Памяти академика РАН А.И. Коновалова

УДК 547.72 + 547.279

ОПТИЧЕСКИ АКТИВНЫЕ БИСТИОЭФИРЫ И ДИСУЛЬФОНЫ НА ОСНОВЕ 2(5*H*)-ФУРАНОНА И ДИТИОЛОВ: СИНТЕЗ И СТРОЕНИЕ

© 2022 г. А. М. Хабибрахманова^{*a*}, Э. С. Раббаниева^{*a*}, Д. П. Герасимова^{*b*}, Д. Р. Исламов^{*c*}, Л. З. Латыпова^{*a*, *c*}, О. А. Лодочникова^{*a*, *b*}, А. Р. Курбангалиева^{*a*, *}

^а ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Россия, 420008 Казань, ул. Кремлевская, 18 ^b Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение ФГБУН «Федеральный исследовательский центр «Казанский научный центр РАН», Россия, 420088 Казань, ул. Академика Арбузова, 8 ^c ФГБУН «Федеральный исследовательский центр «Казанский научный центр РАН», Россия, 420008 Казань, ул. Лобачевского, 2/31 *e-mail: akurbang@kpfu.ru

> Поступила в редакцию 07.06.2022 г. После доработки 22.06.2022 г. Принята к публикации 23.06.2022 г.

Разработаны методы синтеза новых оптически активных бистиоэфиров и дисульфонов 2(5*H*)-фуранонового ряда. При взаимодействии 5(*S*)-(*l*-ментилокси)- и 5(*S*)-(*l*-борнилокси)-2(5*H*)-фуранонов с этан-1,2-дитиолом и пропан-1,3-дитиолом в присутствии триэтиламина получены бистиоэфиры, в молекулах которых фрагмент дитиола соединяет два γ-лактонных цикла по атомам углерода С⁴. В реакциях окисления дитиопроизводных фуранона пероксидом водорода в уксусной кислоте выделены хиральные дисульфоны с фрагментом монотерпеновых спиртов в 5 положении γ-лактонного цикла. Строение пяти новых серосодержащих производных фуранона охарактеризовано методом рентгеноструктурного анализа.

Ключевые слова: 2(5*H*)-фураноны, лактоны, тиилирование, этан-1,2-дитиол, пропан-1,3-дитиол, бистиоэфиры, дисульфоны, рентгеноструктурный анализ

DOI: 10.31857/S0514749222080122, EDN: IRGJIH

ВВЕДЕНИЕ

Пятичленные кислородсодержащие гетероциклы ряда 2(5*H*)-фуранона играют значительную роль в органической и медицинской химии. Данные гетероциклы, особенно в энантиомерно чистой форме, составляют структурное ядро многочисленных природных соединений, обладающих большим разнообразием биологически активных свойств [1–8]. В ряду производных 2(5*H*)-фуранона выявлены вещества с противоопухолевым, противогрибковым и противовоспалительным действием, бактерициды, антибиотики и т.д. [3, 4, 6, 8–10]. Кроме того, ненасыщенный γ-лактон является одним из незаменимых строительных блоков в дизайне и разработке различных биологически активных структур, в том числе новых лекарственных средств [1, 4, 8, 11–13].

Сочетание в молекуле фуранонового кольца и сульфонильной группы также позволяет повысить либо разнообразить проявляемую биологическую активность [14, 15]. Хорошо известно, что сульфонилсодержащие соединения все чаще используются в синтезе природных и биологически активных веществ благодаря доступности, высокой реакционной способности и возможности легкого удаления на запланированной стадии [16–18]. Сульфоны находят широкое применение в качестве растворителей, полимеров, фармацевтических препаратов и агрохимикатов [19].

Дисульфоны, которым характерна гибкость связей C-S, легкость восстановления и окисления, способность выступать в роли как электрофильных, так и нуклеофильных реагентов, а также доноров или акцепторов в различных реакциях циклоприсоединения, эффективно используются в органическом синтезе в качестве универсальных и ценных промежуточных соединений [17]. В связи с этим, получение новых дисульфонильных производных на основе химически и биологически значимых гетероциклов ряда 2(5H)-фуранона является актуальной задачей. Особый интерес вызывают стереоизомерно чистые производные 2(5Н)-фуранона, что обусловлено, в первую очередь, потребностями фармацевтической промышленности. Как правило, биологическая активность рацемических веществ связана с действием лишь одного из стереоизомеров, тогда как второй может проявлять менее выраженную активность или быть совсем неактивным, или даже обладать сильным токсическим эффектом.

Ранее нами были разработаны методы получения моно- и дитиопроизводных 3,4-дихлор-2(5*H*)фуранона различного структурного типа [20–26], а также продуктов их окисления [27–29]. Целью данной работы явился синтез новых оптически активных серосодержащих производных 2(5H)фуранона на основе 5(S)-*l*-ментилокси- и 5(S)-*l*борнилоксифуранонов и двух алифатических дитиолов – этан-1,2-дитиола и пропан-1,3-дитиола.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В качестве исходных соединений выбраны оптически активные 5(*S*)-*l*-ментилокси-2(5*H*)фуранон (**1a**) и 5(*S*)-*l*-борнилокси-2(5*H*)-фуранон (**2a**), которые синтезировали из мукохлорной кислоты и *l*-ментола или *l*-борнеола в условиях кислотного катализа [14, 30–32]. В проведенных реакциях в обоих случаях сначала была получена смесь диастереомеров в соотношении 1:1, различающихся конфигурацией атома углерода С⁵ γ-лактонного цикла. Индивидуальные (*S*)-стереоизомеры **1a** и

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 8 2022

2а были выделены с помощью дробной перекристаллизации из гексана.

Далее фураноны **1а** и **2а** были вовлечены в реакции с этан-1,2-дитиолом и пропан-1,3-дитиолом в условиях основного катализа. Синтезы проводили в кипящем ацетоне в присутствии триэтиламина с использованием соотношения фуранон–дитиол–основание, равное 2:1:2 (схема 1). В результате были выделены новые оптически активные бистиоэфиры **3–6**, в молекулах которых фрагмент дитиола соединяет два фураноновых кольца по атомам углерода C⁴. Строение полученных продуктов подтверждено методами спектроскопии ИК, ЯМР ¹Н и ¹³С {¹H}.

В ИК спектрах бистиоэфиров **3–6** отметим присутствие полос поглощения валентных колебаний С–Н связей в области 2800–3000 см⁻¹, С=С связи лактонного фрагмента в области 1592–1605 см⁻¹, а также сигнала в области 1718–1782 см⁻¹, характерного валентным колебаниям карбонильной группы.

