*M* + H]<sup>+</sup>. Найдено, %: C 81.49; H 7.20; N 5.31; O 6.00. C<sub>36</sub>H<sub>38</sub>N<sub>2</sub>O<sub>2</sub>. Вычислено, %: С 81.47; Н 7.22; N 5.28; О 6.03. *М*<sub>выч</sub> 530.293.

4-{[(6-Гидрокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-3a,4,5,11b-тетрагидро-3*H*-циклопента[с]-1,7-фенантролин (13). Выход 115 мг (65%), т.пл. 98–100°С. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), δ, м.д.: 1.33 и 1.40 с (3Н, Н<sup>11</sup>), 1.91–1.97 м (2Н, Н<sup>3</sup>), 2.12–2.16 м (2Н, Н<sup>1</sup>), 2.19, 2.26, 2.34 с (9Н, Н<sup>12</sup>, Н<sup>13'</sup>, Н<sup>14'</sup>), 2.35–2.75 м (4Н, Н<sup>3'</sup>, Н<sup>4'</sup>), 2.92 т (1Н, Н<sup>11b</sup>, *J* 8.0 Гц), 3.93 и 4.01 д (1Н, Н<sup>4</sup>, *J* 8.0, 10.0 Гц), 4.21 т (1Н, Н<sup>3</sup>а, *J* 10.0 Гц), 5.93–5.96 м (1Н, Н<sup>2</sup>), 6.15 уш.с (1H, H<sup>1</sup>), 7.11–7.23 м (1H, H<sup>10</sup>), 7.36–7.49 м (2H, H<sup>6</sup>, H<sup>11</sup>), 7.85–7.91 м (1H, H<sup>7</sup>), 8.72 и 8.78 д (1Н, Н<sup>8</sup>, *J* 3.0 Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), δ, м.д.: 11.43, 11.48, 12.44, 12.60 (С<sup>12'</sup>, С<sup>13'</sup>, С<sup>14'</sup>), 20.63 и 20.85 (С<sup>3'</sup>), 24.03 и 24.55 (С<sup>11'</sup>), 31.33 и 31.43 (С<sup>4'</sup>), 33.69 (C<sup>3</sup>), 44.02 и 44.83 (C<sup>1</sup>), 45.13 и 45.20 (C<sup>11b</sup>), 46.80 и 46.95 (С<sup>3а</sup>), 49.63 и 49.86 (С<sup>4</sup>), 75.02 и 75.77 (C<sup>2</sup>), 117.51 и 117.77 (С<sup>9</sup>), 118.29 и 118.35 (С<sup>5</sup>b), 118.63 и 118.69 (С<sup>7</sup>), 119.02 и 119.06 (С<sup>10</sup>), 119.32 (C<sup>11a</sup>), 120.25 и 120.28 (C<sup>7</sup>), 121.73 (C<sup>8</sup>), 122.17 (C<sup>5</sup>), 129.00 и 129.43 (C<sup>6</sup>), 130.63 и 131.93 (C<sup>2</sup>), 131.30 (С<sup>11</sup>), 134.17 и 134.24 (С<sup>1</sup>), 140.38 (С<sup>9а</sup>), 144.78 и 144.93 (С<sup>6</sup>), 145.42 (С<sup>5а</sup>), 147.30 (С<sup>10</sup>), 148.77 и 148.92 (С<sup>8</sup>). Масс-спектр (HRMS), *m/z*: 441.2543 [*M* + H]<sup>+</sup>. Найдено, %: С 79.09; Н 7.28; N 6.31; О 7.32. С<sub>29</sub>Н<sub>32</sub>N<sub>2</sub>O<sub>2</sub>. Вычислено, %: С 79.06; Н 7.32; N 6.36; О 7.26. *М*<sub>выч</sub> 440.246.

