УДК 547.316 + 547.318 + 547.326

α,β-НЕНАСЫЩЕННЫЕ β-МЕТИЛ-δ-ЛАКТОНЫ В РЕАКЦИИ НИТРИЛОКСИДНОГО ЦИКЛОПРИСОЕДИНЕНИЯ И ПОЛУЧЕНИЕ НАСЫЩЕННЫХ ЛАКТОНОВ И ЛАКТАМОВ

© 2022 г. И. В. Минеева*

Белорусский государственный университет, 220047, Республика Беларусь, г. Минск, пр. Независимости 4 *e-mail: i.mineyeva@yandex.ru

> Поступила в редакцию 19.09.2021 г. После доработки 10.10.2021 г. Принята к публикации 12.10.2021 г.

Впервые проведено нитрилоксидное присоединение к α,β-ненасыщенным β-метил-δ-лактонам, которое привело к новым изоксазолинам с высоким выходом. На основе этих ненасыщенных лактонов реализована дивергентная схема получения β-метилразветвленных насыщенных лактонов, лактамов, а также лактонов с обращением конфигурации гидроксильной группы.

Ключевые слова: 2-замещенные аллилбромиды, 2-замещенные аллилстаннаны, нитрилоксидное циклоприсоединение, изоксазолины, α,β-ненасыщенные β-метил-δ-лактоны, β-метил разветвленные насыщенные лактоны, лактамы

DOI: 10.31857/S0514749222060039, EDN: CWFLLN

введение

Хиральные ненасыщенные δ-лактоны являются важным структурным фрагментом многих природных соединений [1], входят в состав противогрибковых и антимикробных агентов, иммунодепрессантов, ингибиторов различных ферментов и антипролиферативных агентов [2–6] (схема 1).

Так, α , β -ненасыщенные β -метил- δ -лактоны содержатся в противомалярийных дитерпеноидах афадилактонах A-D (1) из растения *Аphanamixis* grandifolia [2]; в сплицеостатине E (2), обладающему противоопухолевыми свойствами против многих линий раковых клеток [3]; в (+)-думеторине (3) из клубней ямса *Discorea dumetorum Pax*, компонента традиционной африканской медицины [4]. Ненасыщенные лактоны служат промежуточными соединениями в синтезе биоактивных соединений (схема 1), например, фрагмента 4 миннамида A – линейного липопептида из морских цианобактерий *Okeania hirsute* [5]; интермедиата 5 в синтезе скопариусицидисов А и Р [6], фрагмента 6 сестертерпеноидов алотакеталя А и форбакеталя А [7].

Кроме того, наличие двойной связи в α,β-ненасыщенных β-метил-б-лактонах предлагает многочисленные стратегические функционализации, которые применяются в направленном синтезе [8-28]. Так, реализуется диастереоселективное восстановление ненасыщенных β-метилразветвленных б-лактонов в син- и анти-насыщенные лактоны [8–13], исчерпывающее восстановление в пиран [14, 15], воссстановление в ненасыщенный лактол [7, 14, 16, 17] или ненасыщенный диол [10, 15, 18, 19], внутримолекулярное элиминирование с образованием диеновых кислот [20-22], эпоксидирование по кратной связи [23, 24], присоединение по Михаэлю различных нуклеофилов [25-27] и реакция циклоприсоединения по кратной связи [28].

В ходе данной исследовательской работы планировалось впервые вовлечь α,β-ненасыщен-

ные-β-метил-δ-лактоны в реакции нитрилоксидного циклоприсоединения, а также разработать на их основе новый подход к получению лактамов и лактонов, с обращением конфигурации гидроксильной группы, с целью дальнейшего использования полученных продуктов в синтетической практике (схема 2).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Основные способы получения ненасыщенных δ-лактонов 7–14 из альдегидов 15–21, примененных в данном исследовании, приведены на схеме 3. Так, лактоны 7 и 8 были получены в реакции энантиоселективного аллилирования по Кеку альдегидов 15 и 16 станнанном 22 [29, 30]. Альдегиды 17, 19, 21 были проаллилированы аллилбромидом 23 [30] в условиях реакции Барбье при действии цинка или индия, что привело с высоким выходом к промежуточным эфирам, которые затем без выделения были превращены в лактоны 9–11, 14 действием карбоната натрия в метаноле Лактоны 12 и 13 получены по ранее описанной методике диастереоселективного аллилирования D-циклогексилиденглицеральдегида (20) [31, 32]. Синтез функционализированного альдегида 21 и лактона 14 на его основе был осуществлен через серию интермедиатов 24–27. Структура всех полученных соединений была подтверждена спектроскопией ЯМР.

Далее ненасыщенные лактоны 7–14 были впервые вовлечены в реакцию нитрилоксидного циклоприсоединения при действии реагента, сгенерированного из нитроэтана и фенилизоцианата в бензоле в присутствии триэтиламина как основа-

ния (схема 4). Все соединения **28–35** были получены с умеренным и высокими выходами (табл. 1), а в случае лактонов **7**, **8**, **12**, **13** в виде единственного диастереомера, что установлено на основании ЯМР спектров.

Наличие бензильной, мезильной, циклогексилиденовой и метоксиметильной защитных групп не повлияло на результат реакции циклоприсоединения. Дизамещенная и тризамещенная кратная связь лактонов 9 и 14 оказались менее активными, чем кратная связь лактонового цикла в реакции нитрилоксидного циклоприсоединения.

Изоксазолины являются востребованными веществами [33], биостерические превращения которых создают амидные связи, а также позволяют получать различные производные, в том числе амино спирты и гидрокси нитрилы. Так, например, соединение **36** является противотуберкулезным препаратом, а **37** проявляет свойства кардиопротектора [33] (схема 4).

В реакции циклоприсоединения возможно образование нескольких регио- и стереоизомеров (схема 5). Региоселективность циклоприсоединения была доказана на основании спектра ЯМР ¹Н соединения на основании химического сдвига указанного на схеме 5 протона, он составил 3.70 м.д, что согласуется с направлением присоединения Б. На основании эксперимента NOESY было доказано взаимное расположение атомов в пространстве, соответствующее стереоизомеру А.

Полученные ненасыщенные лактоны 7, 8, 12 были восстановлены с высокой степенью диасте-

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 6 2022

реоселективности [29, 30, 32] в *син*-лактоны **38–40** (схема 6). При длительном кипячении *син*-лактонов **38–40** с бензиламином в метаноле были получены амиды **41–43**, основной диастереомер которых отделялся хроматографически (схема 6).

На основании амидов **41–43** планировалось получение лактамов согласно схемы 7. Предполагалось, что гидроксильная группа могла быть превращена в хорошую уходящую группу в реакциях нуклеофильного замещения, а далее в безводной среде при атаке нуклеофильным атомом азота по атому брома образовывался бы *син*-лактам. В ходе эксперимента оказалось, что бромид ион как основание отщеплял протон от амидной группы и активировал карбонильную группу, атом кислорода которой атаковал по гидроксильной группу, превращенной в хорошую уходящую группу за счет трифенилфосфина. Таким образом, были синтезированы *анти*-лактоны **44–46** в виде единственного диастереомера.

Анти-лактоны находят широкое применение в органическом синтезе, например, для синтеза дидемкеталя из пурпурного асцидиана Didemnum sp. [34, 35] применялся лактон 47, соединение 48 использовалось для получения апратоксина A из цианобактерий Lyngbya sp. [36], лактон 49 – строительный блок каллиспонгиолида [37], а лактон 50 – для получения антибиотика калимантацина [38] (схема 7).

Далее была реализована новая стратегия, согласно которой было осуществлено превращение амидов 41–43 в мезилаты 51, 52 в которых плани-

Таблица 1. Синтез α,β-ненасыщенные-β-метил-δ-лактонов и результаты их превращения в реакции нитрилоксидного циклоприсоединения

Таблица 1. (<i>n</i>	родолж.).
-----------------------	-----------

Выход лактонов 9-11, 14		H	D o/d	
условия Аа	условия Б ^b	– Изоксазолин	Выход, ‰"	
11 (59%)	11 (67%)	$\begin{array}{c} \begin{array}{c} MOMO \\ & & \\$	85	
12 (62%)	12 (66%)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	79	
13 (10%)	13 (14%)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ 0 \\ 34 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ } \\ \end{array} \\ } \\	81	
14 (55%)	14 (62%)	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ &$	68	

^а На 1.0 ммоль альдегида, 2.0 ммоль аллилбромида **23** использовали 2.1 ммоль цинка, 3 мл ТГФ и 0.2 мл насыщенного водного раствора NH₄Cl; после обработки реакционной смеси продукт лактонизовали с 1.5 ммоль Na₂CO₃ в 3 мл MeOH

^b На 1.0 ммоль альдегида, 1.5 ммоль аллилбромида **23** использовали 1.6 ммоль индия, 3 мл MeOH; без обработки реакционной смеси продукт лактонизовали с 1.5 ммоль Na₂CO₃ в том же растворителе

^с Во всех опытах на 1.0 ммоль ненасыщенного лактона использовали 5.0 ммоль нитроэтана, 5.0 ммоль фенилизоцианата, 5.5 ммоль Et₃N в 3 мл абсолютного бензола при комнатной температуре в течение 72 ч до полной конверсии исходного субстрата ^d Изоксазолины выделены хроматографически

ровалось провести внутримолекулярное нуклеофильное замещение с замыканием в *анти*-лактам **53**, **54** (схема 8). Направление нуклеофильной атаки зависело от применяемых оснований (направление А или Б). В случае сильных оснований, таких как NaH или *t*-BuOK, реализовывался путь A, в случае мягкого основания Et₃N в ацетонитриле или бензоле реализовывалось направление Б, приводящее вновь к лактону с обращением конфигурации (схема 8). В случае амида **41** образование

анти-лактона **44** происходило непосредственно при обработке реакционной смеси в процессе мезилирования. Результаты опытов по циклизации в лактоны и лактама приведены в табл. 2.