В спектрах ЯМР ¹Н бистиоэфиров **3–6** присутствуют синглет метинового протона у атома углерода С⁵ лактонного цикла при δ 5.7–5.8 м.д. и две группы сигналов от фрагментов алифатических дитиолов: для бистиоэфиров 3 и 4 на основе этандитиола – два сложных мультиплета SCH₂ протонов в области & 3.3-3.5 и 3.5-3.7 м.д., а в случае бистиоэфиров 5 и 6 на основе пропандитиола – квинтет С-СН₂-С протонов при б 2.13-2.14 м.д. с КССВ ³J 7.2 Гц и сложный мультиплет SCH₂ протонов в области б 3.3-3.4 м.д. Что касается протонов ментильного и борнильного заместителей, то в спектре проявляются сигналы протонов от трех метильных групп в области сильных полей (б 0.8-1.0 м.д.), сложные мультиплеты от диастереотопных метиленовых протонов в области б 0.7-2.4 м.д., а сигнал от метинового протона у атомов углерода C⁶ проявляется в виде отдельного мультиплета в области 3.5-4.1 м.д. Детальный анализ двумерных спектров ЯМР ¹H-¹H COSY и ¹H-¹³C HSQC позволил провести полное соотнесение наблюдаемых сигналов атомов углерода с сигналами соответствующих атомов водорода ментильного и борнильного остатков и фрагментов дитиолов в молекулах бистиоэфиров 3-6.

0= $\mathbf{R}^{*} = l-\text{MEHTMI} \ \mathbf{1a}, \mathbf{3} \ (65\%), \mathbf{5} \ (81\%), \mathbf{7} \ (60\%), \mathbf{9} \ (77\%); \ \mathbf{R}^{*} = l-60\text{р}\text{р}\text{н}\text{MI} \ \mathbf{2a}, \mathbf{4} \ (67\%), \mathbf{6} \ (80\%), \mathbf{8} \ (72\%), \mathbf{10} \ (58\%)$ 5 $\odot = \infty = \odot$ \bigcirc R*0. 33% H₂O₂ (изб.) CH₃COOH, rt 33% H₂O₂ (изб.) CH₃COOH, rt OR* ΟR* Cxema 1 U $\dot{\Box}$ 3,4 ด์ Ш * С*20 R*0. Et_3N , ацетон, t° Et_3N , ацетон, t° . ESE la, 2a

5

 \overline{O}

Выделенные (S.S)-стереоизомеры бистиоэфиров 3-6 на следующем этапе были окислены до соответствующих дисульфонов. При взаимодействии дитиопроизводных 3-6 с избытком пероксида водорода (10 экв) в уксусной кислоте при комнатной температуре получены новые оптически активные дисульфоны фуранонового ряда 7-10 в виде бесцветных твердых веществ (схема 1). О наличии в молекулах выделенных соединений SO₂ группы судили по появлению в ИК спектрах соединений 7-10 новых узких интенсивных полос поглощения в двух областях (1326-1358 и 1131-1152 см⁻¹), присущих антисимметричным и симметричным колебаниям сульфонильной группы. Спектры ЯМР ¹Н и ${}^{13}C{}^{1}H{}$ бистиоэфиров **3–6** и соответствующих дисульфонов 7-10 содержат одинаковое количество сигналов. В качестве устойчивой тенденции отметим сдвиг в слабые поля ($\Delta\delta = 0.3-0.4$ м.д.) синглета от метинового атома водорода у атома углерода С⁵ лактонного цикла в спектрах ЯМР 1 Н дисульфонов 7–10.

Методом рентгеноструктурного анализа охарактеризована молекулярная структура бистиоэфиров 3-5, а также дисульфонов 7 и 8 (см. рисунок). Структура полученных соединений расшифрована в моноклинной P21 (соединения 3, 4 и 7) и орторомбической P2₁2₁2₁ (соединения 5 и 8) хиральных пространственных группах. Дисульфон 8 кристаллизуется в виде кристаллосольвата с хлороформом состава 1:1. Асимметрическая часть ячейки кристаллов всех исследованных соединений представлена единственной молекулой (Z' = 1). Пятичленный цикл во всех молекулах плоский. Конформационная гибкость фрагмента -SCH₂CH₂S- позволяет молекулам соединений, полученных на основе этан-1,2-дитиола, принимать в кристалле различные конформации. Так, в кристалле бистиоэфира 3 соединительный мостик -SCH₂CH₂S- находится в гош-конформации, а в кристаллах соединений 4, 7 и 8 наблюдается трансоидная конформация. В кристалле соединения 5 на основе пропан-1,3-дитиола соединительный мостик -SCH₂CH₂CH₂S- находится полностью в трансоидной конформации. По данным метода РСА атом углерода C⁵ лактонных циклов всех изученных соединений имеет (S)-конфигурацию.

Геометрия молекул соединений 3 (a), 4 (b), 5 (c), 7 (d) и 8 (e) в кристалле

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на фурье-спектрометре «Bruker Tensor-27» (Германия) в диапазоне волновых чисел 4000–400 см⁻¹. Регистрацию спектров проводили на приставке PikeMIRacle (США) методом НПВО. Спектры ЯМР ¹H, ¹³C {¹H}, ¹H–¹H COSY и ¹H–¹³C HSQC регистрировали на приборе «Bruker Avance III 400» (Германия) с рабочей частотой 400.17 (¹H) и 100.62 (¹³C) МГц при температуре 20°С для растворов в CDCl₃. Химический

сдвиг определялся относительно сигналов остаточных протонов дейтерорастворителя (б_н 7.26, δ_C 77.16 м.д.). Масс-спектры высокого разрешения получали на тандемном квадруполь-времяпролетном масс-спектрометре с электроспрейной ионизацией «Agilent 6550 iFunnel Q-TOF LC/MS». Анализ методом ТСХ проводили на пластинах «Sorbfil ПТСХ-АФ-А-УФ», элюент: смесь этилацетат-гексан (1:1), пятна проявляли в УФ свете при 254 нм. Для колоночной хроматографии использовали силикагель 60 Å (0.060–0.200 мм, Acros Organics). Температуры плавления измеряли на нагревательном столике «Boetius» и не корректировали. Измерение оптического вращения проводили на поляриметре «Perkin-Elmer Model 341» в CHCl₃ с использованием кювет на 1 или 3 мл при температуре 20°С на D-линии натрия (λ 589 нм) (*с* дана в г/100 мл).

Кристаллы соединения **3** получены из смеси гексан – CCl_4 (2:1), соединения **4** – из $CDCl_3$, соединения **5** – из смеси гексан– CCl_4 (3:1), соединения **7** – из смеси гексан– $CHCl_3$ (3:1), соединения **8** – из смеси гексан– $CHCl_3$ (5:1).