4-{[(6-Бензилокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-10,13а-диметил-10-метоксикарбонил-6-(пропан-2-ил)-3а,4,5,8,9,9а,10,11,-12,13,13а,13d-додекагидро-3*H*-циклопента[*c*]нафто[1,2-f]хинолин (8). К раствору амина 3 (165 мг, 0.5 ммоль) в 10 мл сухого CF<sub>2</sub>CH<sub>2</sub>OH (Ar, ~ 25°С) прибавили последовательно 0.04 мл (0.5 ммоль) CF<sub>3</sub>COOH, 0.12 мл (1.5 ммоль) свежеперегнанного ЦПД и 169 мг (0.5 ммоль) альдегида 4. Реакционную смесь перемешивали при комнатной температуре до исчезновения амина (0.5 ч, контроль ТСХ, элюент – *н*-гексан–этилацетат 3:1). Растворитель отогнали, к остатку добавили насыщенный раствор NaHSO<sub>3</sub>-NaHCO<sub>3</sub> до нейтральной реакции (~ 5 мл) и экстрагировали этилацетатом (3×10 мл). Органический слой упарили, остаток хроматографировали (SiO<sub>2</sub>, *н*-гексан-этилацетат, 3:1). Выход 230 мг (64%), т.пл. 88–90°С, [а]<sub>D</sub><sup>21</sup> +57.7 (*c* 0.77, CHCl<sub>3</sub>). Спектр ЯМР <sup>1</sup>H (CDCl<sub>3</sub>), δ, м.д.: 0.75 д (3H, H<sup>15</sup>, J 7.0 Гц), 1.10 д (3H, H<sup>16</sup>, J 7.0 Гц), 1.28 с (3H, H<sup>19</sup>), 1.34 с (3H, H<sup>11</sup>), 1.50 с (3Н, СН<sup>18</sup>), 1.52–1.56 м (2Н, Н<sup>13</sup>), 1.62–1.70 м (2Н, H<sup>11</sup>), 1.68–2.24 м (10H, H<sup>1</sup>', H<sup>3</sup>, H<sup>3</sup>', H<sup>9</sup>, H<sup>12</sup>), 2.14 с (3H, H<sup>13'</sup>), 2.19 с и 2.21 с (3H, H<sup>12'</sup>), 2.24 с и 2.25 с (3H, H<sup>14</sup>), 2.58–2.66 м (2H, H<sup>4</sup>), 2.72–2.76 м (1H, Н<sup>3</sup>а), 2.85–3.00 м (4Н, Н<sup>8</sup>, Н<sup>9</sup>а, Н<sup>14</sup>), 3.09–3.12 м (1H, H<sup>4</sup>), 3.67 и 3.68 с (3H, CH<sub>2</sub>O), 4.72 и 4.73 с (2H, OCH<sub>2</sub>), 4.84–4.86 м (1H, H<sup>13d</sup>), 5.16 (4R) и 5.43 (4S) д (1H, H<sup>1</sup>, J 2.5 Гц), 5.73 (4R) и 5.85 (4S) д (1H, H<sup>2</sup>, J 4.0 Гц), 6.58 и 6.67 с (1H, H<sup>7</sup>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), б, м.д.: 12.04 (С<sup>13'</sup>), 12.18 (С<sup>12'</sup>), 12.28  $(C^{14'}), 19.05 (C^{19}), 19.24 (C^{12}), 20.63 (C^{4'}), 22.09$ и 22.56 (С<sup>9</sup>), 22.87 (С<sup>15</sup>), 23.01 (С<sup>16</sup>), 24.82 (С<sup>18</sup>), 26.16 (С<sup>11</sup>), 26.16 и 26.26 (С<sup>14</sup>), 31.74 (С<sup>3</sup>), 32.21 и 32.25 (С<sup>13а</sup>), 33.16 и 33.56 (С<sup>8</sup>), 36.26 (С<sup>11</sup>), 38.48 (C<sup>13</sup>), 39.23 (C<sup>3a</sup>), 43.13 (C<sup>3</sup>), 45.64 и 45.77 (C<sup>9a</sup>), 48.11 (С1'), 48.82 (С13d), 48.82 и 49.07 (С10), 51.86 (OCH<sub>3</sub>), 55.54 и 55.83 (С<sup>4</sup>), 74.76 и 74.82 (ОСН<sub>2</sub>), 74.99 и 75.50 (С<sup>2'</sup>), 117.38 и 117.51 (С<sup>9'</sup>), 123.12 (С<sup>7</sup>, C<sup>8</sup>), 126.02 (C<sup>7</sup>), 126.15 (C<sup>7a</sup>), 126.28 (C<sup>5a</sup>), 127.74, 127.84, 128.48 (Bn), 128.05 (С<sup>5</sup>), 129.39 (4S) и 129.56 (4R) (C<sup>2</sup>), 130.67 (C<sup>6</sup>), 134.10 (C<sup>1</sup>), 137.88 и 137.95 (ОСН<sub>2</sub><u>С</u>), 144.22 (С<sup>13b</sup>), 146.90 и 147.01 (C<sup>13c</sup>), 148.51 (С<sup>6</sup>), 179.28 и 179.34 (С<sup>17</sup>). Массспектр (MALDI/TOF), *m/z*: 715.425 [*M*]<sup>+</sup>. Найдено, %: С 80.55; Н 8.60; N 1.91; О 8.94. С<sub>48</sub>Н<sub>61</sub>NO<sub>4</sub>. Вычислено, %: С 80.52; Н 8.59; N 1.96; О 8.94. *M*<sub>выч</sub> 715.460.