Лактамы являются востребованными соединениями в направленном синтезе, так кислота 55 является ключевым компонентом получения высокоселективных тромбиновых ингибиторов [39], производние пипеколиновой кислоты 56 используется как строительный блок для синтеза пептидомиметиков, иммуносупрессоров и ингибиторов ферментов [40] (схема 8).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использованные в ходе работы реактивы и растворители имели квалификацию «чистые» и «чистые для анализа». Очистка и высушивание растворителей проводились в соответствии с литературными методами. Оценку индивидуальности синтезируемых веществ и наблюдение за ходом проводимых реакций осуществляли методом тонкослойной хроматографии (ТСХ) на пластинках «Sorbfil». В качестве элюента были использованы смеси растворителей - петролейный эфир и этилацетат в различных соотношениях. Выделение индивидуальных веществ осуществляли методом колоночной хроматографии на силикагеле (70-230 меш) производства фирмы Merck с использованием в качестве элюентов смесей тех же растворителей. Спектры ЯМР ¹Н и ¹³С 5-10% растворов синтезированных соединений в дейтерохлороформе (CDCl₃) были получены на приборе Bruker

Аvance-500 (Германия) с рабочей частотой 500 и 125 МГц соответственно. Химические сдвиги измеряли по шкале δ сигнала остаточных протонов дейтерохлороформа (δ 7.26 и 77.16 м.д. для ¹³С соответственно). ИК спектры веществ записаны в пленке на спектрофотометре Bruker FT-IR Alpha (Германия). Масс-спектры были получены на Agilent 8860 gc System (США) масс-спектрометре с ионизацией электронным ударом 70 эB, колонка Agilent 1990 1s-433е, hp-5 ms от –60 до 350°С. Элементный анализ выполнен полумикрометодом. Альдегиды **18** и **19** получены на основании циклопропанольных интермедиатов [41].

Общая методика получения ненасыщенных лактонов в реакции Барбье при действии цинка в ТГФ с добавлением насыщенного раствора NH₄Cl (метод *a*). К охлажденному до 0°С раствору 1.0 ммоль альдегида 15–19, 21 2.0 ммоль аллилбромида 23 и 0.14 г цинкового порошка (2.1 ммоль) в 3 мл ТГФ при перемешивании вносили 0.2 мл насыщенного водного раствора NH₄Cl. Реакционную смесь перемешивали в течение 1 ч, разбавляли насыщенным водным раствором NH_4Cl (5 мл), продукт реакции из водного слоя экстрагировали Et_2O (3×10 мл), объединенные органические вытяжки сушили Na_2SO_4 . После отгонки растворителя при пониженном давлении получали масло, которое при комнатной температуре растворяли в 3 мл MeOH и добавляли 0.16 г (1.5 ммоль) Na_2CO_3 , смесь перемешивали в течение 12 ч. Реакционную смесь обрабатывали водой (20 мл), продукт реакции экстрагировали CHCl₃ (3×10 мл), объединенные органические вытяжки сушили MgSO₄. После удаления растворителя при пониженном давлении лактоны **9–11**, **14** выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 30:1).

Общая методика получения ненасыщенных лактонов в реакции Барбье при действии индия в метаноле (метод b). К раствору 1.0 ммоль альдегида 15–19, 21, 1.5 ммоль аллилбромида 23 в 3 мл метанола добавляли 0.18 г порошка индия (1.6 ммоль) и перемешивали в течение 12 ч.

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 6 2022

После внесения 0.16 г (1.5 ммоль) Na₂CO₃ смесь перемешивали дополнительно 12 ч. Реакционную смесь обрабатывали водой (20 мл), продукт реакции экстрагировали CHCl₃ (3×10 мл), объединенные органические вытяжки сушили MgSO₄. После удаления растворителя при пониженном давлении продукт реакции выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 30:1).

4-Метил-6-[(E)-2-фенилвинил]-дигидро-2Hпиран-2-он (9). Выход 0.15 г (61%) по методу *а* и 0.17 г (68%) по методу b. ИК спектр, v, см⁻¹: 1713 с (С=О), 1696 с (С=О), 1241 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 2.01 уш.с (3Н, CH₃C=), 2.40 д.д (1Н, CH₂C=, J₁ 18.0, J₂ 4.5 Гц), 2.50 д.д (1H, CH₂C=, J₁ 18.0, J₂ 11.8 Гц), 5.03–5.07 м (1H, CHOC=O), 5.86 уш.с (1Н, СН=), 6.26 д.д (1Н, PhCH=C<u>H</u>, J₁ 16.0, *J*₂ 6.4 Гц), 6.72 д.д (1Н, PhC<u>H</u>=CH, *J* 16.0 Гц), 7.25-7.40 м (5H, Ph). Спектр ЯМР ¹³С, δ, м.д.: 22.9, 34.9, 77.3, 116.6, 125.8, 126.6 (2C), 128.2 (2C), 128.6, 132.9, 135.8, 156.7, 164.6. Масс-спектр, *m/z* (*I*_{0TH}, %): 214 (29.87) [*M*]⁺, 186 (27.21), 155 (13.76), 131 (17.19), 129 (18.15), 128 (21.56), 115 (28.01), 104 (36.76), 103 (25.14), 91 (41.89), 82 (100.00), 78 (17.47), 77 (32.94), 54 (19.55), 51 (19.53), 39 (29.32). Найдено, %: С 78.56; Н 6.51. С₁₄Н₁₄О₄. Вычислено, %: C 78.48; H 6.59.

1-[(4-Метил-6-оксо-3,6-дигидро-2Н-пиран-2ил)метил]циклопропил метансульфонат (10). Выход 0.16 г (62%) по методу а и 0.18 г (70%) по методу b. ИК спектр, v, см⁻¹: 1732 с (С=О), 1350 с (S-O), 1244 ср (С-О), 1177 с (S-O). Спектр ЯМР ¹Н, б, м.д.: 0.74–0.80 м (1Н, СН_{2шиклопроп}), 0.89-0.95 м (1Н, СН_{2циклопроп}), 1.21-1.37 м (2Н, СН_{2шиклопроп}), 1.98 уш.с (3H, CH₃C=), 2.08 д.д (1H, СH₂C=, *J*₁ 15.4, *J*₂ 8.2 Гц), 2.28–2.42 м (3H, CH₂C=, С<u>Н</u>₂СНО), 3.00 уш.с (3Н, CH₃SO₂), 4.74–4.81 м (1Н, СНОС=О), 5.79 уш.с (1Н, СН=). Спектр ЯМР ¹³С, δ, м.д.: 12.0, 11.5, 22.9, 34.5, 39.7, 41.0, 63.0, 74.5, 116.4, 157.1, 164.7. Масс-спектр, *m/z* (*I*_{отн}, %): 181 (20.62), 111 (100.00), 109 (23.77), 108 (24.88), 83 (28.81), 82 (18.14), 81 (20.64), 80 (26.16), 79 (17.10), 55 (41.58). Найдено, %: С 50.82; Н 6.11. С₁₁Н₁₆О₅S. Вычислено, %: С 50.75; Н 6.20.

6-{[1-(Метоксиметокси)циклопропил]метил}-4-метил-дигидро-2*H***-пиран-2-он (11). Выход 0.13 г (59%) по методу** *a* **и 0.15 г (67%) по методу** *b***. ИК спектр, v, см⁻¹: 1715 с (С=О), 1246 с (С–О),** МИНЕЕВА

Мезилат	Условия ^а	Температура, °С	Время реакции, ч	Продукт	Выход, %				
51	ΝαΗ, ΤΓΦ	20	2	53	90				
	t-BuOK, толуол	20	3	53	86				
	Et ₃ N, CH ₃ CN	80	4	45	92				
	Et ₃ N, PhH	80	4	45	90				
	K ₂ CO ₃ , MeOH	20	3	45	74				
52	ΝαΗ, ΤΓΦ	20	2	54	88				
	t-BuOK, толуол	20	3	54	90				
	Et ₃ N, CH ₃ CN	80	6	46	77				
	Et ₃ N, PhH	80	6	46	80				
	K ₂ CO ₃ , MeOH	20	4	46	63				

Таблица 2. Возможные превращения мезилатов 51 и 52 в основной среде

^а Во всех опытах на 1 ммоль мезилата использовали 1.5 ммоль основания и 3 мл растворителя

1150 с (С–О), 1030 с (С–О), 1015 с (С–О). Спектр ЯМР ¹Н, δ, м.д.: 0.42–0.47 м (1Н, СН_{2циклопроп}), 0.54–0.59 м (1Н, СН_{2циклопроп}), 0.82–0.91 м (2Н, СН_{2циклопроп}), 1.86 д.д (1Н, СН₂С=, J_1 14.8, J_2 6.7 Гц), 1.94 уш.с (3H, СН₃С=), 2.08 д.д (1H, СН₂С=, J_1 14.8, J_2 5.8 Гц), 3.29 уш.с (3H, СН₃О), 2.30–2.42 м (2H, С<u>Н</u>₂СНО), 4.62–4.72 м (3H, СНОС=О, ОСН₂О), 5.74 уш.с (1H, CH=). Спектр ЯМР ¹³С, δ, м.д.: 11.2, 12.2, 22.8, 34.6, 40.6, 55.8, 58.5, 75.2, 95.7, 116.2, 157.2, 164.9. Масс-спектр, m/z ($I_{\text{отн}}$, %): 125 (14.88), 111 (40.46), 108 (27.14), 83 (17.61), 82 (16.04), 81 (18.21), 80 (21.89), 79 (10.44), 55 (26.72), 53 (14.20), 45 (100.00), 39 (22.62). Найдено, %: С 63.76; Н 7.93. С₁₂Н₁₈О₄. Вычислено, %: С 63.70; H 8.02.