Монокристальное рентгеноструктурное исследование соединений 3 и 5 выполнено на автоматическом трехкружном дифрактометре «Rigaku XtaLab Synergy S» [λ (Cu K_{α}) = 1.54184 Å] при температуре T = 100(2) К. Монокристальное рентгеноструктурное исследование соединений 4, 7 и 8 выполнено на автоматическом трехкружном дифрактометре «Bruker D8 QUEST» с двумерным детектором PHOTON III и микрофокусной рентгеновской трубой ІµS DIAMOND (λ [Mo K_{α}] = 0.71073 Å) при T = 100(2) К. Сбор, редактирование данных и уточнение параметров элементарных ячеек проводили с использованием пакета программ CrysAlisPro и АРЕХЗ. Структуры расшифрованы прямым методом с использованием SHELXT [33] и уточнены полноматричным методом наименьших квадратов по F^2 вначале в изотропном, затем в анизотропном приближении (для всех неводородных атомов) с использованием программ SHELXL [34] в пакете программ Olex2 [35]. Координаты атомов водорода рассчитаны на основании стереохимических критериев и уточнены по соответствующим моделям наездника. Анализ межмолекулярных взаимодействий и рисунки выполнены с использованием программы PLATON [36].

Кристаллографические данные структур соединений **3–5**, **7** и **8** депонированы в Кембриджском банке структурных данных [ССDC 2174932 (**3**), 2174935 (**4**), 2174934 (**5**), 2174933 (**7**), 2174936 (**8**)], важнейшие характеристики приведены в таблице.

(1*R*,2*S*,5*R*)-Ментол, (1*S*,2*R*,4*S*)-борнеол, этан-1,2-дитиол и пропан-1,3-дитиол (все – Acros Organics) использовали без дополнительной очистки. Все остальные реагенты и органические растворители очищали и сушили перед использованием по стандартным методикам [37].

5(S)-[(1R,2S,5R)-2-Изопропил-5-метилциклогексилокси]-3,4-дихлор-2(5*H*)-фуранон (**1a**) [14, 30] и 3,4-дихлор-5(S)-[(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси]-2(5*H*)-фуранон (**2a**) [31, 32] синтезировали по известным методикам.

4,4'-(Этан-1,2-диилдисульфандиил)бис{5(S)-[(1R,2S,5R)-2-изопропил-5-метилциклогексилокси]-3-хлор-2(5Н)-фуранон} (3). В трехгорлой колбе на 100 мл, снабженной магнитной мешалкой, обратным холодильником и газоподводяшей трубкой для подачи аргона, к раствору 2.09 г (6.8 ммоль) фуранона 1а в ацетоне (15 мл) при интенсивном перемешивании добавили раствор 0.29 мл (3.4 ммоль) этан-1,2-дитиола в ацетоне (5 мл), а затем по каплям раствор 0.95 мл (6.8 ммоль) триэтиламина в ацетоне (7 мл). Наблюдали постепенное образование осадка (C₂H₅)₃N·HCl. Реакционную смесь кипятили в течение 18 ч, об окончании реакции судили по данным метода спектроскопии ЯМР ¹Н. Выпавший осадок соли отфильтровали, промыли холодным ацетоном. Фильтрат досуха вакуумировали, полученный коричневый маслянистый остаток перекристаллизовали из смеси гексан-CCl₄ (2:1). Выход 1.41 г (65%), бесцветные кристаллы, т.пл. 129°С, $R_{\rm f}$ 0.61, $[\alpha]_{\rm D}^{20}$ +11.3 (с 1.0, CHCl₃). ИК спектр, v, см⁻¹: 2960, 2948, 2937, 2929, 2879, 2866 (С-Н), 1782, 1718 (С=О), 1605 (С=С лакт.). Спектр ЯМР ¹Н, б, м.д.: 0.81 д [3Н, CH₃ (*i*-Pr), ³*J* 7.0 Гц], 0.93 д (3H, CH₃, H¹², ³J 6.5 Гц), 0.94 д [3H, CH₃ (*i*-Pr), ³*J* 7.0 Гц], 0.76–1.16 м (3H, H⁷, H⁹, H¹⁰), 1.29–1.48 м (2H, H⁸, H¹¹), 1.61–1.73 м (2H, H⁹, H¹⁰), 2.14–2.29 м (2H, H⁷, H¹³), 3.41–3.52 м (2H, SCH₂), 3.53–3.66 м (3H, H⁶, SCH₂), 5.80 с (1H, H⁵). Спектр ЯМР ¹³С{¹H}, б, м.д.: 16.02 [CH₃ (*i*-Pr)], 21.16,

Основные кристаллографические параметры структур 3–5, 7 и 8 по рентгенодифракционным данным для монокристаллов

Соединение	3	4	5	7	8
Брутто-формула	$C_{30}H_{44}Cl_2O_6S_2$	$C_{30}H_{40}Cl_2O_6S_2$	$C_{31}H_{46}Cl_2O_6S_2$	$C_{30}H_{44}Cl_2O_{10}S_2$	C ₃₀ H ₄₀ Cl ₂ O ₁₀ S ₂ , CHCl ₃
Молекулярная масса	635.67	631.64	649.70	699.67	815.01
Кристаллогра- фический класс	моноклинный	моноклинный	орторомбический	моноклинный	орторомбический
Пространст- венная группа	<i>P</i> 2 ₁ (no. 4)	<i>P</i> 2 ₁ (no. 4)	$P2_12_12_1$ (no. 19)	<i>P</i> 2 ₁ (no. 4)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (no. 19)
Параметры эле- ментарной ячей- ки: <i>a</i> , <i>b</i> , <i>c</i> , Å; α, β, γ, град	8.33950(10), 19.2734(2), 10.67710(10); 108.7640(10)	10.1040(4), 14.5378(7), 10.5895(4); 92.8080(10)	9.33550(10), 12.1125(2), 29.9674(3)	8.1215(5), 15.3194(12), 14.0071(11); 99.165(3)	7.8449(2), 15.5543(5), 29.9604(9)
Объем элементар- ной ячейки, Å ³	1624.93(3)	1553.62(11)	3388.60(7)	1720.5(2)	3655.83(19)
Z/Z	2/1	2/1	4/1	2/1	4/1
Вычисленная плотность, г см ⁻³	1.299	1.350	1.273	1.351	1.481
Коэффициент по- глощения, мм ⁻¹	3.320	0.384	3.194	0.362	0.565
F(000)	676	668	1384	740	1696
Диапазон сбора отражений, град	4.373-76.545	1.925-30.059	2.949–76.646	1.984-30.040	1.887-30.070
Диапазон индексов	$-10 \le h \le 10,$ $-23 \le k \le 23,$ $-13 \le l \le 13$	$-14 \le h \le 14,$ $-20 \le k \le 20,$ $-14 \le l \le 14$	$-10 \le h \le 11,$ $-15 \le k \le 15,$ $-37 \le l \le 21$	$-11 \le h \le 11,$ $-21 \le k \le 21,$ $-19 \le l \le 19$	$-11 \le h \le 10,$ $-21 \le k \le 21,$ $-42 \le l \le 42$
Общее число/ независимых отражений (<i>R</i> _{int})	26250/6561 (0.0413)	46486/9093 (0.0360)	19224/6902 (0.0485)	59361/10088 (0.0501)	59502/10703 (0.0531)
Rσ	0.0343	0.0277	0.0501	0.0364	0.0433
$T_{\rm max}/T_{\rm min}$	1.000/0.564	0.7460/0.6947	1.000/0.456	0.7460/0.6831	0.7460/0.6711
Число наблюдае- мых отражений [<i>I</i> > 2 σ (<i>I</i>)]	6443	8694	6559	9186	9124
Количество отра- жений/число кон- стрейнов/число параметров	6561/1/367	9093/1/367	6902/0/376	10088/1/403	10703/0/439
GooF	1.069	1.034	1.070	1.028	1.033