Общая методика синтеза соединений 9–11. Водород пропускали через суспензию соединения 6–8 и катализатора (10% Pd-C) в 5 мл абсолютного метанола (контроль TCX, 3 ч). Катализатор отфильтровывали, фильтрат упаривали. Остаток хроматографировали на силикагеле, элюент *н*-гексан–AcOEt (5:1).

**4-{[(6-Гидрокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-8-фтор-2,3,3а,4,5,9b-гексагидро-1***Н***-циклопента[***с***]хинолин (9). Выход 72 мг (87%), т.пл. 45–47°С. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), δ, м.д.: 1.31 с (3H, H<sup>11</sup>'), 1.62–1.74 м (2H, H<sup>1</sup>, H<sup>2</sup>), 2.15, 2.22, 2.25 с (9H, H<sup>12'</sup>, H<sup>13'</sup>, H<sup>14'</sup>), 2.69–2.72 м (2H, H<sup>4'</sup>), 3.62 и 3.77 д (1H, H<sup>4</sup>,** *J* **9.5 Гц), 6.42–6.44 м (1H, H<sup>6</sup>), 6.66–6.70 м (1H, H<sup>9</sup>), 6.80 д.д (1H, C<sup>7</sup>H,** *J* **2.0, 7.5 Гц). Масс-спектр (HRMS),** *m/z***: 408.2560 [***M* **– H]<sup>+</sup>. Найдено, %: С 76.27; Н 7.85; F 4.68; N 3.45; О 7.75. С<sub>26</sub>Н<sub>32</sub>FNO<sub>2</sub>,. Вычислено, %: С 76.25; Н 7.88; F 4.64; N 3.42; О 7.81.** *М***<sub>выч</sub> 409.242.** 