(6*R*)-6-{(2*R*)-1,4-Диоксаспиро[4.5]дец-2-ил}-4-метил-5,6-дигидро-2*H*-пиран-2-он (12). Выход 0.16 г (62%) по методу *а* и 0.17 г (66%) по методу *b*. Спектральные характеристики ранее приведены в работе [32].

(6*S*)-6-{(2*R*)-1,4-Диоксаспиро[4.5]дец-2-ил}-4-метил-5,6-дигидро-2*H*-пиран-2-он (13). Выход 0.03 г (10%) по методу *а* и 0.04 г (14%) по методу *b*. Спектральные характеристики ранее приведены в работе [32].

(6*RS*)-6-[(1*E*,4*S*)-4-{(2*R*)-1,4-Диоксаспиро-[4.5]дец-2-ил}-4-(метоксиметокси)-2-метилбут-1-ен-1-ил]-4-метил-5,6-дигидро-2*H*-пиран-2он (14). Выход 0.21 г (55%) по методу *a* и 0.24 г (62%) по методу b в виде смеси диастереомеров 1/1. ИК спектр, v, см⁻¹: 1716 с (С=О), 1245 с (С-О), 1150 с (С-О), 1025 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 1.33–1.62 м [10Н, (СН₂)₅], 1.77 уш.с (3H, СН₃С=СНСН), 1.97 уш.с (3H, СН₃С=), 2.15-2.39 м (4H, CH₂C=CHC=O, CH₂C=), 3.33 уш.с (1.5Н, СН₃О), 3.34 уш.с (1.5Н, СН₃О), 3.80-3.86 м (2H, CH₂OC, C<u>H</u>OCH₂OCH₃), 3.95–4.04 м (2H, СН₂ОС, ОСН₂С<u>Н</u>ОС), 4.60 д (1H, CH₃OC<u>H</u>₂O, J 6.7 Гц), 4.68 д (1Н, CH₃OC<u>H</u>₂O, J 6.7 Гц), 5.07–5.12 м (1Н, СНОС=О), 5.42 д (1Н, =СНСНО, J 8.7 Гц), 5.80 уш.с (1Н, =СНС=О). Спектр ЯМР ¹³С, б, м.д.: 17.0 (2C), 22.9 (2C), 23.7 (2C), 23.9 (2C), 25.1 (4C), 34.7, 34.8, 41.9, 42.0, 55.6, 55.8, 65.3, 65.5, 73.7, 73.8, 75.4, 76.9 (2C), 77.2, 96.4, 96.5, 109.7 (2C), 116.6 (2C), 124.9, 125.0, 138.8 (2C), 156.7 (2C), 165.0 (2С). Масс-спектр (диастереомер с временем удерживания 48.788 мин), *m/z* (*I*_{отн}, %): 380 (10.81) $[M]^+$, 207 (19.17), 178 (22.88), 177 (19.55), 161 (26.99), 159 (30.36), 148 (43.23), 145 (19.03), 141 (32.51), 133 (38.70), 121 (22.16), 111 (39.37), 108 (23.11), 105 (29.22), 97 (35.91), 93 (19.54), 91 (21.15), 83 (27.35), 82 (50.75), 81 (27.73), 79 (25.95), 69 (23.88), 55 (72.50), 54 (20.00), 45 (100.00), 42 (26.32), 41 (31.98), 39 (36.99). Масс-спектр (диастереомер с временем удерживания 48.867 мин), m/z $(I_{\text{отн}}, \%)$: 380 (15.53) $[M]^+$, 161 (25.46), 159 (31.62), 148 (27.68), 141 (35.56), 133 (32.88), 121 (21.00), 119 (20.70), 111 (37.87), 108 (21.76), 105 (28.26), 97 (30.36), 95 (19.31), 93 (21.47), 91 (26.93), 83

(28.44), 82 (44.62), 81 (30.19), 79 (29.51), 77 (19.83), 69 (22.88), 55 (75.32), 53 (20.92), 45 (100.00), 42 (27.87), 41 (35.84), 39 (41.84). Найдено, %: С 66.37; H 8.40. С₂₁Н₃₂О₆. Вычислено, %: С 66.29; H 8.48.

Метил (2E,5S)-5-{(2R)-1,4-диоксаспиро[4.5]дек-2-ил}-5-(метоксиметокси)-3-метилпент-2еноат (26). К раствору 1.08 г (3.3 ммоль) эфира 25, полученному по методике из работы [33], в 55 мл ТГФ при интенсивном перемешивании вносили 0.08 г NaH (3.3 ммоль). Полученную реакционную смесь перемешивали в течение 2 ч при комнатной температуре, затем обрабатывали 15 мл H₂O. Продукт реакции экстрагировали Et₂O (3×15 мл), объединенные органические вытяжки сушили Na₂SO₄. После отгонки растворителя при пониженном давлении продукт реакции выделяли хроматографированием (элюент – петролейный эфир-этилацетат, 40:1). Выход 1.06 г (98 %). ИК спектр, v, см⁻¹: 1711 с (С=О), 1648 с (С=О), 1222 c (C-O), 1149 o.c (C-O), 1097 o.c (C-O), 1028 o.c (С-О). Спектр ЯМР ¹Н, δ, м.д.: 1.31–1.68 м [10Н, (CH₂)₅], 2.15 д.д (1Н, С<u>Н</u>2СНОМОМ, J₁ 14.6, J₂ 9.9 Гц), 2.46 д.д (1Н, С<u>Н</u>2СНОМОМ, J1 14.6, J2 3.0 Гц), 2.55 уш.с (1Н, ОН), 3.10 д (1Н, СН₂СО, J 15.6 Гц), 3.16 д (1Н, CH₂CO, J 15.6 Гц), 3.69 с (3H, CH₃O), 3.74–3.82 м (1H, C<u>H</u>OH), 3.92–4.10 м (3H, CH₂C<u>H</u>OC, CH₂OC), 5.05 c (1H, CH₂=), 5.09 с (1H, CH₂=). Спектр ЯМР ¹³С, δ, м.д.: 19.1, 23.8, 24.0, 25.1, 34.8, 36.1, 43.4, 50.9, 55.8, 65.6, 75.7, 77.2, 96.6, 109.9, 118.1, 156.0, 166.7. Найдено, %: С 62.26; Н 8.49. С₁₇Н₂₈О₆. Вычислено, %: С 62.17; H 8.59.

(2*E*,5*S*)-5-{(2*R*)-1,4-Диоксаспиро[4.5]дек-2ил}-5-(метоксиметокси)-3-метилпент-2-ен-1-ол (27). К суспензии 0.10 г (2.7 ммоль) LiAlH₄ в 3 мл сухого Et₂O добавляли раствор 0.88 г (2.7 ммоль) эфира 26 в 3 мл сухого Et₂O при интенсивном перемешивании, чтобы смесь равномерно кипела. Реакционную смесь дополнительно перемешивали в течение 30 мин, после обрабатывали 0.3 мл H₂O до образования белого осадка. Органический слой декантировали, осадок промывали Et₂O (3×10 мл), объединенные органические вытяжки сушили Na₂SO₄. После отгонки растворителя при пониженном давлении продукт выделяли хроматографированием (элюент – петролейный эфир– этилацетат, 10:1) Выход 0.77 г (95%). ИК спектр, ν, см⁻¹: 1097 с (С–О), 1023 о.с (С–О). Спектр ЯМР ¹H, δ, м.д.: 1.34–1.70 м [10H, (СН₂)₅], 1.75 уш.с (3H, СН₃С=), 1.96 с (1H, OH), 2.16–2.31 м (2H, СНС<u>Н</u>₂С=), 3.36 с (3H, СН₃О), 3.84–3.95 м (2H, СН<u>2</u>ОС, С<u>Н</u>ОСН₂ОСН₃), 3.97–4.09 м (2H, СН₂ОС, ОСН₂С<u>Н</u>ОС), 4.11–4.21 м (2H, С<u>Н</u>₂СНОН), 4.65 д (1H, СН₃ОС<u>Н</u>₂О, *J* 6.8 Гц), 4.74 д (1H, СН₃ОС<u>Н</u>₂О, *J* 6.8 Гц), 5.51 т (1H, CH=, *J* 6.8 Гц). Спектр ЯМР ¹³С, δ, м.д.: 16.4, 23.8, 23.9, 25.1, 34.9, 36.0, 42.2,

(2E,5S)-5- $\{(2R)$ -1,4-Диоксаспиро[4.5]дек-2-ил}-5-(метоксиметокси)-3-метилпент-2-еналь (21). К суспензии 0.16 г (0.76 ммоль) ПХХ в 1.5 мл CH₂Cl₂ добавляли 0.11 г (0.38 ммоль) спирта 27 в 1.5 мл CH₂Cl₂ и перемешивали в течение 2 ч до завершения реакции. Реакционную смесь разбавляли 15 мл Et₂O и фильтровали через слой силикагеля. После удаления растворителя при пониженном давлении получали продукт, который без дополнительной очистки вводили в следующую стадию. Выход 0.10 г (95%).