Соединение	3	4	5	7	8
$R\left[I > 2\sigma(I)\right]$	R1 0.0306, wR2 0.0803	<i>R</i> 1 0.0249, <i>wR</i> 2 0.0605	R1 0.0358, wR2 0.0922	R1 0.0303, wR2 0.0682	R1 0.0381, wR2 0.0927
<i>R</i> (по всем отражениям)	R1 0.0310, wR2 0.0806	<i>R</i> 1 0.0273, <i>wR</i> 2 0.0618	R1 0.0383, wR2 0.0938	R1 0.0365, wR2 0.0707	<i>R</i> 1 0.0511, <i>wR</i> 2 0.0988
Параметр Флака	-0.008(9)	0.000(13)	-0.012(8)	0.017(17)	-0.021(19)
Остаточные экстремумы электронной плотности, еÅ ⁻³	0.246 и –0.300	0.278 и –0.151	0.280 и -0.260	0.227 и –0.359	0.715 и –0.489
CCDC	2174932	2174935	2174934	2174933	2174936

Таблица. (продолжение).

22.22 [CH₃ (*i*-Pr), C¹²], 22.90 (C¹⁰), 25.49 (C¹³), 30.62 (2SCH₂), 31.78 (C⁸), 34.00 (C⁹), 42.40 (C⁷), 48.21 (C¹¹), 83.69 (C⁶), 102.39 (C⁵), 120.20 (C³), 152.42 (C⁴), 164.71 (C²). Масс-спектр, *m/z*: 657.1849 [*M* + Na]⁺. C₃₀H₄₄Cl₂NaO₆S₂. *M* + Na 657.1849.

4,4'-(Этан-1,2-диилдисульфандиил)бис[5(S)-{(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси}-3-хлор-2(5Н)-фуранон] (4) синтезировали аналогично соединению 3 из фуранона 2а (2.04 г, 6.7 ммоль), этан-1,2-дитиола (0.28 мл, 3.3 ммоль) и триэтиламина (0.93 мл, 6.7 ммоль). Реакционную смесь кипятили в течение 19 ч. Перекристаллизация из смеси гексан-CCl₄ (1:4). Выход 1.41 г (67%), бесцветные кристаллы, т.пл. 168°С, *R*_f 0.65, [α]_D²⁰ +58.3 (с 1.1, CHCl₃). ИК спектр, v, см⁻¹: 2990, 2963, 2942, 2885 (С-Н), 1764 (C=O), 1593, 1582 (C=C лакт.). Спектр ЯМР ¹Н, б. м.д.: 0.87 с [6H, 2CH₃ (*i*-Pr)], 0.91 с (3H, CH₃, H¹²), 1.18–1.34 м (3H, H⁸, H⁹, H¹¹), 1.64–1.79 м (2H, H⁸ или H⁹, H¹⁰), 1.80–1.92 м (1Н, H⁸ или H⁹), 2.22– 2.35 м (1Н, Н¹¹), 3.37–3.49 м (2Н, SCH₂), 3.54–3.66 м (2H, SCH₂), 3.97–4.06 м (1H, H⁶), 5.82 с (1H, H⁵). Спектр ЯМР ¹³С{¹H}, б, м.д.: 14.22 (С¹²), 18.91, 19.74 [CH₃ (*i*-Pr)], 26.79, 28.10 (C⁸, C⁹), 30.54 (2SCH₂), 37.18 (C¹¹), 44.95 (C¹⁰), 47.87 (C⁷), 49.75 (C¹³), 89.14 (C⁶), 102.71 (C⁵), 120.17 (C³), 152.62 (C⁴), 164.45 (C²). Macc-спектр, m/z: 653.1544 [M + Na^{+} . $C_{30}H_{40}Cl_2NaO_6S_2$. M + Na 653.1536.

4,4'-(Пропан-1,3-диилдисульфандиил)бис-{5(S)-[(1R,2S,5R)-2-изопропил-5-метилциклогексилокси]-3-хлор-2(5H)-фуранон} (5) синтезировали аналогично соединению 3 из фуранона 1а (1.92 г, 6.2 ммоль), пропан-1,3-дитиола (0.31 мл, 3.1 ммоль) и триэтиламина (0.87 мл, 6.2 ммоль). Реакционную смесь кипятили в течение 16 ч. Перекристаллизация из смеси гексан–ССІ₄ (3:1). Выход 1.64 г (81%), бесцветные кристаллы, т.пл. 95°С, *R*_f 0.59, [α]_D²⁰-0.1 (*с* 1.0, CHCl₃). ИК спектр, v, см⁻¹: 2970, 2958, 2928, 2876 (С–Н), 1759 (С=О), 1592 (С=С лакт.). Спектр ЯМР ¹Н, б, м.д.: 0.80 д [3H, CH₃ (*i*-Pr), ³*J* 6.9 Гц], 0.93 д (3H, CH₃, H¹², ³*J* 6.5 Гц), 0.94 д [3H, CH₃ (*i*-Pr), ³*J* 7.0 Гц], 0.77–1.15 м (3H, H⁷, H⁹, H¹⁰), 1.29–1.48 м (2H, H⁸, H¹¹), 1.61– 1.73 м (2H, H⁹, H¹⁰), 2.14 квинтет (2H, CH₂CH₂CH₂, ³*J* 7.2 Гц), 2.18–2.31 м (2Н, Н⁷, Н¹³), 3.36 д.т (2Н, А-часть ABX_2 -системы, SCH_2 , ${}^2J_{AB}$ –13.5, ${}^3J_{AX}$ 7.2 Гц), 3.43 д.т (2H, В-часть ABX₂-системы, SCH₂, ²*J*_{AB} –13.5, ³*J*_{BX} 7.2 Гц), 3.56 д.д.д (1Н, Н⁶, ³*J* 10.7, ³J 10.7, ³J 4.4 Гц), 5.77 с (1Н, Н⁵). Спектр ЯМР ¹³С{¹H}, б, м.д.: 16.04 [СН₃ (*i*-Pr)], 21.17, 22.23 $[CH_3 (i-Pr), C^{12}], 22.90 (C^{10}), 25.43 (C^{13}), 28.56$ (2SCH₂), 30.97 (CH₂CH₂CH₂), 31.78 (C⁸), 34.03 (C^9) , 42.40 (C^7) , 48.21 (C^{11}) , 83.66 (C^6) , 102.42 (C^5) , 119.42 (C³), 153.30 (C⁴), 165.02 (C²). Масс-спектр, m/z: 671.2005 $[M + Na]^+$. C₃₁H₄₆Cl₂NaO₆S₂. M + Na671.2005.