4-{[(6-Гидрокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-2,3,3а,4,5,11b-гексагидро-5*H*-ци**клопента[***c***]-1,7-фенантролин (10).** Выход 117 мг (82%), т.пл. 104–106°С. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), δ, м.д.: 1.29 и 1.46 с (3Н, Н<sup>11</sup>), 1.48–2.15 м (10Н, H<sup>1</sup>, H<sup>2</sup>, H<sup>3</sup>, H<sup>1'</sup>, H<sup>4'</sup>), 2.17, 2.21, 2.34 c (9H, H<sup>12'</sup>, H<sup>13'</sup>, Н<sup>14</sup>), 2.35–2.37 м (1Н, Н<sup>3</sup>а), 2.71–2.73 м (2Н, Н<sup>3</sup>), 3.51–3.53 и 3.55–3.58 м (1Н, Н<sup>11b</sup>), 3.85 и 3.94 д (1H, H<sup>4</sup>, J 8.5, 10.0 Гц), 7.11–7.23 м (2H, H<sup>7</sup>, H<sup>10</sup>), 7.45-7.49 м (1Н, Н<sup>11</sup>), 7.85 и 7.95 д (1Н, Н<sup>6</sup>, J 17.0 Гц), 8.72 и 8.76 д (1Н, Н<sup>8</sup>, *J* 3.0 Гц). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), б, м.д.: 11.57, 12.49, 12.59, 12.69 (С<sup>12'</sup>, С<sup>13'</sup>, С<sup>14'</sup>), 20.66 и 20.88 (С<sup>3'</sup>), 24.19 и 24.56 (C<sup>11</sup>), 23.53 и 23.70 (C<sup>2</sup>), 23.83 и 23.98 (C<sup>1</sup>), 33.64 (C<sup>4</sup>), 34.18 и 39.11 (C<sup>3</sup>), 41.13 (C<sup>11b</sup>), 44.54 и 45.65 (C<sup>1</sup>), 45.26 и 45.87 (С<sup>3</sup>а), 49.13 и 49.34 (С<sup>4</sup>), 75.02 и 75.79 (С<sup>2</sup>), 117.63 и 117.79 (С<sup>9</sup>), 118.88 и 118.96 (C<sup>5b</sup>, C<sup>10</sup>), 119.76 (C<sup>7</sup>, C<sup>11a</sup>), 120.31 и 120.39 (C<sup>8</sup>), 120.31 и 120.40 (С<sup>7</sup>), 122.11 и 122.23 (С<sup>5</sup>), 129.33 и 129.43 (С<sup>6</sup>), 131.74 (С<sup>11</sup>), 139.94 и 140.10 (С<sup>9а</sup>), 144.83 и 144.97 (С<sup>6</sup>), 145.55 (С<sup>5а</sup>), 147.11 (С<sup>10</sup>), 148.48 и 148.62 (С<sup>8</sup>). Масс-спектр (HRMS), *m/z*: 443.2698 [*M* + H]<sup>+</sup>. Найдено, %: С 78.75; Н 7.71; N 6.35; О 7.19. С<sub>29</sub>Н<sub>34</sub>N<sub>2</sub>O<sub>2</sub>. Вычислено, %: С 78.70; Н 7.74; N 6.33; О 7.23. *М*<sub>выч</sub> 442.262.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022