55.6, 59.1, 65.1, 75.4, 77.3, 96.6, 109.6, 126.8, 135.5.

Найдено, %: С 64.04; Н 9.33. С₁₆Н₂₈О₅. Вычислено,

%: C 63.97; H 9.40.

Общая методика реакции циклоприсоединения. К 1.0 ммоль ненасыщенного лактона 9–14 в 5 мл абсолютного бензола при комнатной температуре добавляли 0.38 (5.0 ммоль) нитроэтана, 0.6 г (5.0 ммоль) фенилизоцианата, 0.56 г (5.5 ммоль) Еt₃N и выдерживали в течение 72 ч до полной конверсии исходного субстрата. После удаления растворителя при пониженном давлении продукт реакции выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 20:1).

(За*R*,6*R*,7а*R*)-3,7а-Диметил-6-пентил-За,6,7,-7а-тетрагидро-4*H*-пирано[3,4-*d*]изоксазол-4-он (28). Выход 0.21 г (93%). ИК спектр, v, см⁻¹: 1730 с (С=О), 1479 ср (С–N), 1379 ср (С–N), 1254 с (С–О). Спектр ЯМР ¹Н, δ, м.д.: 0.87 т [3H, С<u>H</u>₃(CH₂)₄, *J* 6.7 Гц), 1.23–1.51 м [6H, CH₃(C<u>H</u>₂)₃CH₂], 1.53–1.60 м [2H, (CH₂)₃C<u>H</u>₂CHOCO], 1.44 с (3H, C<u>H</u>₃CCH), 1.68 д.д (1H, CC<u>H</u>₂CHO, *J*₁ 14.7, *J*₂ 11.5 Гц), 2.04 уш.с (3H, CH₃C=), 2.10–2.14 м (1H, CC<u>H</u>₂CHO), 3.70 уш.с (1H, CHC=). 4.32–4.36 м (1H, CHOCO). Спектр ЯМР ¹³С, δ, м.д.: 12.1, 13.8, 22.3, 24.2, 26.7, 31.4, 34.6, 38.8, 61.5, 76.7, 84.2, 150.4, 166.6. Массспектр, *m/z* (*I*_{0ТН}, %): 239 (7.48) [*M*]⁺, 138 (11.62), 110 (15.86), 98 (100.00), 97 (74.91), 96 (10.56), 82 (61.58), 56 (13.42), 55 (24.48), 54 (10.24), 43 (28.72), 41 (21.27), 39 (10.39). Найдено, %: С 65.33; Н 8.78. С₁₃Н₂₁NO₂. Вычислено, %: С 65.25; Н 8.84.

(3aR,6S,7aR)-6-[(Бензилокси)метил]-3,7а-диметил-3а,6,7,7а-тетрагидро-4Н-пирано[3,4-d]изоксазол-4-он (29). Выход 0.25 г (88%). ИК спектр, v, см⁻¹: 1731 с (С=О), 1446 ср (С–N), 1366 ср (С-N), 1259 с (С-О), 1110 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 1.46 с (3Н, CH₂CCH), 1.95 д.д (1H, CC<u>H</u>₂CHO, J₁ 15.1, J₂ 11.9 Гц), 2.04 уш.с (3H, CH₃C=), 2.14 д.д (1H, CCH₂CHO, J₁ 15.1, J₂ 1.3 Гц), 3.61 д.д (1H, OCH₂CHO, J₁ 10.9, J₂ 4.5 Гц), 3.67 д.д (1H, OC<u>H</u>₂CHO, J₁ 10.9, J₂ 3.8 Гц), 3.72 уш.с (1H, CHC=), 4.53-4.60 м (3H, CH₂Ph, CHOCO), 7.28-7.39 м (5H, CH₂Ph). Спектр ЯМР ¹³С, δ, м.д.: 12.1, 26.7, 36.3, 61.6, 70.7, 73.5, 75.6, 84.0, 127.7 (2C), 127.8, 128.4 (2С), 137.4, 150.6, 165.0. Масс-спектр, *m/z* (*I*_{отн}, %): 142 (18.35), 107 (14.08), 98 (16.25), 92 (12.48), 91 (100.00), 82 (16.58), 79 (9.22), 77 (9.93), 65 (15.77), 43 (9.65). Найдено, %: С 66.50; Н 6.57. С₁₆Н₁₉NO₄. Вычислено, %: С 66.42; Н 6.62.

3,7а-Диметил-6-[(*E*)-2-фенилвинил]-3а,6,7,-7а-тетрагидро-4Н-пирано[3,4-d]изоксазол-4-он **(30).** Выход 0.20 г (74%). ИК спектр, v, см⁻¹: 1719 c (C=O), 1547 cp (C-N), 1440 cp (C-N), 1254 c (С–О), 1182 с (С–О). Спектр ЯМР ¹Н, б, м.д.: 1.50 с (3H, CH₃CCH), 1.92 д.д (1H, CCH₂CHO, J₁ 14.7, J₂ 11.5 Гц), 2.08 уш.с (3H, CH₃C=), 2.30 д.д (1H, СС<u>Н</u>₂СНО, *J*₁ 14.7, *J*₂ 1.6 Гц), 3.78 уш.с (1H, CHC=), 5.02–5.08 м (1Н, СНОСО), 6.15 д.д (1Н, PhCH=CH, J₁ 16.0, J₂ 6.7 Гц), 6.73 д (1Н, PhC<u>H</u>=CH, J 16.0 Гц), 7.28–7.39 м (5H, CH₂<u>Ph</u>). Спектр ЯМР ¹³С, δ, м.д.: 12.2, 26.7, 39.5, 61.6, 76.8, 84.2, 124.7, 126.7 (2C). 128.4, 128.7 (2C), 133.5, 135.6, 150.7, 165.0. Maccспектр, *m/z* (*I*_{0тн}, %): 271 (2.43) [*M*]⁺, 213 (12.34), 202 (22.78), 185 (17.19), 131 (48.99), 130 (66.25), 129 (100.00), 128 (41.32), 127 (14.93), 115 (51.19), 104 (19.94), 103 (15.51), 91 (14.08), 82 (17.66), 77 (17.72), 43 (12.69), 39 (12.41). Найдено, %: С 70.90; Н 6.24. С₁₆Н₁₇NO₃. Вычислено, %: С 70.83; Н 6.32.

1-{(3,7а-Диметил-4-оксо-3а,6,7,7а-тетрагидро-4*H*-пирано[**3,4-***d*]изоксазол-6-ил)метил}циклопропил метансульфонат (**31**). Выход 0.29 г (90%). ИК спектр, v, см⁻¹: 1732 с (С=О), 1594 ср (С–N), 1438 ср (С–N), 1329 с (S–O), 1263 с (С–О), 1243 с (С–О), 1159 с (С–О), 1064 с (С–О), 1051 с (С–О). Спектр ЯМР ¹H, δ, м.д.: 0.74–0.78 м (1H, СН_{2циклопроп}), 0.85–0.89 м (1Н, СН_{2циклопроп}), 1.31– 1.39 м (2Н, СН_{2циклопроп}), 1.46 с (3Н, С<u>Н</u>₃ССН), 1.83 д.д (1Н, С_{циклопроп} С<u>Н</u>₂СНО, *J*₁ 14.7, *J*₂ 11.9 Гц), 2.06 с (3Н, СН₃С=), 2.14 д.д (1Н, С<u>Н</u>₂СНО, *J*₁ 15.7, *J*₂ 7.8 Гц), 2.23–2.27 м (2Н, С_{циклопроп}С<u>Н</u>₂СНО, С<u>Н</u>₂СНО), 3.02 уш.с (3Н, СН₃SO₂), 3.71 уш.с (1Н, СНС=), 4.70–4.75 м (1Н, СНОС=О). Спектр ЯМР ¹³С, δ, м.д.: 11.7, 12.0, 12.2, 26.7, 38.6, 39.6, 40.8, 61.3, 62.3, 74.4, 84.0, 150.7, 164.9. Масс-спектр, *m/z* (*I*_{0TH}, %): 317 (4.28) [*M*]⁺, 238 (36.37), 168 (38.43), 124 (19.24), 98 (100.00), 97 (21.17), 96 (19.79), 83 (16.94), 82 (66.14), 81 (15.53), 80 (16.75), 79 (85.80), 69 (14.35), 55 (34.56), 53 (16.90), 43 (38.71), 41 (30.96), 39 (22.11). Найдено, %: С 65.32; Н 8.79. С₁₃Н₁₉NO₆S. Вычислено, %: С 65.25; Н 8.84.