4,4'-(Пропан-1,3-диилдисульфандиил)бис-[5(S)-{(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси}-3-хлор-2(5H)-фуранон] (6) синтезировали аналогично соединению 3 из фуранона 2a (2.52 г, 8.2 ммоль), пропан-1,3-дитиола (0.41 мл, 4.1 ммоль) и триэтиламина (1.15 мл, 8.2 ммоль). Реакционную смесь кипятили в течение 15 ч. Полученный после вакуумирования желтый маслянистый остаток очищали методом

колоночной хроматографии на силикагеле (элюент – CH_2Cl_2). Основную фракцию с R_f 0.45 досуха вакуумировали, остаток перекристаллизовали из смеси гексан-CCl₄ (1:2). Выход 2.13 г (80%), бесцветное твердое вещество, т.пл. 106°С, $R_{\rm f}$ 0.64, $[\alpha]_{\rm D}^{20}$ +49.5 (с 1.2, CHCl₃). ИК спектр, v, см⁻¹: 2960, 2886 (С-Н), 1776 (С=О), 1593 (С=С лакт.). Спектр ЯМР ¹Н, δ, м.д.: 0.87 с [6H, 2CH₃ (*i*-Pr)], 0.91 с (3H, CH₃, H¹²), 1.17–1.37 м (3H, H⁸, H⁹, Н¹¹), 1.63–1.80 м (2Н, Н⁸ или Н⁹, Н¹⁰), 1.81–1.96 м (1H, H⁸ или H⁹), 2.13 квинтет (2H, CH₂CH₂, ³*J* 7.2 Гц), 2.21–2.37 м (1Н, Н¹¹), 3.33 д.т (2Н, А-часть ABX₂-системы, SCH₂, ${}^{2}J_{AB}$ –13.1, ${}^{3}J_{AX}$ 7.2 Гц), 3.40 д.т (2H, В-часть ABX₂-системы, SCH₂, ${}^{2}J_{AB}$ -13.1, ³J_{BX} 7.2 Гц), 3.95-4.07 м (1H, H⁶), 5.81 с (1H, H⁵). Спектр ЯМР ¹³С{¹H}, б, м.д.: 14.07 (С¹²), 18.82, 19.65 [CH₃ (*i*-Pr)], 26.66, 28.01 (C⁸, C⁹), 28.60 (CH₂CH₂CH₂), 30.15 (2SCH₂), 37.06 (C¹¹), 44.86 $(C^{10}), 47.72 (C^7), 49.63 (C^{13}), 88.63 (C^6), 102.43$ (C^5) , 118.94 (C^3) , 153.91 (C^4) , 164.64 (C^2) . Maccспектр, m/z: 662.2131 $[M + NH_4]^+$. C₃₁H₄₆Cl₂NO₆S₂. $M + NH_4$ 662.2138.

1,2-Бис[{5(S)-[(1R,2S,5R)-2-изопропил-5метилциклогексилокси]-3-хлор-2(5Н)-фуранонил (7). В плоскодонной колбе на 100 мл, снабженной магнитной мешалкой, к раствору 0.72 г (1.1 ммоль) фуранона 3 в 15 мл ледяной уксусной кислоты при перемешивании прилили 1.14 мл (11.0 ммоль) 33%-ного раствора пероксида водорода. Реакционную смесь перемешивали в течение 7 сут при комнатной температуре, об окончании реакции судили по данным метода спектроскопии ЯМР ¹Н. Далее реакционную смесь досуха вакуумировали, остаток перекристаллизовали из смеси гексан-СНСl₃ (3:1). Выход 0.48 г (60%), бесцветные кристаллы, т.пл. 178°С, *R*_f 0.58, $[\alpha]_{D}^{20}$ +119.3 (c 1.0, CHCl₃). ИК спектр, v, см⁻¹: 2954, 2929, 2877 (C-H), 1806 (C=O), 1637 (C=C лакт.), 1355 (SO₂ асимм.), 1131 (SO₂ симм.). Спектр ЯМР ¹Н, б, м.д.: 0.82 д [3Н, CH₃ (*i*-Pr), ³*J* 6.9 Гц], 0.94 д [3H, CH₃ (*i*-Pr), ³*J* 6.6 Гц], 0.95 д (3H, CH₃, Н¹², ³*J* 6.0 Гц), 0.76–1.12 м (3Н, Н⁷, Н⁹, Н¹⁰), 1.23– 1.34 м (1Н, Н¹¹), 1.35–1.52 м (1Н, Н⁸), 1.62–1.77 м (2H, H⁹, H¹⁰), 2.12 септ.д (1H, H¹³, ³*J* 7.0, ³*J* 2.5 Гц), 2.14–2.22 м (1H, H⁷), 3.58–3.80 м (5H, H⁶, SCH₂), 6.21 с (1H, H⁵). Спектр ЯМР ¹³С{¹H}, б, м.д.: 15.70 [CH₃ (*i*-Pr)], 21.21, 22.19 [CH₃ (*i*-Pr), C¹²], 22.70 $(C^{10}), 25.42 (C^{13}), 31.85 (C^8), 33.73 (C^9), 42.50 (C^7),$

ЖУРНАЛ ОРГАНИЧЕСКОЙ ХИМИИ том 58 № 8 2022

48.41 (C¹¹), 48.59 (2SCH₂), 84.80 (C⁶), 101.43 (C⁵), 137.05 (C³), 146.92 (C⁴), 162.09 (C²). Масс-спектр, *m/z*: 721.1639 [*M* + Na]⁺. C₃₀H₄₄Cl₂NaO₁₀S₂. *M* + Na 721.1645.