4-{[(6-Гидрокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-10,13а-диметил-10-метоксикарбонил-6-(пропан-2-ил)-2,3,3а,4,5,8,9,9а,10,11,12,-13,13а,13d-тетрадекагидро-3*H*-циклопента[*c*]нафто[1,2-f]хинолин (11). Выход 182 мг (90%), т.пл. 92–94°С. Спектр ЯМР <sup>1</sup>Н (CDCl<sub>3</sub>), б, м.д.: 0.77 д (3H, H<sup>15</sup>, J 6.5 Гц), 1.08 д (3H, H<sup>16</sup>, J 6.5 Гц), 1.30 с (3H, H<sup>19</sup>), 1.34 с (3H, H<sup>11</sup>), 1.38–1.78 м (4H, H<sup>1</sup>, H<sup>2</sup>), 1.51 с (3H, H<sup>18</sup>), 1.60–1.78 м (2H, H<sup>9</sup>), 1.60-1.82 м (2Н, Н<sup>11</sup>), 1.70-1.72 и 2.20-2.24 м (2Н, Н<sup>3</sup>), 1.78–1.82 м (2Н, Н<sup>12</sup>), 1.78–1.90 м (2Н, Н<sup>3</sup>), 2.14-2.18 м (2Н, Н<sup>1</sup>), 2.19-2.21 м (10Н, Н<sup>12</sup>, Н<sup>13</sup>. H<sup>13d</sup>, H<sup>14'</sup>), 2.58–2.67 м (3H, H<sup>9a</sup>, H<sup>4'</sup>), 2.78–3.00 м (6Н, Н<sup>3a</sup>, Н<sup>8</sup>, Н<sup>13</sup>, Н<sup>14</sup>), 3.67 и 3.69 с (3Н, СН<sub>3</sub>О), 3.70-3.72 м (1H, H<sup>4</sup>), 6.57 и 6.68 с (1H, H<sup>7</sup>). Спектр ЯМР <sup>13</sup>С (CDCl<sub>3</sub>), б, м.д.: 12.16, 12.28, 12.30 (С<sup>12'</sup>, С<sup>13'</sup>, С<sup>14'</sup>), 17.16 и 17.38 (С<sup>19</sup>), 19.13 и 19.34 (С<sup>12</sup>), 20.65 и 20.74 (С<sup>4</sup>), 22.14 (С<sup>9</sup>, С<sup>15</sup>), 22.58 (С<sup>16</sup>), 22.84 (С<sup>18</sup>), 26.14 и 26.36 (С<sup>11</sup>), 26.36 и 26.45 (С<sup>14</sup>), 26.70 (С<sup>2</sup>); 26.84 (С<sup>1</sup>), 29.72 (С<sup>13а</sup>), 32.22 и 32.26 (C<sup>8</sup>), 33.38 и 33.68 (C<sup>3</sup>), 35.98 и 36.33 (C<sup>11</sup>), 39.11 (C<sup>13</sup>), 39.39 (C<sup>3a</sup>), 42.42 и 42.68 (C<sup>3</sup>), 43.20 и 43.29 (C<sup>4</sup>), 46.78 и 46.89 (С<sup>9а</sup>), 48.62 и 48.48 (С<sup>13d</sup>), 49.11 (C<sup>10</sup>, C<sup>1'</sup>), 51.91 (ОСН<sub>3</sub>), 74.96 и 75.40 (С<sup>2'</sup>), 117.25 (С<sup>10</sup>), 118.47 (С<sup>5</sup>), 121.05 и 121.27 (С<sup>7</sup>), 122.45 и 122.54 (C<sup>7</sup>), 123.62 (C<sup>8</sup>), 132.06 (C<sup>9</sup>), 144.21 (C<sup>7</sup>a), 144.42 (C<sup>13b</sup>); 144.46 (C<sup>13c</sup>); 144.93 (C<sup>5a</sup>); 145.03 (C<sup>6</sup>), 146.90 (C<sup>6</sup>), 179.32 и 179.41 (C<sup>17</sup>). Массспектр (HRMS), m/z: 628.4291  $[M + H]^+$ . Найдено, %: C 78.50; H 9.10; N 2.22; O 10.18. C<sub>41</sub>H<sub>57</sub>NO<sub>4</sub>. Вычислено, %: С 78.43; Н 9.15; N 2.23; О 10.19. *М*<sub>выч</sub> 627.429.

#### ЗАКЛЮЧЕНИЕ

В однореакторной кислотно-катализируемой циклоконденсации ариламинов с 6-гидрокси-(2,5,7,8-тетраметилхроман-2-ил) ацетальдегидом и циклопентадиеном происходит эффективная и стереоселективная генерация циклоаддуктов, структура которых содержит фрагменты хроман-2-ила и тетрагидрохинолина, аннелированного с циклопентановым кольцом. Изучение антиокислительных свойств синтезированных гибридных молекул на кинетической модели инициированного окисления 1,4-диоксана показало, что введение хроманильного фрагмента в структуру способствует ингибированию оксилительного процесса на выбранной модели. В исследу-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 2 2022

емом ряду для соединений 9, 11, 12 антиокислительная способность сопоставима с таковой для 6-гидрокси-(2,5,7,8-тетраметилхроман-2-ил) ацетальдегида 5, тогда как для гибридной молекулы 4-{[(6-гидрокси)-2,5,7,8-тетраметилхроман-2-ил]метил}-3а,4,5,11b-тетрагидро-3*H*-циклопента[*c*]-1,7-фенантролина 13 антиокислительная способность выше.

#### БЛАГОДАРНОСТИ

Структурные исследования соединений 6–13 проведены в Региональном центре коллективного пользования «Агидель» УФИЦ РАН, Отделение – Институт нефтехимии и катализа УФИЦ РАН, в рамках выполнения государственного задания (тема АААА-А19-119022290004-8).

#### ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-03-00649). Часть исследований выполнена в соответствии с Федеральной программой № АААА-А19-119022290012-3.