6-{[1-(Метоксиметокси)циклопропил]метил}-3,7а-диметил-3а,6,7,7а-тетрагидро-4Н-пирано[3,4-d]изоксазол-4-он (32). Выход 0.24 г (85%). ИК спектр, v, см⁻¹: 1731 с (С=О), 1497 cp (C-N), 1446 cp (C-N), 1259 c (C-O), 1110 c (С-О). Спектр ЯМР ¹Н, б, м.д.: 0.44-0.48 м (1Н, СН_{2шиклопроп}), 0.63-0.69 м (1Н, СН_{2шиклопроп}), 0.86-0.95 м (2H, CH_{2шиклопроп}), 1.46 с (3H, C<u>H</u>₃CCH), 1.75 д.д (1Н, С_{пиклопроп}С<u>Н</u>₂СНО, *J*₁ 15.1, *J*₂ 11.5 Гц), 1.86 д.д (1Н, С_{циклопроп}С<u>Н</u>₂СНО, *J*₁ 15.1, *J*₂ 7.4 Гц), 2.04 д.д (1Н, С<u>Н</u>₂СНО, *J*₁ 15.1, *J*₂ 5.1 Гц), 2.05 с (3H, CH₃C=), 2.33 д.д (1H, C<u>H</u>₂CHO, *J*₁ 15.1, J₂ 1.6 Гц), 3.36 уш.с (3H, CH₃O), 3.71 уш.с (1H, СНС=), 4.60 д (1H, OC<u>H</u>₂OCH₃, J7.1 Гц), 4.65 д (1H, ОСН₂ОСН₃, J 7.1 Гц), 4.75–4.80 м (1H, CHOC=O). Спектр ЯМР ¹³С, δ, м.д.: 11.7, 12.1, 12.2, 26.8, 39.1, 41.2, 56.1, 58.8, 61.6, 74.9, 84.2, 96.2, 150.6, 165.4. Масс-спектр, *m/z* (*I*_{0тн}, %): 227 (14.70), 142 (59.25), 112 (12.57), 98 (15.61), 82 (16.71), 55 (9.76), 45 (100.00), 43 (13.30), 39 (9.65). Найдено, %: С 59.42; Н 7.39. С₁₄Н₂₁NO₅. Вычислено, %: С 59.35; Н 7.47.

(3аR,6S,7аR)-6-{(2R)-1,4-Диоксаспиро[4.5]дец-2-ил}-3,7а-диметил-3а,6,7,7а-тетрагидро-4H-пирано[3,4-d]изоксазол-4-он (33). Выход 0.24 г (79%). ИК спектр, v, см⁻¹: 1741 с (С=О), 1542 ср (С–N), 1440 ср (С–N), 1242 с (С–О), 1109 с (С–О), 1050 с (С–О). Спектр ЯМР ¹Н, δ , м.д.: 1.30–1.61 м [10H, (СН₂)₅], 1.44 с (3H, С<u>Н</u>₃ССН), 1.71 д.д (1H, СС<u>Н</u>₂СНО, J_1 15.1, J_2 11.6 Гц), 2.00 с (3H, СН₃С=), 2.38 д.д (1H, СС<u>Н</u>₂СНО, J_1 15.1, J_2 1.6 Гц), 3.69 уш.с (1H, СНС=), 3.89–3.92 м (1H, СН₂ОС), 4.01–4.12 м (2H, СН₂ОС, СНОС=О),

4.21–4.25 м (1Н, ОСН₂С<u>Н</u>ОС). Спектр ЯМР ¹³С, δ, м.д.: 12.0, 23.6, 23.8, 24.9, 26.6, 34.3, 35.3, 36.2, 61.6, 66.0, 75.5, 76.7, 83.9, 110.7, 150.4, 164.5. Массспектр, *m/z* (*I*_{0TH}, %): 309 (21.55) [*M*]⁺, 280 (27.02), 267 (14.94), 266 (100.00), 124 (9.37), 98 (18.70), 82 (19.47), 55 (34.71), 53 (18.56), 43 (15.75), 42 (10.60), 41 (15.90). Найдено, %: С 62.19; Н 7.42. С₁₆Н₂₃NO₅. Вычислено, %: С 62.12; Н 7.49.

(3aS,6R,7aS)-6-{(2R)-1,4-1,4-Диоксаспиро-[4.5]дец-2-ил}-3,7а-диметил-3а,6,7,7а-тетрагидро-4Н-пирано[3,4-d]изоксазол-4-он (34). Выход 0.25 г (81%). ИК спектр, v, см⁻¹: 1733 с (С=О), 1540 cp (C-N), 1446 cp (C-N), 1262 c (C-O), 1250 с (С-О), 1096 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 1.33-1.70 м [10Н, (СН₂)₅], 1.48 с (3Н, С<u>Н</u>₃ССН), 1.94 д.д (1Н, СС<u>Н</u>2СНО, *J*1 14.7, *J*2 11.56 Гц), 2.05 с (3H, CH₃C=), 2.12 д.д (1H, CC<u>H</u>₂CHO, J₁ 14.7, J₂ 1.0 Гц), 3.73 уш.с (1Н, СНС=), 3.93 д.д (1Н, СН₂ОС, J₁ 8.4, J₂ 6.7 Гц), 4.04 д.д (1H, CH₂OC, J₁ 8.4, J₂ 7.1 Гц), 4.18-4.21 м (1Н, СНОС=О), 4.39-4.43 м (1H, OCH₂C<u>H</u>OC). Спектр ЯМР ¹³С, *б*, м.д.: 12.0, 23.6, 23.8, 24.9, 26.6, 34.3, 35.3, 36.2, 61.6, 66.0, 75.5, 76.7, 83.9, 110.7, 150.4, 164.5. Масс-спектр, m/z (I_{OTH} , %): 309 (22.79) $[M]^+$, 280 (32.25), 267 (14.52), 266 (100.00), 124 (10.86), 98 (18.47), 82 (16.27), 55 (27.99), 53 (15.86), 43 (13.15), 42 (10.18), 41 (13.45). Найдено, %: С 62.18; Н 7.44. С₁₆Н₂₃NO₅. Вычислено, %: С 62.12; Н 7.49.

6-[(4S)-4-{(2R)-1,4-Диоксаспиро[4.5]дец-2ил}-4-(метоксиметокси)-2-метилбут-1-ен-1-ил]-3,7а-диметил-За,6,7,7а-тетрагидро-4Н-пирано[3,4-*d*]изоксазол-4-он (35). ИК спектр, v, см⁻¹: 1732 c (C=O), 1499 cp (C-N), 1446 cp (C-N), 1251 с (С-О), 1100 с (С-О), 1032 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 1.34–1.64 м [10Н, (CH₂)₅], 1.45 с (3Н, CH₃CCH), 1.77 уш.с (3H, CH₃C=CH), 1.78–1.84 м (1H, CCH₂CHO), 2.07 (3H, CH₃C=N), 2.06–2.13 м (1Н, ССН₂СНО), 2.19–2.32 м (2Н, СН₂С=), 3.33 с (1.5H, CH₃O), 3.34 с (1.5H, CH₃O), 3.70 уш.с (0.5H, СНС=), 3.71 уш.с (0.5Н, СНС=), 3.80-3.85 м (1Н, СНОСН₂ОСН₃), 3.86–3.89 м (1Н, СН₂ОС), 3.99– 4.04 м (2H, CH₂OC, OCH₂C<u>H</u>OC), 4.59–4.62 м (1H, СH₃OCH₂O), 4.68–4.70 м (1H, CH₃OCH₂O), 5.07– 5.12 м (1Н, СНОС=О), 5.30–5.33 м (1Н, =СНСНО). Спектр ЯМР ¹³С, δ, м.д.: 12.2 (2С), 13.9 (2С), 17.2, 17.3, 23.8, 23.9, 25.1, 26.6, 34.8 (2C), 36.1 (2C), 39.1, 39.2, 41.8, 41.9, 55.7, 55.8, 61.4 (2C), 65.5, 65.6,

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 6 2022

73.4 (2C), 75.6, 75.7, 84.1 (2C), 96.5, 96.6, 109.8 (2C), 119.9 (2C), 123.9, 124.0, 128.8, 129.0, 139.4 (2С), 150.9 (2С), 165.3 (2С). Масс-спектр (диастереомер с временем удерживания 50.617 мин), m/z $(I_{\text{отн}}, \%)$: 437 (18.36) $[M]^+$, 394 (20.33), 221 (16.83), 186 (33.54), 142 (57.15), 141 (56.97), 119 (25.45), 112 (15.97), 98 (38.09), 97 (21.58), 95 (22.18), 91 (17.80), 83 (18.45), 82 (35.91), 81 (32.32), 79 (28.73), 55 (40.07), 45 (100.00), 43 (23.97), 42 (17.82), 41 (22.83), 39 (19.40). Масс-спектр (диастереомер с временем удерживания 50.683 мин), *m/z* (*I*_{отн}, %): 437 (13.02) $[M]^+$, 394 (18.81), 221 (19.43), 186 (26.67), 142 (44.18), 141 (52.56), 119 (23.72), 98 (40.68), 97 (21.09), 95 (17.51), 93 (17.60), 91 (20.27), 83 (17.73), 82 (36.20), 81 (29.11), 79 (26.67), 55 (45.61), 45 (100.00), 43 (28.52), 42 (19.72), 41 (23.89), 39 (20.59). Найдено, %: С 63.20; Н 8.00. С₂₃Н₃₅NO₇. Вычислено, %: С 63.14; Н 8.06.

Общая методика раскрытия лактонов 38–40 в амиды 41–43. К раствору 1.0 ммоль лактона 38– 40 в 10 мл метанола добавляли 0.16 г (1.5 моль) бензиламина и кипятили в течение 12 ч. Смесь упаривали при пониженном давлении, продукт реакции выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 3:1).