1,2-Бис{[5(S)-{(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси}-3-хлор-2(5H)фуранонил]сульфонил}этан (8) синтезировали аналогично соединению 7 из фуранона 4 (0.63 г. 1.0 ммоль) и 33%-ного раствора пероксида водорода (1.00 мл, 10.0 ммоль) в 15 мл ледяной уксусной кислоты. Реакционную смесь перемешивали в течение 7 сут. Перекристаллизация из смеси гексан-СНСl₂ (5:1). Выход 0.50 г (72%), бесцветные кристаллы, т.пл. 129°С, *R*_f 0.66, [α]_D²⁰+133.1 (*с* 1.0, CHCl₃). ИК спектр, v, см⁻¹: 2989, 2960, 2891, 2881 (С-Н), 1803 (С=О), 1635 (С=С лакт.), 1358 (SO₂ асимм.), 1135 (SO₂ симм.). Спектр ЯМР ¹Н, б, м.д.: 0.87, 0.88 c [6H, 2CH₃ (*i*-Pr)], 0.93 c (3H, CH₃, H¹²), 1.13–1.38 м (3H, H⁸, H⁹, H¹¹), 1.57–1.68 м (1H, H⁸ или H⁹), 1.69–1.85 м (2H, H⁸ или H⁹, H¹⁰), 2.24– 2.40 м (1Н, Н¹¹), 3.65–3.89 м (4Н, SCH₂), 4.08–4.21 м (1H, H⁶), 6.15 с (1H, H⁵). Спектр ЯМР ¹³С{¹H}, δ, м.д.: 13.93 (С¹²), 18.88, 19.67 [СН₃ (*i*-Pr)], 27.10, $28.13 (C^8, C^9), 36.70 (C^{11}), 44.89 (C^{10}), 48.00 (C^7),$ 48.65 (2SCH₂), 49.90 (C¹³), 91.65 (C⁶), 102.46 (C⁵), 137.38 (С³), 146.65 (С⁴), 162.07 (С²). Масс-спектр, m/z: 717.1327 $[M + Na]^+$. C₃₀H₄₀Cl₂NaO₁₀S₂. M + Na 717.1332.

1,3-Бис[{5(S)-[(1R,2S,5R)-2-изопропил-5-метилциклогексилокси]-3-хлор-2(5H)-фуранонил}сульфонил]пропан (9) синтезировали аналогично соединению 7 из фуранона 5 (0.65 г, 1.0 ммоль) и 33%-ного раствора пероксида водорода (1.00 мл, 10.0 ммоль) в 15 мл ледяной уксусной кислоты. Реакционную смесь перемешивали в течение 5 сут. Перекристаллизация из смеси гексан-CCl₄ (2:1). Выход 0.55 г (77%), бесцветное твердое вещество, т.пл. 142°С, $R_{\rm f}$ 0.51, $[\alpha]_{\rm D}^{20}$ +73.6 (с 1.0, CHCl₃). ИК спектр, v, см⁻¹: 2964, 2953, 2929, 2910, 2877, 2855 (C-H), 1805, 1787 (C=O), 1641, 1632 (С=С лакт.), 1347, 1326 (SO₂ асимм.), 1152, 1137 (SO₂ симм.). Спектр ЯМР ¹Н, δ, м.д.: 0.82 д [3Н, СН₃ (*i*-Pr), ³J 6.9 Гц], 0.93 д [3H, CH₃ (*i*-Pr), ³J 6.7 Гц], 0.95 д (3H, CH₃, H¹², ³*J* 6.1 Гц), 0.73–1.16 м (3H, H⁷, H⁹, H¹⁰), 1.28–1.38 м (1H, H¹¹), 1.38–1.51 м (1H, H⁸), 1.63–1.75 м (2H, H⁹, H¹⁰), 2.09–2.26 м (2H, H⁷, H¹³), 2.46 квинтет (2H, CH₂CH₂, ³*J* 7.2 Гц),

3.44 д.т (2H, А-часть системы ABX₂, SCH₂, ${}^{2}J_{AB}$ –14.3, ${}^{3}J_{AX}$ 7.2 Гц), 3.56 д.т (2H, В-часть системы ABX₂, SCH₂, ${}^{2}J_{AB}$ –14.3, ${}^{3}J_{BX}$ 7.2 Гц), 3.72 д.д.д (1H, H⁶, ${}^{3}J$ 10.7, ${}^{3}J$ 10.7, ${}^{3}J$ 4.4 Гц), 6.21 с (1H, H⁵). Спектр ЯМР ${}^{13}C{}^{1H}$, δ , м.д.: 14.55 (CH₂<u>C</u>H₂CH₂), 15.69 [CH₃ (*i*-Pr)], 21.26, 22.22 [CH₃ (*i*-Pr), C¹²], 22.72 (C¹⁰), 25.35 (C¹³), 31.81 (C⁸), 33.92 (C⁹), 42.25 (C⁷), 48.33 (C¹¹), 53.87 (2SCH₂), 84.63 (C⁶), 101.57 (C⁵), 136.12 (C³), 147.90 (C⁴), 162.49 (C²). Массспектр, *m/z*: 735.1796 [*M*+Na]⁺. C₃₁H₄₆Cl₂NaO₁₀S₂. *M* + Na 735.1802.

1,3-Бис{[5(S)-{(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси}-3-хлор-2(5H)фуранонил]сульфонил}пропан (10) синтезировали аналогично соединению 7 из фуранона 6 (0.72 г, 1.1 ммоль) и 33%-ного раствора пероксида водорода (1.12 мл, 11.2 ммоль) в 15 мл ледяной vксvсной кислоты. Реакционную смесь перемешивали в течение 5 сут. Полученный после вакуумирования бесцветный твердый остаток очищали методом колоночной хроматографии на силикагеле (элюент: этилацетат-петролейный эфир, 1:1). Основную фракцию с R_f 0.63 досуха вакуумировали, растирали в петролейном эфире. Выход 0.46 г (58%), бесцветное твердое вещество, т.пл. 92°С, [α]_D²⁰+84.5 (*c* 1.0, CHCl₂). ИК спектр, v, см⁻¹: 2985, 2959, 2936, 2916, 2883 (C-H), 1802 (C=O), 1633 (С=С лакт.), 1349 (SO₂ асимм.), 1137 (SO₂ симм.). Спектр ЯМР ¹Н, δ, м.д.: 0.87, 0.88 с [6Н, 2CH₃ (*i*-Pr)], 0.94 c (3H, CH₃, H¹²), 1.18–1.40 M (3H, Н⁸, Н⁹, Н¹¹), 1.64–1.84 м (3H, H⁸, H⁹, H¹⁰), 2.24– 2.39 м (1Н, Н¹¹), 2.50 квинтет (2Н, СН₂СН₂, ³J 7.2 Гц), 3.49 д.т (2Н, А-часть ABX₂-системы, SCH₂, ²J_{AB}-14.3, ³J_{AX} 7.2 Гц), 3.62 д.т (2H, В-часть АВХ₂-системы, SCH₂, ${}^{2}J_{AB}$ –14.3, ${}^{3}J_{BX}$ 7.2 Гц), 4.09-4.18 м (1Н, Н⁶), 6.15 с (1Н, Н⁵). Спектр ЯМР ¹³С{¹H}, б, м.д.: 13.87 (С¹²), 14.76 (СН₂<u>С</u>H₂CH₂), 18.87, 19.66 [CH₂ (*i*-Pr)], 27.05, 28.10 (C⁸, C⁹), 36.61 $(C^{11}), 44.88 (C^{10}), 47.95 (C^7), 49.88 (C^{13}), 53.91$ (2SCH₂), 91.05 (C⁶), 102.52 (C⁵), 136.17 (C³), 147.48 (C⁴), 162.50 (C²). Macc-спектр, m/z: 731.1484 [M + $Na]^+$. $C_{31}H_{42}Cl_2NaO_{10}S_2$. *M* + Na 731.1489.