#### ИНФОРМАЦИЯ ОБ АВТОРАХ

Савченко Римма Гафуровна, ORCID: http:// orcid.org/0000-0001-9145-2253

Лиманцева Регина Минияровна, ORCID: http:// orcid.org/0000-0002-7549-3837

Сафарова Ирина Владимировна, ORCID: http:// orcid.org/0000-0002-4351-8462

Шарипова Гульназ Маратовна, ORCID: http:// orcid.org/0000-0002-5994-1521

Мещерякова Екатерина Сергеевна, ORCID: http://orcid.org/0000-0001-9401-8153

Толстиков Александр Генрихович, ORCID: http://orcid.org/0000-0001-7382-3487

Одиноков Виктор Николаевич, ORCID: http:// orcid.org/0000-0001-5129-6321

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

 Kouznetsov V., Palma A., Ewert C., Varlamov A. J. Heterocycl. Chem. 1998, 35, 761–785. doi 10.1002/ jhet.5570350402

- Ramesh E., Manian R.D.R.S., Raghunathan R., Sainath S., Raghunathan M. *Bioorg. Med. Chem.* 2009, *17*, 660–666. doi 10.1016/j.bmc.2008.11.058
- Ding C.Z., Hunt J.T., Ricca C., Manne V. Bioorg. Med. Chem. Lett. 2000, 10, 273–275. doi 10.1016/S0960-894X(99)00686-1
- Fotie J., Kaiser M., Delfín D.A., Manley J., Reid C.S., Paris J.-M., Wenzler T., Maes L., Mahasenan K.V., Li C., Werbovetz K.A. J. Med. Chem. 2010, 53, 966– 982. doi 10.1021/jm900723w
- Sridharan V., Suryavanshi P.A., Menéndez J.C. Chem. Rev. 2011, 111, 7157–7259. doi 10.1021/cr100307m
- Глушков В.А., Толстиков А.Г. Усп. хим. 2008, 77, 138–160. [Glushkov V.A., Tolstikov A.G. Russ. Chem. Rev. 2008, 77, 137–159.] doi 10.1070/ rc2008v077n02abeh003749
- Ghashghaei O., Masdeu C., Alonso C., Palacios F., Lavilla R. *Drug Discov. Today.* 2018, 29, 71–79. doi 10.1016/j.ddtec.2018.08.004
- Hensley K., Benaksas E.J., Bolli R., Comp P., Grammas P., Hamdheydari L., Mou S., Pye Q.N., Stoddard M.F., Wallis G., Williamson K.S., West M., Wechter W.J., Floyd R.A. *Free Radical Bio Med.* 2004, *36*, 1–15. doi 10.1016/j.freeradbiomed.2003.10.009
- Manfredini S., Vertuani S., Manfredi B., Rossoni G., Calviello G., Palozza P. *Bioorg. Med. Chem.* 2000, *8*, 2791–2801. doi 10.1016/S0968-0896(00)00205-4
- Одиноков В.Н., Спивак А.Ю., Кнышенко О.В. Russ. J. Bioorg. Chem. 2007, 33, 387–404. [Odinokov V.N., Spivak A.Yu., Knyshenko O.V. Russ. J. Bioorg. Chem. 2007, 33, 359–375.] doi 10.1134/S1068162007040012
- Tolstikov A.G., Glushkov V.A., Tarantin A.V., Kazanbaeva G.F., Shashkov A.S., Suponitsky K.Y., Dembitsky V.M. *Heteroatom. Chem.* 2005, *16*, 605– 612. doi 10.1002/hc.20159
- Tolstikov A.G., Savchenko R.G., Lukina E.S., Nedopekin D.V., Limantceva R.M., Khalilov L.M., Mescheryakova E.S., Odinokov V.N. *Helv. Chim. Acta.* 2014, *97*, 1317–1325. doi 10.1002/hlca.201300456
- Fonseca T., Gigante B., Marques M.M., Gilchrist T.L., De Clercq E. *Bioorg. Med. Chem.* 2004, *12*, 103–112. doi 10.1016/j.bmc.2003.10.013