(3S,5R)-N-Бензил-5-гидрокси-3-метилдеканамид (41). Выход 0.27 г (93%). ИК спектр, v, см⁻¹: 3290 ш (ОН), 1644 с (С–О), 1544 ср (С–N), 1244 ср (С–О). Спектр ЯМР ¹Н, б, м.д.: 0.89 т [3Н, С<u>Н</u>₃(СН₂)₄, *J* 7.1 Гц), 0.89 д (3H, С<u>Н</u>₃СH, *J* 6.4 Гц), 1.23–1.48 м [10H, CH₃(C<u>H</u>₂)₃CH₂, C<u>H</u>₂CHCH₃], 2.15–2.23 м (4H, CH₂CO, C<u>H</u>CH₃, OH], 3.63–3.67 м (1H, CHOH), 4.40–4.48 м (NHCH₂Ph), 5.98 уш.с (1H, NH), 7.27–7.36 м (CH₂<u>Ph</u>). Спектр ЯМР ¹³С, δ, м.д.: 14.0, 20.2, 22.6, 25.2, 27.9, 31.8. 38.5, 43.6, 44.1, 44.3, 70.1, 127.5, 127.9 (2C). 128.7 (2C), 138.4, 172.3. Масс-спектр, *m/z* (*I*_{отн}, %): 291 (3.73) [*M*]⁺, 220 (12.93), 174 (15.41), 149 (51.51), 148 (17.79), 132 (13.24), 113 (53.20), 107 (34.78), 106 (83.56), 105 (14.74), 98 (12.49), 91 (100.00), 85 (13.40), 79 (17.48), 77 (12.77), 69 (33.77), 56 (20.39), 55 (21.11), 43 (14.33), 41 (22.28). Найдено, %: С 74.25; Н 9.96. С₁₈Н₂₉NO₂. Вычислено, %: С 74.18; Н 10.03.

(3*S*,5*S*)-*N*-Бензил-6-(бензилокси)-5-гидрокси-3-метилгексанамид (42). Выход 0.31 г (90%). ИК спектр, v, см⁻¹: 3295 ш (ОН), 1643 с (С–О), 1543 ср (С–N), 1093 с (С–О). Спектр ЯМР

¹Н, δ, м.д.: 0.96 д (3Н, CH₃CH, J 5.8 Гц), 1.25 д.д.д (1H, CHCH₂CHCH₃, J₁ 14.1, J₂ 9.9, J₃ 4.8 Гц), 1.46 д.д.д (1H, CHCH₂CHCH₃, J₁ 14.1, J₂ 9.9, J₃ 4.8 Гц), 2.13-2.27 м (3H, CH₂CO, C<u>H</u>CH₃), 3.30 д.д (1H, ОС<u>H</u>₂CH, *J*₁ 9.3, *J*₂ 7.4 Гц), 3.40 д.д (1H, ОС<u>H</u>₂CH, J₁ 9.3, J₂ 3.8 Гц), 3.55 уш.с (1Н, ОН), 3.83–3.88 м (1H, CHOH), 4.34–4.41 м (NHCH₂Ph), 4.51 уш.с (2H, OCH₂Ph), 6.57 уш.с (1H, NH), 7.22–7.36 м (5H, CH₂Ph). Спектр ЯМР ¹³С, δ, м.д.: 19.9, 27.8, 39.6, 43.4, 44.0, 68.8, 73.2, 75.0, 127.3 (2C), 127.7 (3C), 128.4 (2C), 128.5 (2C), 128.6, 137.9, 138.3, 172.3. Масс-спектр, *m/z* (*I*_{отн}, %): 220 (13.53), 149 (10.14), 128 (8.41), 113 (8.11), 107 (19.93), 106(45.93), 92 (9.90), 91 (100.00), 79 (8.03), 69 (12.99), 65 (9.63). Найдено, %: С 73.93; Н 7.91. С₂₁Н₂₇NO₃. Вычислено, %: С 73.87; Н 7.97.

(3S,5S)-N-Бензил-5-{(2R)-1,4-диоксаспиро-[4.5]дец-2-ил}-5-гидрокси-3-метилпентанамид **(43).** Выход 0.32 г (89%). ИК спектр, v, см⁻¹: 3300 ш (ОН), 1643 с (С–О), 1543 ср (С–N), 1095 с (С–О), 1043 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 1.25–1.54 м [10H, (CH₂)₅], 0.91 д (3H, C<u>H</u>₃CH, *J* 6.4 Гц), 2.09-2.21 м (3H, CH₂CO, C<u>H</u>CH₃), 2.43 уш.с (1H, OH), 3.66-3.69 м (1Н, С<u>Н</u>ОН), 3.77 д.д (1Н, СН₂ОС, J₁ 7.7, J₂ 5.1 Гц), 3.81–3.84 м (1H, OCH₂C<u>H</u>OC), 3.88 д.д (1Н, CH₂OC, J₁ 7.7, J₂ 6.1 Гц), 4.31–4.37 м (NHCH₂Ph), 6.20 уш.с (1H, NH), 7.16–7.29 м (5H, СН₂<u>Ph</u>). Спектр ЯМР ¹³С, δ, м.д.: 20.0, 23.7, 23.9, 25.0, 27.9, 34.8, 36.1, 39.3, 43.4, 43.8, 65.0, 69.9, 78.7, 109.5, 126.8, 127.4, 127.7, 128.5, 128.6, 138.3, 172.3. Масс-спектр, *m/z* (*I*_{отн}, %): 361 (14.58) [*M*]⁺, 318 (26.54), 263 (18.34), 220 (53.84), 211 (24.46), 149 (18.95), 141 (14.43), 139 (21.02), 111 (17.34), 108 (19.80), 107 (15.87), 106 (62.43), 95 (11.49), 92 (10.34), 91 (100.00), 81 (13.86), 79 (12.29), 69 (19.93), 55 (31.05), 43 (11.02), 41 (13.71). Найдено, %: C 98.83; H 8.59. C₂₁H₃₁NO₄. Вычислено, %: C 98.78; H 8.64.

Общая методика взаимодействия амидов 41–43 с CBr_4 и PPh₃. При комнатной температуре к раствору 1 ммоль амида 41–43 в 5 мл CH_2Cl_2 добавляли 0.29 г (1.1 ммоль) PPh₃ и 0.33 г (1.0 ммоль) CBr₄ и перемешивали в течение 8 ч. После обработки 10 мл насыщенного водного раствора NaHCO₃, органический слой отделяли, продукт реакции из водного слоя дополнительно экстрагировали CH₂Cl₂ (3×5 мл), объединенные органические вытяжки сушили Na₂SO₄. После удаления растворителя при пониженном давлении продукт реакции выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 25:1).

(4S.6S)-4-Метил-6-пентилтетрагилро-2Н-пиран-2-он (44). Выход 0.16 г (88%). ИК спектр, v, см⁻¹: 1732 с (С=О), 1249 с (С-О), 1231 с (С-О), 1075 с (С–О). Спектр ЯМР ¹Н, б, м.д.: 0.88 т [3Н, СH₃(CH₂)₄, J 7.2 Гц], 0.91 д (3H, CH₃CH, J 6.4 Гц), 1.24-1.40 м [6Н, СН₃(СН)₃СН₂], 1.46-1.58 м [2H, CHCH₂CH, (CH₂)₃CH₂CHOCO], 1.67–2.20 м [2H, CHCH₂CH, (CH₂)₃CH₂CHOCO], 2.11–2.20 м (2Н, СН₂СН, СН₂СО), 2.52–2.58 м (1Н, СН₂СО), 4.33-4.39 м (1Н, CH₂CHOCO). Спектр ЯМР ¹³С, δ, м.д.: 13.9, 21.4, 22.5, 23.8, 24.9, 31.5, 35.0, 35.5, 37.4, 77.3. 172.5. Масс-спектр, *m/z* (*I*_{отн}, %): 128 (8.64), 124 (10.72), 114 (9.54), 113 (100.00), 85 (32.56), 84 (11.81), 69 (49.86), 57 (13.68), 56 (36.22), 55 (17.32), 43 (15.73), 42 (12.84), 41 (28.27), 39 (10.38). Найдено, %: С 71.77; Н 10.88. С₁₁Н₂₀О₂. Вычислено, %: С 71.70; Н 10.94.

(4S,6R)-6-[(Бензилокси)метил]-4-метилтетрагидро-2*H*-пиран-2-он (45). Выход 0.22 г (93%). ИК спектр. v. см⁻¹: 1728 с (С=О). 1238 с (С-О). 1117 с (С-О), 1088 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 1.07 д (3Н, СН₂СН, *J* 6.7 Гц), 1.57–1.62 м (1Н, СНС<u>Н</u>₂СН), 1.92–1.98 м (1Н, СНС<u>Н</u>₂СН), 2.14 д.д (1H, CH₂OC, J₁ 16.3, J₂ 8.4 Гц), 2.18–2.25 м (1H, СН₃С<u>Н</u>), 2.58 д.д (1Н, СН₂ОС, *J*₁ 16.3, *J*₂ 5.5 Гц), 3.60 д.д (1H, CHCH₂OBn, J₁ 10.3, J₂ 4.8 Гц), 3.63 д.д (2H, CHCH₂OBn, J₁ 10.3, J₂ 5.1 Гц), 4.54–4.61 м (3H, CH₂C<u>H</u>O, C<u>H</u>₂Ph), 7.28–7.37 м (5H, CH₂Ph). Спектр ЯМР ¹³С, б, м.д.: 21.2, 23.8, 31.8, 37.7. 71.8, 73.6, 76.2, 127.8 (2C), 127.9, 128.5 (2C), 137.8, 171.7. Масс-спектр, *m/z* (*I*_{отн}, %): 106 (100.00), 105 (23.19),104 (58.60), 91 (30.41), 79 (26.82), 77 (28.90), 32 (24.10). Найдено, %: С 71.84; Н 7.69. С₁₄Н₁₈О₃. Вычислено, %: С 71.77; Н 7.74.