ЗАКЛЮЧЕНИЕ

Синтезированы и спектрально охарактеризованы первые представители оптически активных бистиоэфиров и дисульфонов 2(5H)-фуранонового ряда. Реакции 5(S)-(*l*-ментилокси)- и 5(S)-(*l*-бор-

нилокси)-2(5*H*)-фуранонов с этан-1,2-дитиолом и пропан-1,3-дитиолом в присутствии основания приводят к образованию бистиоэфиров фуранона, в молекулах которых два ненасыщенных γ -лактонных фрагмента связаны посредством –S–(CH₂)_n–S– цепочки по атомам углерода C⁴. Полученные бистиоэфиры под действием избытка раствора пероксида водорода в уксусной кислоте превращаются в соответствующие хиральные дисульфоны, несущие фрагмент *l*-ментола или *l*-борнеола в 5 положении лактонного цикла.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Программы стратегического академического лидерства Казанского (Приволжского) федерального университета («Приоритет–2030»). Рентгеноструктурные исследования выполнены за счет государственного задания ФИЦ КазНЦ РАН.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Хабибрахманова Алсу Мунавировна, ORCID: https://orcid.org/0000-0001-7525-0133

Герасимова Дарья Павловна, ORCID: https:// orcid.org/0000-0001-9770-196X

Исламов Даут Ринатович, ORCID: https:// orcid.org/0000-0002-5988-1012

Латыпова Лилия Зиннуровна, ORCID: https:// orcid.org/0000-0001-7838-732X

Лодочникова Ольга Александровна, ORCID: https://orcid.org/0000-0001-9614-5092

Курбангалиева Альмира Рафаэловна, ORCID: https://orcid.org/0000-0002-2436-7427

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- De Souza M.V.N. *Mini-Rev. Org. Chem.* 2005, *2*, 139– 145. doi 10.2174/1570193053544427
- Mao B., Fañanás-Mastral M., Feringa B.L. Chem. Rev. 2017, 117, 10502–10566. doi 10.1021/ acs.chemrev.7b00151
- Rossi R., Lessi M., Manzini C., Marianetti G., Bellina F. Curr. Org. Chem. 2017, 21,964–1018. doi 10.2174/ 1385272821666170111151917

- Villamizar-Mogotocoro A.-F., León-Rojas A.-F., Urbina-González J.-M. *Mini-Rev. Org. Chem.* 2020, *17*, 922–945. doi 10.2174/1570193X1766620022013 0735
- Бадовская Л.А., Посконин В.В., Тюхтенева З.И., Кожина Н.Д. ЖОХ. 2021, 91, 167–189. [Badovskaya L.A., Poskonin V.V., Tyukhteneva Z.I., Kozhina N.D. Russ. J. Gen. Chem. 2021, 91, 133–153.] doi 10.1134/S1070363221020018
- Kumar S., Garg R., Kabra A. World J. Pharm. Res. Technol. 2013, 1, 83–94.
- Husain A., Khan S.A., Iram F., Iqbal M.A., Asif M. *Eur. J. Med. Chem.* 2019, *171*, 66–92. doi 10.1016/ j.ejmech.2019.03.021
- Khatri H.R., Bhattarai B., Kaplan W., Li Z.Z., Long M.J.C., Aye Y., Nagorny P. J. Am. Chem. Soc. 2019, 141, 4849–4860. doi 10.1021/jacs.8b12870
- Singh S., Sharma P.K., Kumar N., Dudhe R. J. Pharm. Sci. 2011, 2, S51–S61.
- Kayumov A.R., Sharafutdinov I.S., Trizna E.Y., Bogachev M.I. New and Future Developments in Microbial Biotechnology and Bioengineering. Microbial Biofilms: Current Research and Future Trends. Ed. M.K. Yadav, B.P. Singh. Amsterdam: Elsevier, 2020, 6, 77–89. doi 10.1016/B978-0-444-64279-0.00006-2
- Davis D.C., Hoch D.G., Wu L., Abegg D., Martin B.S., Zhang Z.-Y., Adibekian A., Dai M. J. Am. Chem. Soc. 2018, 140, 17465–17473. doi 10.1021/jacs.8b07652
- Xia F., Li W.-Y., Yang X.-W., Yang J., Li X., Nian Y., Xu G. Org. Lett. 2019, 21, 5670–5674. doi 10.1021/ acs.orglett.9b01527
- Trost B.M., Gnanamani E., Kalnmals C.A., Hung C.-I. "Joey", Tracy J.S. J. Am. Chem. Soc. 2019, 141, 1489– 1493. doi 10.1021/jacs.8b13367
- Sharafutdinov I.S., Trizna E.Y., Baydamshina D.R., Ryzhikova M.N., Sibgatullina R.R., Khabibrakhmanova A.M., Latypova L.Z., Kurbangalieva A.R., Rozhina E.V., Klinger-Stobel M., Fakhrullin R.F., Pletz M.W., Bogachev M.I., Kayumov A.R., Makarewicz O. *Front. Microbiol.* 2017, *8*, 2246. doi 10.3389/ fmicb.2017.02246
- Yang K., Yang J.-Q., Luo S.-H., Mei W.-J., Lin J.-Y., Zhan J.-Q., Wang Z.-Y. *Bioorg. Chem.* 2021, 107, 104518. doi 10.1016/j.bioorg.2020.104518
- Прилежаева Е.Н. Усп. хим. 2000, 69, 403–446. [Prilezhaeva E.N. Russ. Chem. Rev. 2000, 69, 367– 408.]
- 17. Trost B.M., Kalnmals C.A. *Chem. Eur. J.* **2019**, *25*, 11193–11213. doi 10.1002/chem.201902019