- Wang X.S., Yin M.Y., Wang S.L., Wang W., Li Y.L. J. Heterocycl. Chem. 2012, 49, 585–588. doi 10.1002/ jhet.824
- Ken-ichi S., Matsuda T., Taka-aki K., Yamada K., Mizutani T., Matsui S., Fukuhara K., Miyata N. *Biol. Pharm. Bull.* 2003, 26, 448–452. doi 10.1248/ bpb.26.448
- Толстиков А.Г., Савченко Р.Г., Лукина Е.С., Недопекин Д.В., Одиноков В.Н. *Изв. АН. Сер. хим.* 2013, 62, 203–211. [Tolstikov A.G., Savchenko R.G., Lukina E.S., Nedopekin D.V., Odinokov V.N. *Russ. Chem. Bull.* 2013, 62, 203–211.] doi 10.1002/chin.201417201
- Эмануэль Н.М. Окисление этилбензола. М.: Наука, 1984.
- Якупова Л.Р., Хайруллина В.Р., Герчиков А.Я., Сафиуллин Р.Л., Баймуратова Г.Р. Кинетика и катализ. 2008, 49, 366–370. [Yakupova L.R., Safiullin R.L., Khairullina V.R., Gerchikov A.Ya., Baimuratova G.R. Kinet. Catal. 2008, 49, 366–370.] doi 10.1134/S0023158408030075
- 19. Денисов Е.Т., Азатян В.В. Ингибирование цепных реакций. Черноголовка: ИХФЧ. **1996**.
- Хайруллина В.Р., Герчиков А.Я., Сафарова А.Б., Халитова Р.Р., Спивак А.Ю., Шакурова Э.Р., Одиноков В.Н. Кинетика и катализ. 2011, 52, 193–198. [Khairullina V.R. Gerchikov A.Y., Safarova A.B., Khalitova R.R., Spivak A.Yu., Shakurova E.R., Odinokov V.N. Kinet. Catal. 2011, 52, 186– 191.] doi 10.1134/S0023158411020091
- CrysAlis PRO (revision 1.171.37.35) A.T.L., Yarnton, Oxfordshire, 2012.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. J. Appl. Crystallogr. 2009, 42, 339–341. doi 10.1107/S0021889808042726
- Sheldrick G. Acta Crystallogr., Sect. A. 2011, 64, 112– 122. doi 10.1107/S0108767307043930
- 24. Sheldrick G. *Acta Crystallogr., Sect. C.* **2015**, *71*, 3–8. doi 10.1107/S2053229614024218
- Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., Wood P.A. *J. Appl. Crystallogr.* 2020, *53*, 226–235. doi 10.1107/s1600576719014092

### Synthesis and Antioxidant Properties of New Polycycles with Tetrahydroquinoline and Chromane Fragments

R. G. Savchenko<sup>*a*, \*</sup>, R. M. Limantceva<sup>*a*</sup>, I. V. Safarova<sup>*b*</sup>, G. M. Sharipova<sup>*b*</sup>, E. S Meshcheriakova<sup>*a*</sup>, A. G. Tolstikov<sup>*a*</sup>, and V. N. Odinokov<sup>*a*</sup>

 <sup>a</sup> Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center of the Russian Academy of Sciences, prosp. Oktyabrya, 141, Ufa, 450075 Russia
<sup>b</sup> Bashkir State University, ul. Z. Validi, 32, Ufa, 450076 Russia
\*e-mail: ecdysona@gmail.com

Received August 19, 2021; revised September 10, 2021; accepted September 18, 2021

Three-component acid-catalyzed cyclocondensation of arylamines with cyclopentadiene and 6-benzyloxy/ hydroxy-(2,5,7,8-tetramethylchroman-2-yl)-acetaldehyde were synthesized new cycloadducts. The structure of synthesized compounds contains fragments of chroman-2-yl and cyclopentene/cyclopentane-fused tetrahy-droquinoline. The antioxidant activity of novel compounds was studied using a kinetic model of the initiated oxidation of 1,4-dioxane.

**Keywords:** tetrahydroquinoline, Povarov reaction, three-component cyclocondensation, cyclopentadiene, chroman-2-yl, antioxidant activity