(4*S*,6*R*)-6-[(2*R*)-1,4-Диоксаспиро[4.5]дец-2ил]-4-метилтетрагидро-2*H*-пиран-2-он (46). Выход 0.21 г (82%). ИК спектр, v, см⁻¹: 1735 с (С=О), 1230 с (С–О), 1162 с (С–О), 1093 с (С–О). Спектр ЯМР ¹Н, δ , м.д.: 1.07 д (3H, С<u>H</u>₃CH, *J* 7.1 Гц), 1.36– 1.66 м [11H, С<u>H</u>₂CHO, (CH₂)₅], 1.91–1.97 м (1H, С<u>H</u>₂CHO), 2.14 д.д (1H, CH₂CO, *J*₁ 17.0, *J*₂ 9.0 Гц), 2.34–2.43 м (1H, CH₃C<u>H</u>), 2.62 д.д (1H, CH₂CO, *J*₁ 17.0, *J*₂ 5.8 Гц), 3.94 д.д (1H, CH₂OC, *J*₁ 8.3, *J*₂ 7.4 Гц), 4.05 д.д (1H, CH₂OC, *J*₁ 8.3, *J*₂ 6.4 Гц), 4.17

д.д.д (1H, OCH₂C<u>H</u>OC, J_1 7.4, J_2 6.4, J_3 3.2 Гц), 4.43–4.47 м (1H, CHOC=O). Спектр ЯМР ¹³С, δ , м.д.: 21.2, 23.8 (2C), 23.9, 25.1, 32.1, 35.1, 35.5, 37.8, 65.2, 75.5, 77.2, 110.1, 174.3. Масс-спектр, m/z ($I_{\text{отн}}$, %): 254 (19.86) [M]+, 225 (30.47), 212 (12.77),211 (100.00), 141 (21.99), 139 (36.08), 127 (10.66), 111 (59.80), 97 (13.08), 83 (12.03), 81 (12.50), 79 (9.83), 69 (45.60), 39 (21.36), 41 (41.18), 42 (27.89), 43 (16.39), 53 (10.02), 55 (59.18), 56 (11.45). Найдено, %: С 66.19; Н 8.67. С₁₄Н₂₂О₄. Вычислено, %: С 66.12; Н 8.72.

Получение мезилатов 51, 52. К охлажденному до 0°С раствору 4.0 ммоль амидов 42, 43 в 5 мл сухого CH_2Cl_2 добавляли последовательно 0.9 мл (6.3 ммоль) Et_3N и 0.5 мл (5.0 ммоль) MsCl в 5 мл сухого CH_2Cl_2 . После перемешивания в течение 2 ч реакционную массу обработывали насыщенным водным раствором NaHCO₃ (15 мл). Органический слой отделяли, продукт реакции из водного слоя экстрагировали CH_2Cl_2 (3×10 мл), объединенные органические вытяжки сушили Na₂SO₄. Растворители удаляли при пониженном давлении и без дополнительной очистки вводили в следующие стадии. Выход **51** 1.59 г (95%), выход **52** 1.72 г (98%).

Получение лактамов 53, 54 из мезилатов 51, 52 при действии *t*-BuOK в толуоле. При комнатной температуре к раствору 3.0 ммоль мезилатов 51, 52 в 10 мл абсолютного толуола добавляли 0.34 г (3.0 ммоль) *t*-BuOK и выдерживали в течение 3 ч. Реакционную смесь обрабатывали насыщенным водным раствором NH₄Cl (30 мл), водой (15 мл), продукт реакции экстрагировали CH₂Cl₂ (3×10 мл), объединенные органические вытяжки сушили MgSO₄. После отгонки растворителя при пониженном давлении продукт реакции выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 5:1).

(4*S*,6*R*)-1-Бензил-6-[(бензилокси)метил]-4метилпиперидин-2-он (53). Выход 0.83 г (86%). ИК спектр, v, см⁻¹: 1636 с (С–О), 1451 ср (С–N). 1097 с (С–О), 1028 ср (С–О). Спектр ЯМР ¹Н, δ, м.д.: 0.93 д (3Н, С<u>Н</u>₃СН, *J* 6.4 Гц), 1.31–1.40 м (1Н, СНС<u>Н</u>₂СН), 1.90–2.22 м (3Н, СН₂СО, СН₃С<u>Н</u>, СНС<u>Н</u>₂СН), 2.53–2.59 м (1Н, СН₂СО), 3.42–3.53 м (2Н, СНС<u>Н</u>₂ОВп, СНN), 3.58 д.д.д (1Н, СНС<u>Н</u>₂OBn, *J*₁ 21.2, *J*₂ 10.3, *J*₃ 4.8 Гц), 4.02 д

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 6 2022

(1H, NHC<u>H</u>₂Ph, *J* 15.1 Гц), 4.40 д (1H, OC<u>H</u>₂Ph, *J* 11.9 Гц), 4.45 д (1H, OC<u>H</u>₂Ph, *J* 11.9 Гц), 5.28 д (1H, NHC<u>H</u>₂Ph, *J* 15.1 Гц), 7.11–7.34 м (5H, CH₂<u>Ph</u>). Спектр ЯМР ¹³С, δ , м.д.: 21.5, 21.7, 33.6, 40.2, 48.2, 54.6, 70.6, 73.2, 127.2 (2C), 127.6 (4C), 128.4 (4C), 137.7, 137.8, 170.3. Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 323 (5.00) [*M*]⁺, 203 (22.27), 202 (100.00), 92 (11.04), 91 (95.56), 69 (16.40), 65 (11.68). Найдено, %: С 78.02; H 7.73. С₂₁H₂₅NO₂. Вычислено, %: С 77.98; H 7.79.

(4S,6R)-1-Бензил-6-{(2S)-1,4-диоксаспиро-[4.5]дец-2-ил}-4-метилпиперидин-2-он (54). Выход 0.93 г (90%). ИК спектр, v, см⁻¹: 1632 с (С=О), 1451 ср (С-N), 1166 с (С-О), 1033 с (С-О). Спектр ЯМР ¹Н, б, м.д.: 0.98 д (3Н, С<u>Н</u>₃СН, *J* 6.1 Гц), 1.36–1.66 м [12H, CH₂CHN, (CH₂)₅], 2.06–2.15 м (1H, CH₂CO, CH₃C<u>H</u>), 2.68–2.75 м (1H, CH₂CO), 3.35-3.38 м (1Н, СНN), 3.49 д.д (1Н, СН₂ОС, J₁ 8.0, J₂ 7.1 Гц), 4.02 д.д (1H, CH₂OC, J₁ 8.0, J₂ 6.1 Гц), 4.29–4.34 м (1H, OCH₂C<u>H</u>OC), 4.02 д (1H, NHCH₂Ph, J 15.1 Гц), 5.66 д (1H, NHCH₂Ph, J 15.1 Гц), 7.22-7.34 м (5Н, CH₂Ph). Спектр ЯМР ¹³С, δ, м.д.: 21.8, 23.8, 24.0, 24.3, 25.0, 34.0, 35.0, 36.3, 40.0, 48.3, 56.9, 66.9, 79.6, 110.6, 127.0, 128.0 (2С), 128.4 (2С), 137.9, 169.7. Масс-спектр, m/z (*I*_{0TH}, %): 106 (100.00), 105 (23.19) ,104 (58.60), 91 (30.41), 79 (26.82), 78 (16.19), 77 (28.90), 51 (13.76). 43 (10.26), 40 (10.29), 32 (24.10). Найдено, %: С 73.50; H 8.45. C₂₁H₂₉NO₃. Вычислено, %: С 73.44; H 8.51.

Получение лактамов 53, 54 из мезилатов 51, 52 при действии NaH в ТГФ. При комнатной температуре к раствору 3.0 ммоль мезилатов 51, 52 в 10 мл абсолютного ТГФ добавляли 0.12 г (3.0 ммоль) 60%-ной суспензии NaH в масле и выдерживали в течение 2 ч. Реакционную смесь обрабатывали насыщенным водным раствором NH₄Cl (15 мл), продукт реакции проэкстрагировали CH₂Cl₂ (3×10 мл), объединенные органические вытяжки сушили MgSO₄. После отгонки растворителя при пониженном давлении продукт реакции выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 5:1). Выход 53 0.87 г (90%), выход 54 0.91 г (88%).

Получение лактонов 45, 46 с обращением конфигурации на основе мезилатов 51, 52. При комнатной температуре к раствору 3.0 ммоль мезилата 51, 52 в 10 мл CH₃CN или PhH добавляли 0.30 г (3.0 ммоль) Еt₂N и кипятили в течение нескольких часов (данные указаны в табл. 2). Реакционные смеси обрабатывали водой (15 мл), продукт реакции экстрагировали EtOAc (3×10 мл), объединенные органические вытяжки сушили Na₂SO₄. После отгонки растворителя при пониженном давлении лактоны выделяли хроматографированием (элюент – петролейный эфир-этилацетат, 5:1). Альтернативно, к раствору 3.0 ммоль мезилата 51, 52 в 10 мл МеОН добавляли 0.41 г (3.0 ммоль) К₂СО₃ и выдерживали при при комнатной температуре в течение нескольких часов (данные указаны в табл. 2). Реакционные смеси обрабатывали водой (15 мл), продукт реакции экстрагировали EtOAc (3×10 мл), объединенные органические вытяжки сушили Na₂SO₄. После отгонки растворителя при пониженном давлении продукт реакции выделяли хроматографированием (элюент – петролейный эфир–этилацетат, 5:1). Выходы продуктов во всех опытах приведены в табл. 2.