- Wang Z., Zhang Z., Zhao W., Sivaguru P., Zanoni G., Wang Y., Anderson E.A., Bi X. *Nat. Commun.* 2021, *12*, 5244. doi 10.1038/s41467-021-25593-5
- Ahmad I., Shagufta. Int. J. Pharm. Pharm. Sci. 2015, 7, 19–27.
- Kurbangalieva A.R., Devyatova N.F., Bogdanov A.V., Berdnikov E.A., Mannafov T.G., Krivolapov D.B., Litvinov I.A., Chmutova G.A. *Phosphorus Sulfur Silicon Relat. Elem.* 2007, *182*, 607–630. doi 10.1080/ 10426500601015989
- Девятова Н.Ф., Косолапова Л.С., Курбангалиева А.Р., Бердников Е.А., Лодочникова О.А., Литвинов И.А., Чмутова Г.А. *ЖОрХ*. 2008, 44, 1237–1244. [Devyatova N.F., Kosolapova L.S., Kurbangalieva A.R., Berdnikov E.A., Lodochnikova O.A., Litvinov I.A. Chmutova G.A. *Russ. J. Org. Chem.* 2008, 44, 1225– 1232.] doi 10.1134/S1070428008080204
- Курбангалиева А.Р., Девятова Н.Ф., Косолапова Л.С., Лодочникова О.А., Бердников Е.А., Литвинов И.А., Чмутова Г.А. *Изв. АН. Сер. хим.* 2009, 58, 126–133. [Kurbangalieva A.R., Devyatova N.F., Kosolapova L.S., Lodochnikova O.A., Berdnikov E.A., Litvinov I.A., Chmutova G.A. *Russ. Chem. Bull.* 2009, 58, 126–133.] doi 10.1007/s11172-009-0019-1
- Kurbangalieva A.R., Lodochnikova O.A., Devyatova N.F., Berdnikov E.A., Gnezdilov O.I., Litvinov I.A., Chmutova G.A. *Tetrahedron*. 2010, 66, 9945–9953. doi 10.1016/j.tet.2010.10.047
- Хоанг Т.Л., Курбангалиева А.Р., Ежова А.С., Бердников Е.А., Чмутова Г.А. Бутлеров. Сообщ. 2015, 42, 33–40. [Hoang T.L., Kurbangalieva A.R., Yezhova A.S., Berdnikov E.A., Chmutova G.A. Butlerov Commun. 2015, 42, 33–40.]
- Хоанг Т.Л., Курбангалиева А.Р., Ежова А.С., Лодочникова О.А., Чмутова Г.А. *Бутлеров. Сообщ.* 2016, 45, 52–58. [Hoang T.L., Kurbangalieva A.R., Yezhova A.S., Lodochnikova O.A., Chmutova G.A. *Butlerov Commun.* 2016, 45, 52–58.]
- Курбангалиева А.Р., Хоанг Л.Т., Лодочникова О.А., Кузьмичева М.Ю., Прадипта А.Р., Танака К., Чмутова Г.А. Изв. АН. Сер. хим. 2016, 65, 1278–1284. [Kurbangalieva A.R., Hoang L.T., Lodochnikova O.A., Kuzmicheva M.Yu., Pradipta A.R., Tanaka K., Chmutova G.A. Russ. Chem. Bull. 2016, 65, 1278– 1284.] doi 10.1007/s11172-016-1448-2
- Девятова Н.Ф., Курбангалиева А.Р., Янилкин В.В., Чмутова Г.А. Изв. АН. Сер. хим. 2009, 58, 889–899.
 [Devyatova N.F., Kurbangalieva A.R., Yanilkin V.V., Chmutova G.A. Russ. Chem. Bull. 2009, 58, 908–919.] doi 10.1007/s11172-009-0114-3
- 28. Латыпова Л.З., Сайгитбаталова Е.Ш., Чулакова Д.Р., Лодочникова О.А., Курбангалиева А.Р., Бердни-

ков Е.А., Чмутова Г.А. *ЖОрХ*. **2014**, *50*, 532–545. [Latypova L.Z., Saigitbatalova, E. Sh., Chulakova D.R., Lodochnikova O.A., Kurbangalieva A.R., Berdnikov E.A., Chmutova G.A. *Russ. J. Org. Chem.* **2014**, *50*, 521–534.] doi 10.1134/S1070428014040149

- Латыпова Л.З., Сайгитбаталова Е.Ш., Курбангалиева А.Р., Лодочникова О.А., Чмутова Г.А. Бутлеров. Сообщ. 2016, 46, 89–96. [Latypova L.Z., Saigitbatalova E.S., Kurbangalieva A.R., Lodochnikova O.A., Chmutova G.A. Butlerov Commun. 2016, 46, 89–96.]
- Fenske D., Merzweiler K. Z. Naturforsch. 1989, 44b, 879–883. doi 10.1515/znb-1989-0803
- Chen Q.H., Huang B. Chin. Chem. Lett. 1993, 4, 675– 678.
- 32. Sharafutdinov I.S., Pavlova A.S., Khabibrakhmanova A.M., Faizova R.G., Kurbangalieva A.R., Tana-

ka K., Trizna E.Y., Baidamshina D.R., Bogachev M.I., Kayumov A.R. *New Microbiol.* **2019**, *42*, 29–36.

- Sheldrick G.M. Acta Crystallogr., Sect. A. 2015, 71, 3–8. doi: 10.1107/S2053273314026370
- 34. Sheldrick G.M. Acta Crystallogr., Sect. C. 2015, 71, 3–8. doi 10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. J. Appl. Crystallogr. 2009, 42, 339–341. doi 10.1107/S0021889808042726
- Spek A.L. Acta Crystallogr., Sect. D. 2009, 65, 148– 155. doi 10.1107/S090744490804362X
- Гордон А., Форд Р. Спутник химика: Физико-химические свойства, методики, библиография. М.: Мир, 1976. [Gordon A.J., Ford R.A. The Chemist's companion: A handbook of practical data, techniques, and references. New York: Wiley, 1973.]

Optically Active Bisthioethers and Disulfones Based on 2(5*H*)-Furanone and Dithiols: Synthesis and Structure

A. M. Khabibrakhmanova^{*a*}, E. S. Rabbanieva^{*a*}, D. P. Gerasimova^{*b*}, D. R. Islamov^{*c*}, L. Z. Latypova^{*a*, *c*}, O. A. Lodochnikova^{*a*, *b*}, and A. R. Kurbangalieva^{*a*, *}

 ^a Kazan (Volga Region) Federal University, ul. Kremlyovskaya, 18, Kazan, 420008 Russia
^b Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, ul. Akademika Arbuzova, 8, Kazan, 420088 Russia
^c Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", ul. Lobachevskogo, 2/31, Kazan, 420008 Russia
*e-mail: akurbang@kpfu.ru

Received June 7, 2022; revised June 22, 2022; accepted June 23, 2022

The methods for the synthesis of novel optically active bisthioethers and disulfones of the 2(5H)-furanone series were developed. Bisthioethers, in the molecules of which the dithiol fragment links two γ -lactone cycles at the C⁴ carbon atoms, were obtained under the interaction of 5(S)-(*l*-menthyloxy)- and 5(S)-(*l*-bornyloxy)-2(5H)-furanones with ethane-1,2-dithiol and propane-1,3-dithiol in the presence of triethylamine. Chiral disulfones with a fragment of monoterpene alcohols in the 5 position of the γ -lactone ring were isolated from the oxidation reactions of the dithio derivatives of furanone with hydrogen peroxide in acetic acid. The structure of five new sulfur-containing derivatives of furanone was characterized by single crystal X-ray diffraction.

Keywords: 2(5*H*)-furanones, lactones, thiylation, ethane-1,2-dithiol, propane-1,3-dithiol, bisthioethers, disulfones, X-ray analysis