ЗАКЛЮЧЕНИЕ

В ходе данного исследования были получены новые изоксазолины за счет реакции циклоприсоединения к α , β -ненасыщенным β -метил- δ -лактонам. Также разработано 2 новых подхода к получению лактонов с обращенной конфигурацией гидроксильной группы, а также реализовано превращение лактонов в лактамы без применения дорогих и сложных в обращении реагентов. При выполнении синтетической работы был получен ряд ценных интермедиатов, которые могут найти эффективное применения в тонком органическом синтезе.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Минеева Ирина Владимировна, ORCID: https:// orcid.org/0000-0002-6422-1967

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Koszelewski D., Paprocki D., Brodzka A., Ostaszewski R. *Tetrahedron: Asymmetry*. 2017, 28, 809–818. doi 10.1016/j.tetasy.2017.05.003
- Zhang H., Liu J., Gan L.-S., Dalal S., Cassera M.B., Yue J.-M. Org. Biomol. Chem. 2016, 14, 957–962. doi 10.1039/C5OB02296G

- Ghosh A. K., Veitschegger A.M., Sheri V.R., Effenberger K.A., Prichard B.E., Jurica M.S. Org. Lett. 2014, 16, 6200–6203. doi 10.1021/ol503127r
- Riva E., Rencurosi A., Gagliardi S., Passarella D., Martinelli M. *Chem. Eur. J.* 2011, *17*, 6221–6226. doi 10.1002/chem.201100300
- Sumimoto S., Kobayashi M., Sato R., Shinomiya S., Iwasaki A., Suda S., Teruya T., Inuzuka T., Ohno O., Suenaga K. Org. Lett. 2019, 21, 1187–1190. doi 10.1021/acs.orglett.9b00135
- Zhou M., Li X.-R., Tang J.-W., Liu Y., Li X.-N., Wu B., Qin H.-B., Du X., Li L.-M., Wang W.-G., Pu J.-X., Sun H.-D. *Org. Lett.* 2015, *17*, 6062–6065. doi 10.1021/acs.orglett.5b03079
- Hubert J.G., Furkert D.P., Brimble M.A. J. Org. Chem. 2015, 80, 2715–2723. doi 10.1021/jo502897u
- Коваленко В.Н., Минеева И.В. *ЖОрХ*. 2014, *50*, 954– 962. [Kovalenko V.N., Mineeva I.V. *Russ. J. Org. Chem.* 2014, *50*, 934–942.] doi 10.1134/S1070428014070033
- Wadsworth A.D., Furkert D.P., Brimble M.A. J. Org. Chem. 2014, 79, 11179–11193. doi 10.1021/jo502238r
- Минеева И.В. *ЖОрХ*. 2015, *51*, 1083–1092. [Mineeva I.V. *Russ. J. Org. Chem.* 2015, *51*, 1061–1070.] doi 10.1134/S1070428015080023
- Минеева И.В. ЖОрХ. 2016, 52, 376–388. [Mineeva I.V. Russ. J. Org. Chem. 2016, 52, 355–367.] doi 10.1134/S1070428016030118
- Iwasaki K., Sasaki S., Kasai Y., Kawashima Y., Sasaki S., Ito T., Yotsu-Yamashita M., Sasaki M. J. Org. Chem. 2017, 82, 13204–13219. doi 10.1021/ acs.joc.7b02293
- 13. Masiuk U.S., Mineyeva I.V., Kananovich D.G. *Symmetry*. **2021**, *13*, 470. doi 10.3390/sym13030470
- Ahmed A., Hoegenauer E.K., Enev V.S., Hanbauer M., Kaehlig H., Ohler E., Mulzer J. J. Org. Chem. 2003, 68, 3026-3042. doi 10.1021/jo026743f
- Минеева И.В. *ЖОрХ*. 2018, 54, 1329–1336. [Mineeva I.V. *Russ. J. Org. Chem.* 2018, 54, 1341–1349.] doi 10.1134/S1070428018090130
- Brown C.W., Liu S., Klucik J., Berlin K.D., Brennan P.J., Kaur D., Benbrook D.M. J. Med. Chem. 2004, 47, 1008–1017. doi 10.1021/jm0303453
- Ando R., Amano Y., Nakamura H., Arai N., Kuwajima I. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3315–3318. doi 10.1016/j.bmcl.2006.03.056
- Ghosh A.K., Cheng X., Bai R., Hamel E. *Eur. J.* Org. Chem. 2012, 22, 4130–4139. doi 10.1002/ ejoc.201200286
- Cornil J., Guerinot A., Reymond S., Cossy J. J. Org. Chem. 2013, 78, 10273–10287. doi 10.1021/jo401627p

- Cahard D., Mammeri M., Poirier J.-M., Duhamel L. *Tetrahedron Lett.* 2000, 41, 3619–3622. doi 10.1016/ S0040-4039(00)00457-3
- Salman M., Babu S.J., Kaul V.K., Ray P.C., Kumar N. Org. Proc. Res. Dev. 2005, 9, 302–305. doi 10.1021/ op0497815
- Минеева И.В., Кулинкович О.Г. ЖОрХ. 2008, 44, 1277–1282. [Mineeva I.V., Kulinkovich O.G. Russ. J. Org. Chem. 2008, 44, 1261–1266.] doi 10.1134/ S1070428008090029
- 23. Barnych B., Vatele J.-M. *Synlett.* **2011**, *13*, 1912–1916. doi 10.1055/s-0030-1260959
- 24. Barnych B., Fenet B., Vatèle J.-M. *Tetrahedron*. **2013**, *69*, 334–340. doi 10.1016/j.tet.2012.10.022
- Takano S., Shimazaki Y., Moriya M., Ogasawara K. *Tetrahedron Lett.* **1990**, *31*, 3325–3326. doi 10.1016/ S0040-4039(00)89055-3
- Takano S., Shimazaki Y., Moriya M., Ogasawara K. Chem. Lett. 1990, 19, 1177–1180. doi 10.1246/ cl.1990.1177
- Passarella D., Riva S., Grieco G., Cavallo F., Checa B., Arioli F., Riva E., Comi D., Danieli B. *Tetrahedron Asymmetry*. 2009, 20, 192–197. doi 10.1016/j.tetasy.2008.12.008
- Zhou M., Li X.-R., Tang J.-W., Liu Y., Li X.-N., Wu B., Qin H.-B., Du X., Li L.-M., Wang W.-G., Pu J.-X., Sun H.-D. *Org. Lett.* 2015, *17*, 6062–6065. doi 10.1021/acs.orglett.5b03079
- 29. Минеева И.В. *ЖОрХ*. **2013**, *49*, 995–1001. [Mineeva I.V. *Russ. J. Org. Chem.* **2013**, *49*, 979–985.] doi 10.1134/S107042801307004X
- Mineyeva I.V., Kulinkovich O.G. *Tetrahedron Lett.* 2010, *51*, 1836–1839. doi 10.1016/j.tetlet.2010.01.120

- Минеева И.В. ЖОрХ. 2019, 55, 1203–1214. [Mineeva I.V. Russ. J. Org. Chem. 2019, 55, 1112–1123.] doi 10.1134/S0514749219080093
- Минеева И.В. ЖОрХ. 2020, 56, 885–892. [Mineeva I.V. Russ. J. Org. Chem. 2020, 56, 994–1000.] doi 10.1134/S1070428020060056
- Gonçalves R.S.B., Dos Santos M., Bernadat G., Bonnet-Delpon D., Crousse B. *Beilstein J. Org. Chem.* 2013, *9*, 2387–2394. doi:10.3762/bjoc.9.275
- Fuwa H., Noji S., Sasaki M. Org. Lett. 2010, 12, 5354– 5357. doi 10.1021/ol1024713
- Fuwa H., Muto T., Sekine K., Sasaki M. Chem. Eur. J. 2014, 20, 1849–1860. doi 10.1002/chem.201303713
- 36. Chen J., Forsyth C.J. J. Am. Chem. Soc. 2003, 125, 8734–8735. doi 10.1021/ja036050w
- Ghosh A.K., Kassekert L.A. Org. Lett. 2016, 18, 3274–3277. doi 10.1021/acs.orglett.6b01523
- Thistlethwaite I.R.G., Bull F.M., Cui C., Walker P.D., Gao S.-S., Wang L., Song Z., Masschelein J., Lavigne R., Crump M.P., Race P.R., Simpson T.J., Willis C.L. *Chem. Sci.* 2017, *8*, 6196–6201. doi 10.1039/ C7SC01670K
- Acherki H., Alvarez-Ibarra C., Guzmán-Fernández S., Quiroga-Feijóo M.L. *Tetrahedron Asymmetry*. 2004, 15, 693–697. doi 10.1016/j.tetasy.2003.11.035
- 40. Agami C., Comesse S., Kadouri-Puchot C. J. Org. Chem. 2000, 65, 4435–4439. doi 10.1021/jo0000271
- Минеева И.В., Кулинкович О.Г. ЖОрХ. 2009, 45, 1634–1643. [Mineeva I.V., Kulinkovich O.G. Russ. J. Org. Chem. 2009, 45, 1623–1632.] doi 10.1134/ S1070428009110086

α,β-Unsaturated β-Methyl-δ-lactones in the Reaction of Nitriloxide Cycloaddition and also for the Creation of Saturated Lactons and Lactams

I. V. Mineyeva*

Belarusian State University, prosp. Nezavisimosti, 4, Minsk, 220030 Belarus *e-mail: i.mineyeva@yandex.ru

Received September 19, 2021; revised October 10, 2021; accepted October 12, 2021

For the first time, nitrile oxide addition to α,β -unsaturated β -methyl- δ -lactones was carried out, which led to new isoxazolines in high yield. On the basis of these unsaturated lactones, a divergent scheme for the preparation of β -methylbranched saturated lactones, lactams, and lactones with the reversal of the configuration of the hydroxyl group

Keywords: 2-substituted allyl bromides, 2-substituted allylstannans, nitrile oxide cycloaddition, isoxazolines, α , β -unsaturated β -methyl- δ -lactones, β -methyl branched saturated lactones, lactams